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These are notes for Ali Altug’s course MA841 at BU Fall 2018.

The course webpage is http://math.bu.edu/people/saaltug/2018_3/2018_
3_sem.html.

Course overview: Upon Akshay Venkatesh winning the fields medal I
decided to dedicate this term to various aspects of equidistribution results
in number theory and their relations to L-functions. I am aiming to cover
basic results like Linnik’s and Duke’s theorems, as well as certain aspects of
subconvexity. As we move along we may briefly touch several other aspects
like quantum unique ergodicity (QUE) or equidistribution in other settings
(e.g. over function fields). There is an abundance of material on this topic.
We will not follow a single book or an article (although the first book and the
survey articles following that will be the main reference), however here are
a bunch of helpful papers/books. I will update these references as we move
along.

1 Equidistribution in Number Theory

1.1 Introduction

I wasn’t going to do this at all, but then Akshay won the Fields
medal.

—Ali Altug

Some topics we will try and cover:

1. Linnik’s and Duke’s theorem 1970-1990
lattice points and hyperbolic geometry
modular forms
spectral theory
modular forms of half-integral weight.
harmonic analysis

Kuznetsov formula
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Other topics!


http://math.bu.edu/people/saaltug/2018_3/2018_3_sem.html
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1.2 Linnik and Duke

Akshay’s first breakthrough, according to Sarnak, was subconvexity. He be-
came interested in ergodic theory, because they could prove hard theorems,
equidistribution is a powerful tool in number theory.

Our main goal will be to talk about: Some problems stated (and proved)
by Linnik. In the book, Ergodic properties of algebraic fields, 1968. He
considered lattice points on a sphere of radius 7, these are points (say in R?)
whose coordinates are integral of a fixed distance from the origin. Analogous
to the circle problem. If n is fixed there is nothing to distribute, but if we
vary n and project down we can ask do they accumulate miss any patches,
generally how do they distribute. Of course this can be generalised.

Setup. Sphere S2.
Lattice points a = (x1, x2, x3) € Z°.

2_.2,.2,.2
la|” = x7 + x5 + x5

this is where the number theory comes, we are looking at representability of
numbers 7 by this ternary quadratic form.

Various methods exist for studying this for varying n, quadratic reciprocity
for n = 2, circle method/Vinogradov for n = 4. n = 3 is the cut off, here half-
integral weight modular forms are relevant.

Set
QN:{x=|“—|:aezz, |a|2:N}§52.
a
Question 1.1 Are Qp “equidistributed” as N — oo? O

There is an immediate obstruction to N being a sum of 3 squares, e.g.
N =7 implies Q7 = 0.
Recall: (Gauss/Legendre)

N=xi+x3+x3, x;€Z < N#4°8b+7),
so we avoid these sets and ask the same question.

Theorem 1.2 Linnik. Let f € C*(S?), then as N — oo, N squarefree N % 7
(mod 8), (%) =1 for some fixed odd prime p

s O f0= [ o

xeQn

where do is the Lebesgue measure on S2.

This is saying that the points are equidistributed with respect to the
Lebesgue measure.
The last condition is a defect of the method, known as a Linnik condition.

Remark 1.3 Linnik’s proof is ergodic theoretic.

After this came Duke in 1988, in the mean time, Weil conjectures were
proved, Iwaniec gave bounds for Kloosterman sums. Duke was a graduate
student of Sarnak at Courant. He gave a more direct proof of 1.2 which

does not have the (%) = 1 condition. His proof is based on the theory of



(half-integral weight) modular forms, and a good bound Iwaniec on certain
exponential sums.

Why do exponential sums enter the picture? We are trying to prove that
we have a sum converging to an integral. Generally we work with a basis of
functions first, we could try using fourier analysis, using harmonics as our
basis, this is when exponential sums appear. That requires us to work out
harmonics on the sphere (spherical harmonics) which leads to representation
theory, which as the sphere is compact involves Weyl representations etc.

Duke also proved “the same” theorem over modular surfaces. Instead of
looking at expanding spheres we study expanding hyperboloids.

Setup. Space n
+=["\H

H={x+iyeCC:y>0}
I' = SLy(Z)

T:{ZEH:—%S‘R(Z)SO,|Z|210r%>‘R(z)>0,|z|>1}

(@]
T . IR o
—_

Figure 1.4: ¥
Qn’s are now replaced with CM points.

Digression (CM points). Q a binary quadratic form
Q(x,y) = ax* + bxy +cy?

of discriminant d = b2 —4ac <0, 4a,b,c € Z.

Theorem 1.5 Gauss. There are only finitely many equivalence classes of such forms

for fixed d.



The number of such is given by the Hurwitz class number.
Given Q we associate a CM point

—b+Vd
= —c

ZQ 2 H.

The action of I" on Q is the same as the action of I on zg.

ZyQ = 7Y2Q-

Let
Ag ={zg € F : disc(Q) = d}.

We need to sum properly to take automorphisms into account.

*
Z zQ €Ny

is the sum weighted by 1 if Q = a(x? + y?) (d = —4), 1 if Q = a(x? + xy + y?)
(d = -3). 0

If we want to be fancy we can say the word stack here.

> 1= H(d)

ZQ€EN4

Definition 1.6

Remark 1.7

where H(d) is the Hurwitz class number.
Remark 1.8 If d is fundamental, i.e. a discriminant of some Q(Vd) then
H(d) = h(d) the regular class number.

For the measure on ¥ we take

3 dxdy
dy:; yz .

Theorem 1.9 Duke. Let f € C*(H), that is I invariant and bounded on F, then
as d — oo over fundamental discriminants

o f@— [ ran

zeNg

Equidistribution implies density, but is so much more, for example we
cannot have dense points but which happen to cluster towards some line for
example.

1.3 Basics

Lecture 211/9/2018
Question: Let @ € Rand consider {an} where {x} = x (mod 1) so {%} = %
How are these distributed?

Example 1.10 If a = % then we have {{an}:n € N} = {% :1€{0,...,6}} and
in fact it hits each evenly. O

Example 1.11If & = V2 so {a} ~ 0.4142?... {a2} ~ 0.82842... {a3} ~ 0.24264...
{a4} ~ 0.656854... These spread out densely, but there is a difference between
density and equidistribution. In this example, equidistribution says that the



proportion of time the sequence spends in each interval (a,b) is b —a. m]

So questions are: is {na} dense?

Is {na} uniformly distributed (equidistributed with respect to the standard
measure)?

The answer to both questions is yes.

Theorem 1.12 Kronecker. Let & € R \ Q then {na} is dense in [0, 1).

Digression (Diophantine approximation). This is a very tough area of num-
ber theory, not so many definitive results here.

Theorem 1.13 Dirichlet. Let @ € R, N € Z then there exists p, q with g > 0.

lga—p| < =.
N
Proof. (Pidgeonhole) divide [0, 1) into even N subintervals of width 1, consider
ag=0,a1 ={al},ar = {a2},...€10,1)

as soon as we get to ay we must have two in one subinterval say |a,, —ay,| < %
So there exists p,,,, pu, such that

1
|”1€k _km - (”2“ _knz)l < N
(11 — 1)t — (ks — k)| < =
ni ny)ox m 1y N.

Corollary 1.14 Let a € R \ Q then there exists infinitely many coprime p, q with
q > 0 satisfying

Proof. Exercise. ]

This is very strong, Roth’s theorem tells us that even g2 here is enough
to force finiteness.

Note 1.15 o ¢ Q is necessary! Otherwise

o g‘ _|poa =pao| _ lpoq —pdol
q0 4 q90 | max{q?,q3}
so choose g > go implies % = s.

One can do better:
Theorem 1.16 Hurwitz. Let a € R\ Q

1
V542

then there exists infinitely many coprime p, q with q > 0 satisfying.

’ p
04

4

Note 1.17 V5 is the best possible without further restriction on a.



Example 1.18 If o = %5 then

p 1
il <2
has only finitely many solutions for A > V5. m]

What if we allow further restriction?

Theorem 1.19 Liouville. Let o € R algebraic of degree n > 1. Then there exists
A > 0 such that for all p, q with g > 0

A
a—=>—.
A
Proof. Let f € Z[x] be the minimal polynomial of a. Gauss’s lemma implies
that f is irreducible over Q so

q"f(g) eZ\{O}Vg c0.

The mean value theorem says that there exists x¢ € [a, p/q) s.t.

f(p/q)—Mi

= f(x
plg-a 00
" "fp/q)
9 7\r/q
A U —al,
q" f'(xo) P/ =
notice how n appears here. u

This theme of using some calculus is repeated across diophantine analysis.

Remark 1.20

e Thue: can replace n with (deg(a) + 2)/2 (This already has implications
to integral solutions of degree > 3 polynomials f € Z[x], e.g. elliptic
curves with bounded integral discriminant)

® Roth (~ 1958): for all € > 0, there are only finitely many p/q satisfying

p 1
|0(— E| < q2+e.

Back to equidistribution. a, = {na},{a,}, ;.

Theorem 1.21 Kronecker. a, is dense in [0,1) if a ¢ Q.
Proof. Will show for any x € [0, 1) there exists

{anj};il s.t. An; = X.

Notation ||x|| means the distance to the nearest integer. Dirichlet implies that
infinitely many p/q have & — p/q| < 1/42.Given € > 0 let g be such that

Ia—E|<l2 — lga-pl< -
9 q q



Choose j such that j(aq — p) is within 1/4 of x (why?). So
: 1
litaq =p)=xll < = <e

(Fill in the gaps here). ]
Now let’s define what is means to be uniformly distributed.

Definition 1.22 Uniformly distributed sequence. ai,4y,... is called uni-
formly distributed if for all (b, c) € [0, 1)

#{n < N:{a,} €(b,c)} ~N(c-b)

or

lim #{n <N: {an} € (b,C)} —c—
N—ooo N

Uniformly distributed or not?

When o € R\Q: {na}, {n2a}, {B3n2+2n+1)a} {(V5n3+2n —(Ci0+Ci0))a}
all are.

{nle}, {log(n)} and {log(p,)} are not.

Lecture 3 13/9/2018

Example 1.23 Several.
1. a e R\ Q, a, = {na}. Yes
2. a € R\ Q, a, = {na}. Yes
3. a, = {log(n)}. No

4. a, = {nle}. No (not dense).
5. {log(p.)}. No.

6. a, = {\/n}. Yes.

7. a, ={e"}.?

8.

a, = {logn!'}. Yes?
9. a, = {loglogn!'}. No

To begin let’s show a, = {nle} is not equidistributed as it has only one limit

point 0.
e=)
n=1
sonle e Z + ﬁ +&+(n+2) < ﬁ — 0, as n — 0. So its not dense, hence
certainly not equidistributed. m]

Theorem 1.24 The sequence a, = {na} is equidistributed.

1

Proof. Let € > 0, choose M > 0 such that L < ¢, furthermore choose a 6 < W

M
Dirichlet implies there exists m € Z s.t. ||ma]| = 0.

1
0<o<—«<
M €



recall ||x|| is the distance to the nearest integer. Consider the set S; =
{{na}:n <N, n=i (mod m)} then

S:{{na}:n<N}:|i|Si

i=1

moreover,
S; = {{kma +ia}:0 <k < N;}
where N
N;=—+0()
m

(why is the O(1) here?). We can rewrite these S; as follows:
Si={6k+y; (mod1):0<k<N;}

where
i (mod 1) if 6 = {ma}
ia —O0(N;j+1) (mod1) ifdo=1-{ma}

replace k by N; +1 — k.
Now 0 < y < 1and let
Ki = |6Ni +yil

Ki
#{k<N1-:{6k+yi}e[b,c]}=Z#{ksNi:6k+ye[j+b,j+c]}
j=0

= (K; + O(1)) (% + 0(1))

Ni(c—b)+o(%+5wi+1)
SO
m
S = L|s,-
i=1

1
#S=N(c—b)+0(%+6l\])

(check!). Finally choose N > 4. So that

M + 0N < eN.
0
Which implies
#{n < N:{na} e[b,c]} =#S = N(c—-b) +€N.

We followed our nose essentially, but we needed to put ourselves in a
favourable position so that we can get a good handle on the error.

Example 1.25 10. Consider the sequence

1
bm,i =
m



and define
A(nyei = bm,i
so that
bm,i

1 12
am = 0/ ]-/O/ E/ ]-/0/ 5/ 51 1/0/

this is uniformly distributed! m|

B~ N
>
—_

Exercise 1.26 Prove this (in a similar way to before).
Proposition 1.27
1. Any sequence has a rearrangement that is not uniformly distributed.

2. Any dense sequence has a rearrangement that is uniformly distributed.
Proof.

1. If not sense we are done already. Otherwise let I; = [0, %),Iz = [%, 1]
Let X = {a, € I1},Y = {a, € I}, so both sets are infinite. Let b, =

X1, ..., X100, Y1, X101041, - - ., X220, ... S0 #{n : b, € [4/5,1]} ~ 10%.

2. If a, is dense then, let
i—1 i
bui=amst. — <ay, < —
n n

by the example above this is equidistributed.

u
What can we say about the space of uniformly distributed sequences? Is

it closed under addition? No (a, = —-b,). {ka,} neither (a, = an, %an =
n). apb, doesn’t work either, but if b, converges then a,b, is uniformly
distributed.
1.4 Weyl'’s criterion (1916)
Lecture 4 18/9/2018
Theorem 1.28 Weyl’s criterion. {a,},’ , € R then TFAE:

1. {an},_ is uniformly distributed mod 1.

2. Vf e C([0,1]) )
1 !
dim 7 ) = | s



N
1
z\lrlglo N ;e(man) =0y, YmeZ

where e(x) = ™%,

5. = 0 m=#0
"7l m=0"

collectively this is known as Weyl'’s criterion.
Proof.

1. = 2.. 1. means 2. is true for the characteristic function of [b, c], hence
true for step functions (because everything is linear).

Recall that any f € C[0, 1]) is the uniform limit of such functions.

Exercise: Choose one that is € close to f and finish the proof.

2. = 1.. Find fi1, f» € C([0, 1]) such that fi(x) < x(,¢)(x) < fa(x) s.t.

/fl - X(b,c)) <e

Exercise, finish this proof.
2. = 3.. Obvious.

3. = 2.. Recall Fejér’s theorem that f € C[0, 1]) is the uniform limit of its
fourier series. Pick an nn € N s.t.

falx) =€ < f(x) < fulx) +e.
Exercise, finish this proof. u
Using this we can tackle more examples, e.g.:
1. {apn}, n-th primes, @ € R\ Q.
{Vn}
- {log(n)}
- {log(pu)}
. {B"}, BEeR.

. Aaay}, a, €Z

1.5 Some applications of Weyl’s criterion
Application 1. {na} is uniformly distributed iff « € R\ Q. Let

N

Sn(h, a) = Ze(hom)

n=0

then

Suth )= 2D =1

Thene(ha)—1#0forallh e Z\ {0} iff « ¢ Qso Sn(h, a) = Oy (1) iff @ ¢ Q.
So limy—e SN(h, @) =0, Vh # 0 & a ¢ Q. And Sy(0,a) = N + 1 which

10



implies
1
lim — =1
N N SN (0, a)
so by Weyl’s criterion {na} is uniformly distributed if o ¢ Q.
Digression.
Theorem 1.29 Vinogradov 1937. {ap,} is uniformly distributed iff « ¢ Q.

He actually showed weak Goldbach conjecture, Every (sufficiently large)
odd integer is a sum of 3 primes. No bound by Vinogradov, Borozdin gave a
large bound, Helfgott brought it down to reality.

Application 2.

(8"}
Theorem 1.30 Koksma 1935. For almost every (Lebesgue) f € Rsq, {ﬁ”} is
equidistributed.

Koksma was a Dutch student of Van der Corput.

Theorem 1.31 Weyl. Let |a,| — oo be a sequence of distinct integers, the set of
a € R such that aa, is not uniformly distributed has Lebesgue measure 0.

Application 3.
{log(n)}

is not equidistributed.

Exercise 1.32 Prove this. Hint : assume it was
#{n < 1001N :} = #{n < 1000N :} + #{1000N < n < 1001N :}

then
log(n) —1og(100N + n1) = log(1000N) + log(1 + 11/1000N)

Application 4.
{Vn}

Before this, lets introduce

Definition 1.33 Discrepancy. Let a, € [0,1) be a sequence and N € Z5, we
define

# N:a,el[b
DN — Sup { {n < an [ IC]} _(C_b)‘}.
0<b<c<1 N
o
Some useful lemmas:
Lemma 1.34 Let
#{n<N:a, €|0,
D}, = sup { {n 13n [0, cl} —c‘}
0<c<1
then
Dy —0 < Dy —0.
Proof. Exercise (hint squeeze). ]

Lemma 1.35 a,, is uniformly distributed <= Dy — 0 <= D}, — 0.

11



Proof. Ommitted /exercise, 2.1.1 of Kuipers and Niederreiter. ]

For /i now.
Sn(e)=#{n <N:0< {Vn} <c}.
Note 1.36 If d = |\/n] then

Vi =d +{vn}
andd <vVn <d+land#{n:d<+yn<d+1} =24 +2.
Similarly
#{n:d<Vn<d+a)=2ad+a*+1
then
LVN]
Sn(a) = Z#{n:]‘msx/ﬁsjm}
j=0
LVN]
= Z 2ad + a? + O(1)
=0
~ 2 LWJ(L;/NJ 1, 0(VN) = aN + O(VN)
SO S ( )
. Na) _ _
D}, = O;m{ N« } = sup 0.(1/VN) = O(1/VN).

Exercise 1.37 Make the dependence on a explicit and make the proof rigorous.

Application 5.
Lecture 520/9/2018

Proposition 1.38
{log(pn)}

is not equidistributed.

Proof. Assume otherwise, let k € Z..
Iy = min{n : p, > ¥}

Ii1p = min{n : p, > ek=1/2)

X[o,1/2) = char. fn. of [0,1/2).

Consider
Sk = > xj01/2{log(pn)})
n<ly
Sk-1/2 = Z X10,1/21({log(px)})
n<lg_1
Note that Sx = 5;_1/,.
If uniformly distributed
Si—
lim & = lim k12 L

k—oo If k—oo0 Ik_1/2

L>0 = Ik/Ik—l/Z — 1.

12



But the prime number theorem says

TN) = #{p <N} ~

SO
I/I-1/p ~ Ve # 1
so L = 0 but this cannot happen either.

Sk-1p2 2 m(e* 1) = m(e" )

-1
> ek‘p/_T > 0.

1.6 Weyl differencing and the Van der Corput inequality
Theorem 1.39 Weyl. Let

1

P(x)=aux" +a,1x"" +---+ a9 € R[x]

then
{P(n)}
is uniformly distributed mod 1 iff there exists ng € {1,...,n} s.t. an, € Q.

Lemma 1.40 Weyl differencing. Let v, € C, such that y, =0ifn <lorn > N
then we would like to bound

N
ZZyn?m = Z = SnSn = [SnI%,

m,n=1
Weyl differencing gives
N N N-1N-n
—_— _ 2 —_—
DD b= D lmlP +2R T
m=1n=1 n n=1 m=1
| —
diagonal contribution off diagonal terms

Proof. Idea: Use the transformation
nn+m

m=m

)G 3

switch orders

13



Figure 1.41: Regions

D Y =D D YuenY
m n m n
Note: ifn >0thenm =1,..., N-n,n=0,1,...,N—-1. If n < 0 then
m=1-n,...,N

n=1-N,...,-1
N-1N-n

— -1 N
Z Z yn+mym + Z Z }/m+nym
=1

N
Z |Yim |2 +
n=1 m= n=-N+1m=1-n
m

m=1
N-1N-n
= Z |ym|2 +2R ( Z yn-%—mym)

=1 n=1

Juy

Ju

|
Theorem 1.42 Weyl. Let |x,| — oo be a sequence of distinct integers, the set of
a € R such that ax,, is not uniformly distributed has Lebesgue measure 0.
Proof. Let o € [0,1), leth € Z \ {0}

N

Su(N, a) = %Z e(hx,a)

n=1

the trick is now to bound |S;,(N, a)|?

N N-1N-n
N2Su(N, ) = ) 1+ m( 2 elhnam = xn)a)

n=1 n= =1

SO
! 1
N,a)*da = —.
/0 ISh(N, @)"da =

Recall Fatou’s lemma: Let f,, > 0be sequence of positive measurable functions,
then if

f(x) = liminf f,(x)

14



we have

/fsliminf/fn.

fala) = D 1SK(N?%, @)
N=1

Take

Fatou implies

1 > s 1
[ Ysiapdes Y, [ isiovz o) da <o
0 W=l N=1v0

SO

DUISKIN2, )
N=1

is finite for almost all a and for any & # 0. Then by Weyl’s criterion we are
done. |

Lemma 1.43 Van der Corput. Let y, € C, such that y, =0ifn <lorn > N
then

we have
2 _
ZNl g 2N Z N
Yn T 1
n=1 = n=
Proof.
Lecture 6 25/9/2018
Consider
N 2
(H + 1) Z
n=1
then
N [ |H N 2
H+12 Y g =D D y+n
n=1 h=0 n=1
H 2
= Z Z Yn+h
h=0 neZ
H 2
=12 Yo (1.1)
neZ h=0

note n-sum is nonzero for at most N + H terms 1 — H < n < N then Cauchy-
Schwarz implies
H

2
Z Yn-n

h=0

H H
=(N+H) Y > Yuom Voo, (12)

n hy1=0hy=0

S(N+H)Z

15



letm =n+hy, [ =h1 —hy. Then

=(N+H) Y Zymymz( D 1)

—H<I<H m

note I(H,[)=H+1-1]l|,so

=(N+H) > H+1—|Z|Zymyml

-H<I<H

then if / = 0 we get the first term of the statement, I # 0 the other. ]

What is the difference between this and Weyl differencing? When H is
large, not so much, but we can take H small now, shifting the weighting
around. We change the balance to make one part shorter and the other longer.

Theorem 1.44 Van der Corput differencing. If for each h € Zs the sequence
by(n) = ay,p, — ay, then so is a,.

Proof. We'll use Weyl’s criterion and the van der Corput lemma. Fix, N € Z3,
aH < N. Then for any k € Z \ {0}

N—h
2 N +H N+H h
’Ze(k‘l”) S H VT ( _H+1) ;e(b’“(”)k)
N 2
1 1
im — <
= 4m 3z ;e(k”") SH+1
since H is arbitrary
N 2
Jlim — Ze(kan) =0.
n=1

|
Proof of Weyl’s theorem. Let deg P = d then, for d = 1 we are done by Weyl’s
criterion, for d < D use van der Corput differencing. Note that for fixed h,
P(n + h) — P(n) is of lower degree. [

1.7 A different perspective (Ergodic)

Furstenberg (1981 book) gives a different proof that {n%a} is uniformly dis-
tributed.

Ergodic theory 101.
Definition 1.45 Ergodic measures. Let X be a locally compact space and H a

non-compact group, H O X. p a probability measure on X, H-invariant. We
say that u is an ergodic measure if any of the following equivalent conditions
hold

1. A € X and A is H-invariant (hA = A for all 1 € H). Then
u(A)=1or u(A)=0
2. For f measurable i almost everywhere H-invariant

f(hx) = f(x)

16



for almost all x then f is constant  almost everywhere.

3. u is an extreme point on the convex set of H-invariant probability mea-
sures.

0

Definition 1.46 Uniquely ergodic actions. An action of a group H on a locally
compact space X is uniquely ergodic if there is only one invariant probability
measure on X. ¢

Example 1.47 x + 5x, or x + V2 + x on T! are ergodic, let’s show that
X V2 + x is uniquely ergodic. m]

Lemma 1.48 Let o« € R\ Q then T,: x — x + « is uniquely ergodic.

Proof. Let u be an invariant probability measure on [0, 1] the nth Fourier
coefficient

0 = [ ) dutx) = e(na) [ e(r duto
so fi(n) = 6(n). [
Example 1.49 For x i 5x f = 3 aye(nx) = ¥ a,e(51x) 50 ay = asy
0o > [IfI* = llaull*> = a, =0Yn #0

= f=Cae.

Lecture72/10/2018

Definition 1.50 Equidistribution. A sequence of probability measures y, on
a locally compact space X is called p-equidistributed if they converge to u in
the weak * topology. Le.

viecax), [ fau— [ fan

Remark 1.51 If we have a sequence a,, these define a sequence of measures
_ 1 Z o(x —ay)
UN = N n
n<N

if these are equidistributed then

1 N
dim 7 ) = [ rdu.

Theorem 1.52 Birkhoff ergodic theorem. (X, B, u, T) a measure preserving
system (as in the definition of ergodic) with u a probability measure. Then for any

fell(X, p)

1
lim —
n—oo 1

n-1
D foTi) = fx)
i=0

17



or some f € LY(X, u) moreover
u

/fdy=/fdu

and if T is ergodic then f(x) = f f du almost everywhere.

Remark 1.53 This does not help us!
But the following does:

Theorem 1.54 If X is compact and H = R is uniquely ergodic with the unique
H-invariant measure p then the statement of Birkhoff holds for every x € X.

Proof (sketch). For any x construct

1 L
‘UL:Z‘/O‘ ht.X'dt

pur — p, L — o0
in the weak = sense. ]

Remark 1.55 Funny side remark (Benford’s law). First digit of a set of
observations are usually 1 (roughly 30%).
Why? Assumption, the process follows a power law, if b" is the first digit of
this is

log,, b" = nlog,, b

this is k iff n log,, b € [log,, k,log,, k +1]. If these are equidistributed then the
probability of k is

log,o k+1
/ 1dx =log(1 + 1/k).
log;o k

Theorem 1.56 {n?a} is equidistributed for « € R\ Q.
Proof. Furstenberg

1. Construct a suitable dynamical system on T? (2-torus), for which a spe-
cific orbit gives the sequence {n’a}.

2. Will show that this is uniquely ergodic.
T:T*> > T2
x, )~ x+a,y+2x+a)
T™(x,y) = (x + na, y +2nx + n’a)
in particular the orbit of (0, 0) is

T™(0,0) = (na, n’a)

so if we show that T"(0, 0) is equidistributed we are done.
So we show that X, T is uniquely ergodic.

1. Lebesgue is ergodic.

2. Only ergodic measure

18



f e LX(T?,dm)

T-invariant

flx,y) = Z A ne(mx +ny)

m,n
T-invariance implies a,, , = e((m + n)a)ay424,, in particular
|um,n| = |am+2n,n|
SO
Ay =0

if n # 0. By Riemann-Lebesgue lemma. So for n =0

Z Ay 0e(mx)

T-invariance implies a,,0 = e(ma)au,o s0 a0 = 0 for all m # 0. So f is
constant almost everywhere.

2. We use the following;:
Claim:

g: T! — T' measurable, let Ty: T? — T2

(x,y) = (x+a,y+ga)
Then if the Lebesgue measure m is Tq-ergodic then it indeed is uniquely
ergodic.

Proof: exercise.

2 Duke’s theorem

Recall.
€Q ecture 8 4/10/2018

1.21.9.
We will now prove this, not via Linnik’s proof, but via an analogue of
Weyl’s criterion. Strategy:

1. Weyl'’s criterion ~» bounding exponential sums.
2. To bound these sums we will use automorphic methods.

We will begin with 1.2.

So we will be working on S2. Recall 1.28 which was for [0,1). There we
used exponentials, why? Because they are a dense, convenient basis, fourier
theory.

To replace this on the sphere S? we use the spherical harmonics, these are
homogeneous harmonic polynomials. Analogous with the S case.

x+iy \"
(|x+iy|) = e(m6)

19



the same spherical harmonic construction works for 5”.

We will show ,
o Z P(x) = 0

xeQ),

for deg P(x) > 0. i.e.

a
anS,|a|2=nP (m) = 0(1’3(11)) (2.1)

where
r3(n) =#{a> +b*+c*>=n:a,b,c € Z}.

Connection to automorphic forms. 6 functions, P spherical harmonics as
before.

Definition 2.1
Op(z) = ) P(a)e(jal’z)

AL

for z € H this converges.

(]

Op(z) = Z r3(n, P)e(nz)
n=0
r3(n, P) = Z P(a).
laf?=n

Fact 2.2
1. This is a modular form of weight 3 + deg P for To(4).
2. Itisacusp form if deg P > 0.

Observation 2.3 If deg P # 0 (mod 2) this function is 0.
To show (2.1):

1. Show that

r3(n) >¢ n'/?€

(Gauss-Siegel)

2. Show that )
r3(n, P) <5 nk/2-1/4-6

for some 6 > 0.

Why?
Z p(ﬂ) — - deg(P)/2 Z P(a)
&2, \Tal .
al?=n |a|?=n
= n~ 98" 2r3(n, P)
note:

deg(P)
— 0

1 1
Z—(S—E‘l'

N =

20



So if r3(n, P) < n1+4e8(P)/2=3 which implies
> o) <t
= |ex]

al?=n

If we knew a half-integral weight Ramanujan conjecture:
1
f S Sk(N), ke 5 +Z-9

for squarefree n
af(n) — O(n(k_l)/2+€).
Digression (0-functions). Recall: Integral weight modular forms

T =SLy(Z) = T(1)

o[l ) eed

In general I' congruence subgroup I'(N) € T € I'(1) for some N.
ftH—>C

is called a modular form of weight k for I if f is holomorphic everywhere,
including at the cusps.

f(yz)=(cz+d) f(z)Vy eT.

If f(z) = Xy anq" then f is cuspidal, the space of such is Sx(I') where S
stands for the German Spitzenform. Spitze means cusp, kinda like a pointy
spit?

Example 2.4
A =q] Ja-q"
n=1

1
Eilz) = Z (cz +d)*

(c,d)=1

Conjecture 2.5 Ramanujan (here theorem of Deligne). f € S,(I')

ay = O,(n*D/Z*e)ye > 0,

5(2) — Z einmzz

meZ

Classically

converges absolutely on z € H
0(z +2) = 0(z)

0(-1/z) = V=iz0(z)
in general for y € I'y(4)

0(yz) = j(y;2)6(2)
where j(y;z) = (§) €;'(cz + d)"/* where e; = 1if d =1 (mod 4), -1 ifd =3
(mod 4) sign of Gauss sum. (§) is a sibling of Legendre form.
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Lecture 9 11/10/2018

Recall: P spherical harmonic degree [. Aim to show:

> P(x) =o(rs(n)

lx?=n
where
rs(n) =#{a>+b*+c*=n:a,b,ceZ}.

Took
6(z;P) = Z r(n; P)e(nz).

nez

A modular form of weight 3/2 + [ for I'y(4). Cusp form if [ > 0.
The strategy is then to show

r3(n) > n'/?¢Ve > 0

r3(n) < n*>7 140 for some § > 0.

Definition 2.6 Half-integral weight modular forms. Let N = 0 (mod 4). A
modular form of half-integral weight k € 1 + Z(. For I'o(N) is a holomorphic
function on H s.t.

1.
frz) = j(y;2* f(2)

2. f is holomorphic at the cusps

(1) = X0 F72) = x(@)i32% ) givesthespace MTu(N), ). 0

Where do these things come from?

A construction due to Schoenberg 1939, Pfetzer 1953, Shimura 1973 is as
follows:

A an n x n positive definite integral matrix, N € Z s.t. NA~! is integral, P
a spherical harmonic relative to A i.e. for P homogeneous of degree v.

%P
ML
Z ul] axixj

[aij] = A7
Definition 2.7 Let h € Z", set

Op(z,h,N) = Z P(m)e (

(mTAm)z)
m=h (mod N)

2N?

Fact 2.8 Poisson summation.

ab(hTAh)) (detA) (20

n
= -n k/2 .
N2 7 7 ) €;,"(cz +d)"'=0p(z;ah,N)

éP(‘)/Zrh/N) = 6(

y:({; Z)GSLZ(Z):bEO (mod 2),c =0 (mod 2N)

k=n+2v
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Example29n=1,N=1P(m)=m"0v=0,1

Op(z) = Z mPe(m?z/2)

meZ

for v = 0 this is classical 6 for v = 1 cusp form on I'¢(8) of weight 3/2, we could
also twist by a character mod 4. O

Example 2.10 A = I,;x,, P spherical harmonic of degree v

Op(z;0,1) = ) P(m)e(Im[z/2)

mezZ"
setz =2z
Op(z) = ). Pm)e(lm[*2).
meZ
o
Note 2.11
Op(z) € Sk(T'o(4))
k= g +v,0>0
Op(z) € My, /»(To(4))
not cuspidal.
Example 2.12 A = 4 X 4 integral positive definite
Q = Qalx), x"Ax
ro(n) =#{x € Z*: Q(x) = n}
00(z) = Y ro(n)e(nz) € Ma(I'o(N))
n=0
for some N = 4det(A). O

Half-integral weight Ramanujan conjecture (Metaplectic). Naively we would
like to mimic the integral case and say

af(n) — O(n(k—l)/2+e)

where f € Si(I).
But this is not true as stated here!:
Example 2.13 Let

6(z; 1) = ), mx(m)e(m’z)

mezZ
for odd x this is a cusp form in Si(T, x). For k = 3/2,let f = 6 and
ag(m?) ~my(m) = ag(n) = O(n)

for n square. But (k — 1)/2 = 1/4 but O(v/n) is not O(n'/4*¢) for any € > 1/4.0

So we avoid these or stick to squarefree 7.
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Conjecture 2.14 Half-integral weight Ramanujan conjecture.
af(n) — O(n(k—l)/2+6)

for all n square-free f € Si(I, x).

Why this exponent? For integral weight: Representation theory gives
as(m)’s which correspond to Hecke eigenvalues which under Langlands are
tempered for GLy.

Digression:

Proposition 2.15 Hecke bound. f € S¢(I) then af(n) = O(nk/?).
Proof. y = 3(z), y(yz) = |cz + d| 2y so
F(z) =y f(2)]

Invariant on I' bounded at the cusps |F(z)| < M. So

1
/ f(z)e(nx) = e‘zni”yaf(n)
0

1
< /0 y M =0(y™?)

soag(n) = O(y~*?e>™ V) with y = 1/n. n

Another digression:
What is the distribution of rational points on 52?

{(xl+x5+xi=1:x,€Q}

= r3(n?)
Proposition 2.16 Hurwitz. A generating function for this is given by

=X a(n)/n*
o 73(n?) C(s)C(1 - s)
3(7’1 1-s —
—=6(1-2 -
2, % =S )

Exercise 2.17 Prove this!

David Fried’s proof of Hurwitz on r3(n2). Without proof Hurwitz stated
r3(N?) = 6P n(q” +20" M+ 420 +9)
q71Q

where N = 2¥PQ and each prime factor of P is = 1 (mod 4) and each prime
factor of Q is = —1 (mod 4) and

9°11Q
he suggested a proof along the lines of his published note on
TS(N 2)/

here is such a proof:
We denote P = P(N), Q = Q(N) We may suppose k = 0 since

r3(4n) = r3(n)
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(each solution of 4n = x2 + y% + z? has x, y, z all even). So N is odd and each
solution of N? = x2 + y? + z2 has two of x, y, z even. Hence

BN =3 Y n0NP- =2 S )
2 2

x even a+b=2N,a,b odd

now r(n) is the number of Gaussian integers z with zz = n. As Z[i] is a PID
with 4 units +1, +i, the function p(n) = %rz(n) is multiplicative!

p(ab) = p(a)p(b) if a, b coprime

clearly

r3(N?) =6 Z p(ab).

a+b=2N, a,bodd

To evaluate p(ab) we need spme standard functions,
T(n) = #divisors d of n, o(n) = Z d

the Mobius function p(n). and

o) = 3r1()

w(n) = p(P)|u(Q)l

The multiplicativity of p generalises as follows:

Lemma 2.18 If a, b are odd with g = ged(a, b) then

plab) = Y w(dp (%) p (Z)

dlg

Proof. Bach p = a? + b? with a > b > 0 uniquely (Euler). Let z(p) = a + bi.
For n odd n = PQ and r,(n) = 0 unless Q = O. In which case the solutions of

n = zz are ‘ .
z=*JQ [ [zpVz(p)"”
P

where p“||P, k € Z/4. Thus

p(n) = (p)o(Q)-

When p(ab) = 0 every term on the right vanishes. For Q(ab) # O so

cannot both be squares.
When p(ab) # 0 we have Q(ab) = m? for somem. There is exactly one square-
free y dividing m and g such that

are squares. The term

w(d)p(a/d)p(b/d)
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is nonzero just when a = y6 where 0 is squarefree and 6|P(g) so the sum
reduces to

> #@)T(P(alyd)t(P(b/yo))
o

= > u(©®)t(P(a)/5)T(P(b)/5)
o

but
D ud(r/d)e(r/s) = 1(rs)

d|r,d|s

by multiplicativity of 7 this reduces to the case where r = 7t¥, s = ! for prime
nbutl+k+! = (1+k)(1+1)—kl. Herenow r = P(a),s = P(b), gcd(r,s) = P(g).
So the sum over 6 equals

©(P(a)P(b)) = 1(P(ab))n(Q(ab)) = p(ab)

as desired. [ ]
Using this we find

rs3(n?) =6 Z w(d)S (%)
AN

where for odd n

sSm= > p@p)

a+b=2n,a,bodd

but 1
S(n) = E#(Zn =w? + x> +y*+2?)
— —
odd odd
1
= Z#(Zn = 4w? + 4x% + y? + 2%)
=a(n)
by Jacobi.
So

r3(N?) = 6 Z w(d)o (%)

dIN
= 6(w * 0)(N)

where * denotes Dirichlet convolution.
Pasing to Dirichlet series

BN _ 0 wld) 5 o)
2N T E L e

N odd d odd m odd
- 6]_[(1 -p™) ]_[(1 )Y S E
k odd I odd
——
L(s,(Z£))! Codd(s=1) Coad(s—1)

_61—12 asl—lzq +2qa1+ +2q+2
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which gives
r3(N?) =6 I_[ p" ]_[(q” +29"7 420 +2)
polIN  g7|IN
as in Hurwitz and
r4(n? -4\ _

el e (f)) 1C($)Coaals = 1)

n=1
as in Duke.
Lecture 10 16/10/2018

Corollary 2.19 This shows
r3(n?) > n.

Proof (sketch). Expand the formula, take nn = p an odd prime

-5 =y 2

(exercise)
L(s, x-4)7' = l_[(l - X—4S(P))
p p
SO o) o)
Z 73n7;l _ Z O'TZ/lil l_[(l _ X—4(mp)/ps)6(1 _ 21—5)
= Z GTZ?) Z p(my x—a(mz)/m36(1 — 2'7°)
SO

ra3(p?) = (o(p) — x-4(p))6 > 6p
n

The next big breakthrough came much later, showing something similar
for r3(n, P), but now we hope to see cancellation.

Theorem 2.20 Shimura "71. Let

f € Sk/Z(N/ X)

be a half integral weight cusp form, k odd, 4|N.

[ee]

fz) =) ap(me(nz),

n=1

assume f is a common eigenfunction for all T ..
Let x(m) = x(m)x_a(m)and A = (k —1)/2. Set

[se] [ee]

2
ZA:: =L(s+1—/\,5(7'(z af,f:: ))

n=1 m=1

F(z) = ZA(n)e(nz).
n=1

Then
F(z) € Saa (N1, x?).
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Recall:
Op(z) = ) ra(n; P)e(nz) € S32(To(4))

is a weight 3/2 + [ form if [ = deg P.
Shimura gives us

Fp(2) € Sp142(0(2))
then we get

Corollary 2.21

SW|

N
—_
Ul
N

(2, P) = 3" Ap(@d)u () e (5

d|n

hence if Ap(d) < d'*1=° then we are done.

The Hecke bound implies Ap(d) < d'*1.

Detour: bounding Fourier coefficients. There are various approaches, such
as Poincaré series, Kloosterman sums, and bound these, to get a bound on the
Fourier coefficient.

If f € Sk, (N1) we will write a spanning set for Sk, (N1), then bound fourier
coefficients on each of these guys, which will suffice.

Poincaré series:

If we were just looking for a modular form we might try Eisenstein series

1
Ex(z)= ) —————
K= ) (cz + d)*
c,d
these are not cuspidal. But if we twist this a little bit

Pu(zk) = D j(yiz) He(myz).

y€le\I'
1 n
Where 'y, = {(O 1)}

. c\ —
ii2) = (5) ez + )2
they converge absolutely for k > 2.
Some properties:

Lemma 2.22
Pp(tz; k) = (cz + d)** P,y (z; k)

Proof. Exercise, j satisifes a cocycle relation

j(yit2)j(t;2) = j(yT; 2).

Proposition 2.23
Py (z) € Si(T)

Proof. To follow. u
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Lemma 2.24 Let f(z) = Y as(n)e(nz)

<Pm(z k), f)Pet 24 )k) 1F(k -D.

Proof.

(Pu(eib), Fna= [
k
/r - D, i

yexloo\T

D / jlyiz)

yexlo\T

- / e(m2)f(2)y

/ [ etz "dy

k xdy

dy
~ay0m) [
ag(m)
=——T(k-1
(4rrm)k-1 ( )
u
Lecture 11 18/10/2018
Corollary 2.25 P,,(z; k) span S¢(I') as m varies through integers.
Proof. If f 1 P, (z,k) for all m then f = 0. ]

Observation 2.26 The corollary implies that bounding fourier coefficients of
f € Sk(I) is equivalent to bounding fourier coefficients of P, (z, k).

Proposition 2.27
(k=1)/2 27 2n\mn\ K(m, n;c
<Pm(Z k) Pn(Z k)) = ( ) (6m,n + l_k Z Ik—l ( c ) ( c ))
¢=0 (mod N)
where
Ji is the Bessel function of the first kind
Ns.t. T =To(N)
3 c\* o [md+nd
K(m,n;c) = Z (E) €, e (f)
de(Z/c)*
1 m=mn,
0 m#n
Proof.

/Olpm(sz)e(—nz)dz = /01( Z f(V;Z)_Zke(myz))e(—nz)dz

+T o\
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1
= / j(1;2)"%e((m — n)z) dz + rest
0

(Sm,n

1
= / j(1;2)7%e((m — n)) dz + rest
0

Note:
1 n
5((0 1) z) = e(z).
So )
/ Z j(y;2) 2 e(myz)dz
T\l
1
= / SUMT\T'/Te Z j(Yyez) He(myyez)e(-nz)dz
0 Yeo€loo
1
/ Z Z iz +a)y Fe(my(z + a))e(-nz)dz
0 [ \[/Tw acZ
1
/ Z j(v;z) % e(myz — nz)dz
O r\ITe
Note:
m z-maz+b =m a__ 1
vEEM v d T T ez d)

+T \[/Teo ={(a,d,c):c>0,a,de(Z/c),ad=1 (mod c)}
So our main integral is

Z €;2k (2)2k/00 me (mE _m nz) dz

¢ clez+d)
¢>0,deZ/c*
+nd % 1
A 3] [ e )
ck d —eo 2K 2z
¢>0,deZ/c*,ad=1 (mod c)

Then use the following integral representation

co+iA .
/ w—ke—(ylw+y2m‘ )dw

co+iA
. (k=1j2

=2mn (ﬁ—) e ¥ 21y (Ania )
2

To recap:

Pu(z) = 3. Punje(nz
n=1

m ik
¢=0 (mod N),c>0

Pat = (2) T o e 23 g [ Ko

c

30



Digression: Let I = SLy(Z), k = 12 then Si(T') = (A)

[ee]

Az) = 2m)12 Z 7(n)e(nz).

n=1

As A = n** we have t(n) € Z.
As
Piu(z;12) € S12(1) = (A)

= P,(z;12) = x(m)A

to calculate x(m)

_ @w o 2melm) ooy o 2m10b
(Pnlz), 80 = (4rim)k-1 He=h= (4rim)k-1 fke-1)= (4rm)tt
SO |
P, (z) = 210! A(z) “(m).

- 11 2
(dmm)t Al
Another consequence:

Theorem 2.28 Petersson trace formula. For any m,n > 1

I'k-1) _ 27 dni\mn \ K(m, n;c)
T Z ag(m)ag(n) = Omn+— Z Jie-1 ( - ) P
( T mn) f o.n. basis for Sy(T') ! ¢=0 (mod N),c>0

Proof. Let Pi(z) = X ¢ (Pm(z),f>f then

T(k — 1)
(drm)*=1(4mn)k-1

(Pu(2), Pu(2)) = > as(m)as(n)
f

on the other hand
_ (k=1)/2
(Pulz), Pa(2)y = T (I

(Amm)~1 \'n

Lecture 12 23/10/2018

Recall Shimura gave us

00 oo Ap(n)

Z r3(n%,P)  2ul T
ns B L(S - l/ X—4)

n=1

where the numerators is the L-function of a modular form of weight 2 + 2
where | = deg P.

We want to show Ap(n) < n!*'=? for some 6 > 0.

Idea: Poincaré series span cusp forms, so its enough to bound Fourier
coefficients of these.

We know
> (modxc)e((merYn)/c)
—_—
. n\(k=1)/2 ._ K(m,n,c 4ntymn
e T |
m c c

¢=0 (mod N),c>0
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Try: Input 1:
Ji-1(x) < min{x*~,1/vx}.

Trivial input:
|K(m,n;c)| <c.

For

). 2=

c > Vmn ~» ]k_l(
c

1\ (k=1)/2 1
il - (k-1)/2
<(Z) T Y )

c>\nm
< k1 1 - O(nk-1-6-2)/2)
\mn
for
41t/
c K Vmn ~ Jiq TV \/E
(mn)L/4

(k-1)/2
()T = owe
m (mn)1/4
cKLynm
Note k/2 = [+1: Sowe are just short, we have O(n'*1) rather than O(n'*1-?)

for all 6 > 0, just by using a stupid bound for K(m, 1; c).
More major input (Weil bound):

|K(m, ny)| <e c'/?*¢

= [Pu(n)| = O(nH/>1/4)
SO

1
V€<Z

this does the job.

So we have finished proving Linnik for 72, it wasn’t too bad, the major
inputs were the Shimura correspondence.

When we move to the general case things will be totally different.

Remark 2.29 Weil bound comes from the Riemann hypothesis for curves over
finite fields.

Lemma 2.30 Let p be an odd prime p + mn.

Z xm+yn Z 2mx
( p - ) 6( p )
x (mod * = 2 — 12
d *p),xy=1 x?>-nm=y? (mod p)

Proof. Reparameterise xy =1, x =a + b,y = a — b. Exercise. ]

L () 3 )

x (mod p

I e A v P (e R |

x (mod p

Lemma 2.31

Proof.




Note 2.32 LHS is calculating a Fourier coefficient. i.e.

o (@) = (“2—_%)

p
LHS = h(2m)
the above two lemmas imply
K(m,n;p)

is the Fourier coefficient ﬁm,n (m).
So )
— —4m
h(Q(VuZ — 4min)) ~ L (1, (w))

Selberg trace formula < pourier transform Petersson trace formula.

Remark 2.33 In the non-square case we want |r3(n, P)| < n*/271/4=%,

This is because of the subtlety of the Shimura correspondence.
More precisely for n squarefree n*/2-1/4-0

0(z; P) weight g +degP =k

r3(n; P) > nl/2-6
want
r3(n; P) < nk/2-1/4-0

Z P (ﬂ) = |n|_degp/zr(n,P)
&2 \al

al?=n

ra(n, P) < yk12-1/4=6 _ | 3/4+degP/2-1/4-5
for n?

r3(n?) > n

have Shimura
0(z; P) ~ weight k

Ap(nQ)

are fourier coefficients of a weight 2 deg P + 2 form.

Back to r3(n, P). n-squarefree, we don't have Shimura, but we still have the
Fourier expansion of P, (z).

Strategy: We will first exploit a certain form of these Kloosterman sums
for A squarefree, Salié sums. Major detail

K(m,n;c)
Z mch

will bound these not individually, but by showing that the angles of these can-
cel. We show other equidistribution results from equidistribution of Klooster-
man sums essentially.

Lecture 13 25/10/2018
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Main issue.

K(m,n;c) dnmn
Z ]k—l( c )

[

saw that bounding each individual K(m, n; c) falls short of what is needed.

Detour (Salié sums). Recall for k = 3 + | the sums we are getting are

D

d (mod *c)

where

(%) Kronecker symbol

ol = 1 d=1 (mod 4),
¥ =-1 (mod 4)

It will turn out that these sums can be calculated in elementary terms.
Analogy
Ki(m, n;c) & Ki

fork € % + Z, Jx(x) is expressible in terms of elementary functions, e.g.

i) = ) == - sin®)

Jaj2(x) = \/g (%(/’;) _ Coj(}x))

Calculation: Reductions:

Lemma 2.34 Let ¢ = rq with (r,q) = 1and 4 | r,

Ki(m,n;c) = Kk—gs1(mq, nq; r)S(mr, nr; q)

wnn %, [

x (mod *q)

where

is the Salié sum.
Exercise 2.35 Prove this.

Lemma 2.36 g prime

" S(m,n;q) = (%) S(q,mn; q)
2
S(1,m;q)=0
unless (%) =1
3.

S(1,n%q) = e;\q Z e (Zx_n)
)

~—~—x2=1 (mod q q
G(q)
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Proof.

1.
X = my
2.
X = my
3. ~
S(1,n%q) = Z (f)e(x-Fn x)
x (mod *q) q q
recall DFT
fay==>" flae ( )
a (mod q)
fla)= Z f(u)e( au)
u  (mod q)

L BB

q (mod g)x (mod *q)

L

u  (mod q),x (mod *q)

A R

x (mod *q) u (mod g

5)G(g)

(
—_An2
DY E(W)
)

x (mod *gq

we need some more results to conclude!

Lemma 2.37 Let
rx
Cq(”) = Z e (—)
x  (mod *q) q
then .
Cﬁ](r) = Z u (E) d
d|ged(q,r)
Proof.
xr
Cq(”) = Z e (—)
x  (mod *q) q

DRI

dlg a (mod *q/d)

= Z Cq/d(r)

dlq
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= D, calr)

dlq

let
F()= ) calr)

dlq

then by Mobius inversion

cg(r) = Zy (g)F(d)

dlq

)= Y (ﬂ):{d i d|r,

x Gooa ) d 0 otw

Note 2.38

3 q o(q)
Gl =¢ (gcd(q, r)) $(q/g<d(g, 1))

This lemma implies that in the proof above we have
G@eylg-Tad)=Glp) > u(d)d
d| ged(q,(1-4a2))
so putting everything together

ond, o0, o2

a (mod q) d| ged(q,(1-4a2))

S

dlg a (mod ¢)4a2-1=0 (mod d)

> e(aq—u)=0ifd¢q

a (mod g)4a2-1=0 (mod d)

Lemma 2.39

Proof. If d # g thende =g,e #1, 0 = a1 + day so

2o T A

a ami,ia%:l (mod d) az

This finishes the proof for Salié sums.

Theorem 2.40 Major theorem (Iwaniec '87). Use this calculation + Petersson
formula + genus Let f € Sp(N) of weight 2k > 1 and 2k odd. Then for n squarefree
and Ve > 0:

ap(n) <. 2 k/2=1/4-1/28+¢

Corollary 2.41

r3(n, P) < nk/2-1/4=1/28+e

for all deg(P) > 0.
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Final input: Lower bound (Gauss, Siegel): Gauss showed

ra(n) = %h(d) (1 _ (g))

where h(d) is the class number Q(v/—n) where d = disc(Q—n) and w(d) is the
number of roots of unity in this field.

Exercise 2.42 Show this
Question 2.43 How large is h(d)? O
Euler, Siegel
Theorem 2.44
h(D) > |D|"/*¢
L(g, xp) >¢ ID[™*
Lecture 14 30/10/2018

Last time f € S¢(T'), k € % + Z for n squarefree Iwaniec implies |a¢(n)| <.
nk/2-1/4=1/28+¢ This gives r3(n; P) < nk/271/4=0,
Finding the argument P = spherical harmonic, deg(P) =l and h = [ + 3/2.

r3(n; P) = Z P(a).
laf>=n

Today:
P =1 main contribution.
P # 1 error.

!
1l
—_

r3(n) = Z 1

la|2=n
(with no local obstructions, i.e. n squarefree and n # 7 (mod 8)).

Theorem 2.45 Gauss.

where

ii = disc(Q(V-n))
w(#t) = #roots of 1 in Q(v—n)

Note 2.46 i ~ n as we are squarefree so off by at most a factor of 4. Then
r3(n) ~ h(it)

Exercise 2.47 Prove the theorem.
We now wish to demonstrate a lower bound on /(7).

Theorem 2.48 Siegel "35. Ve > 0 have
L, xa) >e |47

Corollary 2.49

h(ii) >c n'/?7¢.
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Exercise 2.50 Prove the corollary (Analytic class number formula)

Note 2.51 The constant in Siegel’s theorem is ineffective, meaning one cannot
actually calculate it (without proving there are no Landau-Siegel zeroes).

Finally Siegel + Iwaniec implies
L#{oz eZ’: |a*=n})
\n

gets equidistributed on S3 as n — oo,
Recall this above was problem 1.

Problem 2. T =SL,(Z)
1
S QZA flzq) — /F @

where for Q = ax? + bxy + cy?, positive definite.

b+ Vb2 -4ac
zg=——F7——¢€
2a
Theorem 2.52 Duke ’88. Problem 2 is true.

H.

Duke’s proof.
1. What to replace the exponential sums, i.e. the P’s?

2. Follow the same strategy and bound the nontrivial sums from above
(P # 1), trivial sums from below (P = 1).

Recall [0,1) ~» P = e(nx), S? ~» P spherical harmonics, '\H ~» automor-
phic forms E(z, s) or Maass cusp forms.
Digression Apy, O I'\H fourier transform on R then f (x) = fl.R f(a)e(ax)dx

St = f(x) =) fme(nx)

nez
ie.

L*(T\H) = yiE(z,%+iit)dy(t)

D 2o

¢, a Maass cusp form of eigenvalue A.
Detour: Maass forms and Eisenstein series

Definition 2.53 Maass form. f: H — Cis a Maass form if Yy € I' = SL,(Z).

flyz) = f(2)

f is an eigenfunction for
? 92
— 222
Bhyp =Y (9x2 8y2)
fz)=0@")
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for some N.
Cusp form if

/1f(x+iy)dx:0.
0

Example 2.54 Eisenstein series.

_ U
E(Z,S) = Z m

(c,d)=1

= ) im(yz)

y€l\I'

Fact 2.55
1. E(z,s) converges for R(s) > 1.
Has analytic continuation to C in the s-variable.
Has a simple pole at s = 1 which is a constant Res;—1 E(z, s) =
E(z,s) =E(z,1-5).
E(z,s) ~ y° where 0 = max{R(s), R(1 - s)}.

Back on track
§ P( @ )
|0(|

laj2=n

>

ZQ€Ng

Z E(zQ,%+it)

ZQ€ENy

D oazo)

zZQ€N4

A

Lemma 2.56
C@2s) ) E(zq,s)

zQ eNy

%
(z Coa)(®)
———
=C(s)L(s,xa)

yz
; C(2s)E(zqg,s) = Z Z m

2Q (u,0)€Z2\(0,0)

Proof.

A4 the class group of binary quadratic forms of discriminant d.

—b+\/3) )
il L) A

2
uzo + o = U
luzg + 0|~ =| ( %
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2

_av? — uvb + cv?
a

so we get in the above

_ (@)5/2 1
4a & Q(u,v)s”

This gives
DY AL, xa) e ]
zQ
by Siegel.
> ZE(Z 1+it) |C(%+it)L(%+it/Xd)||d|}z
) |C(1 +2it)]
zQ
want

1
L(5 +it, xa) < |d|i78.

We also need:
Theorem 2.57 de la Vallée Poussin.

C(1 + 2it) > something > 0

|C(1 +2it)| > log(2 +1+ 1)

Phragmén-Lindelof principle gives convexity bound on the d-aspect
1 . 1ie
L(E +it, xq) <e |d]37€.

Subconvexity bound

Theorem 2.58 Burgess.

1
L(3 +it, xa) <e |d]75%

Z Pa(zg)?

What about

Harder even!
Lecture 151/11/2018

Last time

1
n > fo) /r au

ZQ€N4

Siegel’s theorem gives a lower bound

1
2

ZQ€Ny
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Subconvexity bound on L(% + it, x4) and non-vanishing (1 + 2it).
1 1
—_— E(zp, = + it
AL Z (zo 7 +it)
ZQEAd

is

1
Al D, ¢z

ZQE€ENg

a cusp form?

Waldspurger’s formula. Roughly Waldspurger says

lapl  (k=32)! Dk 1
= L(¢g® xp, k—=
(f. f) T (g.8) (8@ x0/k=3)

f € Sk(To(4) half integral weight, f +— ¢ Shimura lift, a,, fourier coeffs of F.

Remark 2.59 Shimura lifting takes weight k to weight 2k — 1 so k — 3 is the
center of the critical strip of
L (g ® X D, S)'

L(g®/ Xd/s) = Z an—D(n)

nS

> 6(zq) ~ a,(ID])

Katok-Sarnak, compare with

a
Pl— P, =0
(135) ~ 2 e metonz) = 0wtz
Then “all we need to do” is to show that
Subconvexity bound.
1 1_6
L(g® xo,k-3) < DI}

this would be enough
Why? Recall

> P(@)~ 0p(2)

laf*=n
a 1
|Z‘ ’ (W) = degpa 211
a|l=n
Op(z) of weight deg P + 3.
Want 1o 2
ap -
|D||de|3gP < |D|1 :
g = weight 2k —1—-2degP +2
|D|k—1

1
L(g® xp, k- 5)

~

ID|}~3
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1
~IDIZL(g ® xp, k = 3)

Z 1> |d|V/2e

ZQ€Ng

final touch:

so if we can get the subconvex bound

|ajpy|? 1
—— < |D|*®
|D|k—3/2 | |
it is enough.

Conjecture 2.60 Lindeldf. In the D-aspect

1
L(g® xp,5) < IDI*

L(g,% +it) < (1 +¢t)°

This follows from GRH.

Lemma 2.61 Convexity bound. For all € > 0:

(3 + if) = Ocl(1+1£)1/4),

Proof (sketch).
[C(1+e+it)] < C(1+e€) < ceso-

Functional equation + Stirling gives
|C(=e —it)] = Oc(|t]"/**)

1_
=0

G0 +iD] ~ 10— 0 = if) |

f(s)=C(s)c(1 - s)

+ Phragmén-Lindelof, bound itona = —€,b =1 +€:

|f(s)] < |12+

3 Linnik’s theorem

We will mostly follow Ellenberg, Michel, Venkatesh. Linnik’s ergodic method
and the distribution of integer points on spheres.

3.1 Linnik’s theorem

Problem.
roplem. e 166/11,2018
Distribution of

%Z{(x/y/Z)GZ3:x2+y2+zzzd}
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asd — oo.

Theorem 3.1 Linnik. As d — oo squarefree such that d # 7 (mod 8), d = <1

(mod 5)
ee)

is equidistributed w.r.t. the Lebesgue measure
rede: 54 — S2

|red2(Q)]
— = 5 Vol(Q
) @

in the sense that
|red . (Q)]

Bzl

for any Q a reasonable subset of S>.

= Vol(Q)(1 + o(1))

The +1 (mod 5) condition comes from a splitting condition in Q(\/E) that
we need to find an appropriate group action.
We will rather focus on the following variant

Theorem 3.2 Linnik variant.
Hq={(x,y,x) (mod q):(x,y,z) €}

with q fixed > 0 and (q,30) = 1 (non-essential). As d — oo, d squarefree such
that d # 7 (mod 8) and d = +1 (mod 5). #,(q) becomes equidistributed in

H5(q) ={(x,y,z) € (Z/q)® : x* + y* + z? = d} w.rt. counting measure, explicitly
|red;1(x)| 1
|#4] | 4(q)]

(1+0(1))
as d — oo.
Actually we will prove something a little strange.

Definition 3.3 Deviation. co,let p >0, x € 52 and consider the cap Q(x, p).

1 |redZd (@]
VolQ) [ A]

deva(Q) =

(we want to show this is o(1)).
q,let ¥ € 7;(q) then

i)l red; (B)]
Bz

dev,(x) =

Theorem 3.4 Fix 6,1 > 0 then for every

> d—1/4+r]

d—1/4+r]

_ |-
\%
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(9,30) =1, thenas d — co
prs2(x : devy(Q(x, p)) = 0) — 0

{x € H;(q) : devy(%) = 6}
|73 (q)]

How? Sketch of the argument:
Fix 6,71 > 0,

Bs ={x € %(d) s devy(x) > 6}

and assume that
IBs| = nl#a(q)|.

Inputs

1. There is an action of H(d) = class group of Q(V-d) on % (q)/SOs(Z).
Asd = +1 (mod 5) so (5) = pp in Q(V—d): This gives us a well defined
dynamical system by considering the action

P
H(q)d3 x> x> x> x> -
and in reverse
P
X2 —>>X-1—>X—>>X] = X2 —> X2 — """
call this chain yx and forany [ >0 € Z

0 _
’)/X - [x_l,x_l+], e X1, X, X1, le]

2. Consider the average on
Bs = )/g) N Bs.

On one hand the expected size of ygé) N By is
1 0
] x;”d lyy’ N Bsl
on the other hand the expectation is

@l +1)
|- 74|

red; " (Bs).

ie.

1 5 7% N Bo| | red; (By)|

Al Lt 21 A

3. Since we assume that the deviation set is large (dev4(x) > 0) this implies
on average

1
|V§() N Bs|
21 +1
is large, gives a lower bound for this.
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4. Then we count yg) in another way, action of H(d) on %7 and on J¢;(q).
action of p induces a graph structure on #(g). Then 7/5? is a path on
;(q) which is non-backtracking. Count these: Inputs: for I ~ log(d)
the number of non-backtracking paths for which |y§é) N Bs|/(21 + 1) is

large is > d'/?*¢. Count the total number of non-backtracking paths of
length 2/ + 1 for which

V¥ N Bl |Byl
20+1 |7a(q)]

> 6n/2

There can not be too many of these. This will give a contradiction. Will
take some work and depend on many things.

Lecture 17 8/11/2018

Class group actions.
‘% = {(x/]/,Z) EZZ . x2+y2+22 :d}
Aim:

1. ] is a principal homogeneous space for H(d) = CI(Q(V-d)).
2. Describe the action explicitly.

Definition 3.5 Principal homogeneous spaces. Let G be a group, X # () a set.
X is a principal homogeneous space for G if

GUX

in a transitive, free manner. X is also called a G-torsor. o

Remark 3.6 Of G is non-abelian we have notions of a left-torsor and right-
torsor.

Example 3.7
¢ Gisa G-torsor
* G =V an-dimensional vector space then A" is a G-torsor

e G=p,thenX(2)={x e C:x" =2}

m|
Note 3.8
SO5(2) © 7
X
v=|y|e G, v eSO3(Z) ~ yv e .

z

Exercise 3.9
1.
#503(Z) =24

2. SO3(Z) has a subgroup SOj; (Z) of index 2 acting via even permutations.
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Definition 3.10 .
My = SO3(2)\

H(q) = SO5(Z)\ #4(q)
S2 = 505(Z)\S?

— {so;(z)\%”d, d=1,2 (mod 4)

4 =1805(Z)\, d=3 (mod 4)

For all practical purposes we can basically assume that d = 3 (mod 4).

Proposition 3.11 jpi’g* is a principal homogeneous space for H(d). Idea: Venkov 1922:
Use quaternion algebras.

Digression: Hamilton Quaternions.
B={u+ia+jb+kc:u,a,b,ceR}
X=u—ia—jb—kc
N(x) = x% = u?> +a® + b> + ¢?
Tr(x) =x+x =2u

B® = {x € B: Tr(x) = 0}

Note
N(x) = a® + b* + ¢*if x € B,
B* = units, Bl = {x e B: N(x) = 1}
PB* = B*/Z(B%)
Remark 3.12

B* U B
via conjugation.

Exercise 3.13
1— Z(B*) » B* - PB* ~S03(Q) — 1

Definition 3.14 Hurwitz quaternions.
i+j+k
2

B(Z) = Z[i, ], |

The Lipschitz quaternions are

Z[i,j,k].

1. B(Z) is a maximal order
2. B(Z) is a Euclidean domain

3. Lipschitz quaternions are not a Euclidean domain
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Exercise 3.15
1. Show these properties.

2. Show CI(Z[i, j, k]) = 2.
2 implies B(Z) is a PID

(Q%,a% +b? + %) =~ (BO,N)

as metric spaces
The image of
B*(Z) — SOs(Z)

is SO¥(Z).

The action of H(d). Start with x = (a,b,c) € 5. This gives rise to an
embedding

ty: Q(V=d) — B
V—d = x+ai+bj+ck

note x? = —d.
Let K = Q(V—d) 1, is integral ion the sense that if

Ox = B(Z) N Q[x]

then
~HOx) = Ok.
Exercise 3.16 Prove this
IeH()~ y=y(x,I)
Consider B(Z)ix(I) = B(Z)q for some g € B(Q). Since B(Z) is a PID.
Then y = gxq~! € %

Note 3.17
1.
y?=-d
2. If we take AI for A € K, y(x, AI) = y(x,I) so we get a well defined
construction H(d).
3. g is defined up to conjugation by B(Z)*.

To sum up:
For any x € J#; we have a well defined map

Cl(d) — A
I— y(x,I).
Claim 3.18 This map makes %%;X a principal homogeneous space over C1(d).

Letx,y € J4;.
Construct an ideal Ayrsy s.t. y(x, Axsy) = .

Definition 3.19
Axsy ={A € B(Z): xA = Ay}.

x,y € J Witt’s theorem implies there exists 4 € PB*(Q) = SO3(Q) s.t.
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y=q"xq

Axr—»y =B(Z)n Q[x]q
Note 3.20 A,y is locally free and rank 1
= [Axy] € Pic(Oy) = Pic(Ok) = Cl(d).

Lecture 18 13/11/2018

Summary A is a principal homogeneous space for Cl(d), the class group of
Q(V—d).
How? x € J#; defined

Q(V=d) < B(Q)

V—d — x
any I € Cl(d) ~ B(Z)i(I) = B(Z)q for some 4.
B(Z)={x+ai+bj+ck:a,b,c,de€Z, orall e %Z\Z}
y=9"xq
Ix=y
[Axsy]
inverse of this construction
SO(3,Q) = PB*(Q)
Proposition 3.21 A isa principal homogeneous space for C1(d).
Ay = Ay
ifd =3 (mod 4). The stabiliser of any point in A is the order 2 subgroup generated

by p|(2).
— || = 24|h(d)| ifd =3 (mod 4)

1] = 12|h(d)| ifd = 1,2 (mod 4)

Proof. Requires checking everything works as intended, it is local. ]

Explicit realization.
P € Cl(d)

~ Mp € SO(3)

x € 3 — Px = Mpx

4

PP = (5)

Let

48



because of the assumption on d.
P action, let x € ;.

N(P)=5~ g€ B(Z)
N(q) =5 = 5€{1+2i,1+2j,1+2k}B*(Z)
two of these will give you the action of P, P.

Example 3.22 g will act by g~ xq acting on B(), enough to check the action on
i,j, k. Say
g=1+2i,§=(1-2i)/5

(1-2i)
5

7jq = j(1+2i)

D SR

Basic construction. Let % = {M;, M5, M3i} starting with a solution x €
one gets two matrices w1, w-1 € %

w-3 w-2 w-1 w1 w2 w3
X 33— X & X1 66— X —> X1 — X2 —™ X3

where w; comes from P and w_; from P.
This construction gives a well-defined (up to flip) path starting with a
solution x € J75.

Remark 3.23 These chains are periodic.

Back to proof. Idea: if x € J#; then x and these paths are well defined mod
p.

We are aiming for

Proposition 3.24 Let Y.(d, I, q) denote
’ O ()
#H(x, x') € Hg X Ay vy =y, in Ay}

where l
v e ()

is the chain cut at [—1, 1] and then reduced mod q. Then

U(l/ d/ q) <<€ |%| + d€(1 + q252])
Proof. Next time, Linnik’s lemma #{xy = d} < d°. One more input. ]

Lecture 19 27/11/2018
In Q(\/E) we have (5) = pp

X € G = {(xl,xz,x3):x%+x§+x§ =d}
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there are 6 matrices A = {A*,B*,C*}, A, B, C € GLy(Z), reduction of these
(mod q) © s#(q).
This induces a graph structure on .7;(g), (multiple edges between vertices
are allowed).
Hy — Hi(q)

[...,x_1,x0,x1,...] = pathin graph
forl € N,
v e A

Linnik’s basic lemma. Generalisation of the following
rd)= ) 1<dVe.
ald
Proposition 3.25 Linnik. Fix d, letc € Z,s.t. |c| < d. Then Ve > 0,

#{(x1,x0) € %’f 1x1 X =ef <K df.

Proof. Short detour on representations of quadratic forms by other quadratic
forms. |

Definition 3.26 Let (Q, Z™), (R, Z"), m > n be nondegenerate quadratic forms.
Then Q is said to represent R if there exists a Z-linear map

t: 2" —> 7"
s.t.
O(i(x)) = R(x)Vx € Z".
o
Example 3.27
Qlx,y)=x-y
R(x) = dx?
then let
1 Z—Z?
x > (ax,bx) where ab = d
then
Q(i(x)) = R(x).
O

Letx1,xp € 75 s.t. x1-xp =e.
x1 = (a1, b1, c1) x2 = (a2, bz, c2)
consider
17> - 78
(u,v) > (uay + vay, uby + uby, uci + vey) = uxy + vx;
let Q(a, b, c) = a® + b? + 2.
Q(u(u, v)) = (uay + var)? + (uby + vb2)? + (ucy + ver)?
= du? + 2euv + dv?
= Ry.(u,v).

So the number of representations of R by Q/SO3(Z) bounds number of
solutions x1x> = e.
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Theorem 3.28 Gordon Pell 1949. Let
r(a,b,c) = {reps. ofax2 +bxy + CyZ by 2+ y2 +22)

then
r(a,b,c)=24-2" l_[ rp(a,b,c)
pl2(b%—4ac)

where
v = #primes dividing b — 4ac

rp(a,b,c) = O(1) unless p*lged(a, b, c)
for us r(d,2e,d), b> — dac = 4(e? — d?) and
r(d,2e,d) < d€.
Exercise 3.29 Show this (recall d is a fundamental discriminant).
Lemma 3.30 Shadowing lemma. Let
X1, x0, X1, %], (X, x(, X0, 1]

be two marked paths in 5¢;. Then these paths have the same reduction mod q iff
xo = +x} (mod g5').

Theorem 3.31
£(d,1,q) = #{(x,x) € 27y =YV e ()

d
q2521

= X(d,1,q) < #75+d°(1 + )Ve > 0.

Proof.

yil) = 7/3((1,) — x =+x’ (mod ¢5')(by the Shadowing lemma)

— (x+x)(x+x)=0 (mod ¢%5%)

or
= (x—x)(x-x)=0 (mod ¢%5%).

= X(d,Lq) <2#{(x,x):x#x,x-x'=d (mod g?5%)}

recall

Z {(x,x) x-x = e} <cd(1+ %).
lel<d,e=d (mod g25%) q

Proof of the equidistribution statement. Recall:
|red; (3)|
devy(¥) = ———— —
) = i)

dev;(x) > 0asd — o0, d =+1 (mod 5) d fund. disc..

Sketch of proof. Assume Bs = {x : dev;)x)
gt6}. Lower bound by counting the number of paths that lie in redt;l(B(s).

51



Upper bound by the expansion property of .7;(q). |
Lecture 20 29/11/2018

Theorem 3.32 Linnik. Fix v,0 > 0 and let q < i, (q,30) = 1. Then the
fraction of X € ;(q) for which

| dev,(x)| > 6

tends to 0 as d — oo through d = 1 (mod 5).

Recall 3.3.
Last time
Proposition 3.33 Let
(d,1,q) = #{(x,x') € 22 : y{ =y}
then
d
X(d,1,q) <e |G| +d° (1 + W) :

Proof of theorem. Let
Bs = {x € #3(q) : devy(X) > 0}

and assume that

Bs = n|-#a(q)l
for some 1 > 0.
Observe that
-1
1 0 |redq (Bs)|
NBs|=QI+1)——F—
] 2 7% Mol = G
or " )
NBy| Ired; (Bs)|
1 Z lyx” N Bs| _ Iredy (Bo (3.1)
| #a(q)] @l +1) |74

XeH
Choose an [ s.t. ,
=1l < 9°5% <517

note that we can indeed choose such an [.
By definition every x € B satisfies

devy(x) > 6
implies
| red, " (¥)|
—_— >
|7/ (q)]

) 1Bol ]
red (B > —
Iredy " (Ba)l = o )

1+ 6.

(1+90)

SO

O]
1 |Vx mel |Bb|
> (1+90)
] ; @+1)  Haly)]

by the assumption that
Bs = nl#a(q)l
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we have this is

|Bs| N
~ | Ha(g)l
Let "
lyx" N Bs| |Bs| . 1o
d=<x€e5: > + —
{ SCTES VIR PP
Note that

) = DU -

1 h/x mel h/x mel |7/x ﬁB§|
EZ ; @I+1) |jf/;z| Z e Z @+1)
xXe,

Sl s 'i?q‘w"?
-1l
1 |Bs| no
L o+ ol ( Lm0
|c%ﬂ| 2(q)|
5
— 1P| > %L;m (3.2)

Now we count the number of marked non-backtracking paths on #;(q) of
length 21 + 1 (write MNBP(5¢;(q)) for this quantity), which in addition satisfy

b0 Bol 1Bl on
QI+ 7 @)

By (3.2) we have n0|.7;|/2 of these paths “upstairs”.
Recall Siegel implies

d27¢ < || < d2te

. nd ;1_¢
so upstairs we have >, —d27¢ paths.
Claim 1: The previous proposition implies not mant of these paths give the
same path mod g

MNBP(A3(q)) ey 42~
On the other hand the total number of marked non-backtracking paths on

Ha(q)
is
| a(q)l6 - 57
also observe that |.7(q)| < g7 so the total number ~ ¢%5% < d1/2*¢

1
=1 < q%5% < 514)

Final input is a Chernoff type bound. u
Proposition 3.34 Fix n, € > 0 for any subset

B c ;(q)
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s.t.
IBl > nl|7a(q)]

the fraction of non-backtracking paths of length 21 + 1 satisfying

ynBl Bl |
2+1 A~

<en e~

for some ¢ = c(e, n) > 0.

Claim 2: This proposition implies that the fraction

MNBP(#(q)) < d277

for some 7 > 0. Then
1

>, d27¢

< d 17t
give a contradiction.

We now check some claims made above.
Claim 3.35 Claim 1. Bound on #{(x, x’) : )/,(Cl) = )/J((l,)} gives a bound on the number
of distinct paths.
Proof.
#{(a,a’) e A’:a=a" (mod q)} = Z Mg,

gives a lower bound on A (mod ¢). To show this note that the

Al Al
ai
Al =141 = ) e > —
=1 i=1
where n,, =#{a € A:a = a; (mod q)}. [

Claim 3.36 Claim 2. Follows from two points
d27¢ < g%5% < dite

g < div

3.2 The adelic picture

Lecture 21 4/12/2018
Notation: A is the ring of adeles of Q

[ o
p

Af= HQP

p finite

so that
A=RX Af.

54



Z: limz/n =]z,

n
ZQAf

maximal compact.

The genus of a quadratic space. For us,
Lc@?
a lattice, then
GLs(Ap) 2 g =] |3,
g'L:{agQ3:ap =gpL, Vp}
genusgo, (L) = SO3(Af) Lo
Lo=2753, a% + b* + 2.
Proposition 3.37 There is one SO3(Q) orbit of L. i.e.
SOs(A) = S03(Q)S03(Z)
Proof. Based on quaternions having class number 1.
More definitions:
P={(L,x): Le genusso3(£0),x el,x-x=d}
P ={(£,%): £ € genusg,(Lo), ¥ € L/qL, x-x=d (mod q)}
A =S03(Q)\P
K¢[q] = ker(SO5(Z) — SO5(Z/4Z))
Ki[q] = {g € SOs(2) : g% = %;}
we fix a base point ¥; € 7;(q). Then

Hi(q) = SO3(Q)\Pyy) = SO3(Q)\ SOs(A ) /K [q]
here we are heavily using the exceptional isomorphism

SO3 = PGL2 .

Claim 3.38
SO3(Z)\Aa(q) ~ SO3(Q)\P(y)

Proof sketch.
SO5(Q) © Py, diagonally

SO3(Ay) = SO3(Q) SO3(Z)
every orbit has a representation =~ (L, X), ¥ € J;(q).
(Lo, X) = (Lo, ¥')
—

3y € SO3(Z) N SO3(Q)
————
SO3(Z)
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Claim 3.39
SO3(Q)\P(;) ~ SOs(2\ A4 (q)/K 4]

Proof sketch. Observe
SO3(Af) O Py,

via . R
LRZ/qLIZ

This action is transitive, i.e.

P(y) =SO3(Af)[ Lo, %]

Remark 3.40 _
SO3(Z)\S® ~ SO3(Q)\ SO3(A)/Keo SO3(Z)

What about
SOs(2)\ 52

Fix another base point xg € .7
SO3(Z)\#i = SO, (Q)\ SOy (Af)/S04(Z)

where SOy, is the stabiliser of xo.

3 O class gp.

|

Hila) O SOs(Ay)

More concretely
SOy, : Q* = B¥(Q)
SOz =~ PB*
SOy, = PB}, ~ (a + bxg)/Z
~ Resk/q G /Gm

where K = Q(V-d).
Recall R
KX\A}EJ/O;(< =~ Pic(Ok).

The graph structure on J7;(q). SO3(Ay) is a large group, but so is K} ]
What is indeed true is

H3(q) = T3,9 SO3(Qs)/Ks

analogous to
H = SO, \ SL»(R)/SLy(Z).

Where
[(3,4PB*(Q) N PB*(Q5)K¢[3, q]

K¢[3,q] = K¢[3] N K7 [g] € Ki[q]

Now
PGL,(Q5)/PGLy(Zs)

is a Bruhat-Tits tree, a 6-regular tree.
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Lecture 22 6/12/2018

Automorphic spectrum of PGL; of F;(¢). Analogous to SL>(Z)\H.
Reference I. Efrat: Automorphic spectrum on the tree of PGL,
Setup: k = Fy, oo = —deg 50 | flo = g8

K = (K)o = K(5)

Ow =0 = K[[t"']]
I' = PGLa(Fq[[¢]])

Analogies:
H «v» PGL,(K)/PGL,(0) = X

SLy(Z) «v» T
Problem: decompose L*(T'\ X). In the case of

SL,(Z)\H~ L?>(SL,(Z)\H)= R & C @& E .
—— N—— ——
Residual  cusp forms  Eisenstein

Theorem 3.41
L*T\X)=R&E

dim(R) =2, dim(E) = oo i.e. no cusp forms.

Little bit on X (a (g + 1)-regular tree). Ref: Serre “Trees”.
Description

1. In terms of lattices
L={avi +bvy:a,be0}

s.t.
L®o K = K>

Matrix
(v1 v2) GLa(K)

changing basis implies L a class in GL,(K)/GL2(0).
L1 ~Ly

if 3a € KX s.t. L1 = aL,.

X = {equivalence classes of lattices}

A class L is adjacent to L’ <= Jrepresentations Lo, L s.t. L; € Lo and

Lo/LBZFq.
o={lo 3

Fact: PGLy(K) = B -PGL,(0). Each coset b PGL,(O) has a representative
" x
0 1
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n unique and x € K.
Vertices of X

(tg ’1“) PGL,(0)

t" x S gl x
0 1 ~adjacent 0 1 , &€ Fq 0 1

INX =chain e —e—e—--.

Fact:

Measures: Normalise Haar on PGL; s.t. u(PGL2(0)) = q(9 —1). ~ On
I'\X, u gives vertices weights

Remark 3.42 We have

P PPN 910):0)
(8= [ fosdn= proo s 3 HEE

Fact 3.43 The algebra of operators on functions on X that commute with the automor-
phisms of X is generated by

(T(NG) = D))

s'~s

Remark 3.44
A=(@+1id-T

and T descends to T'\ X.
Given f: T\X =N — C

_[@+vro, =0
(T(f))(n) = {qf(ﬂ -+ f(n+1), n>0

T is self-adjoint with respect to (, ),
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Eigenfunctions of T.

(Tf)(n)=A-f(n), Yn e N.

= Af(0)=(q+1)f(1)
Afn)y=qfn-1)+ f(n+1),¥n>0

() =6 ) ()

Now fix a normalization

ie.

fO)=g+1
£1) = A.
Characteristic values:

—A /A2 -4g

X1,X2 = >

note x1 = x2 <= A = £24/7.
Eigenfunctions

i = |7 A ) —alg DT ), >0
T q+1, n=0

for A # +24/g note fz41 =q + 1.

foyi(n) = (g + 1= (q — Dn)g"/?

f-ayg(n) = (-1)" foq

We now consider the space L*(I'\ X) with the operator T.
Question: which the f; are in L>(I'\ X)?

Proposition 3.45 The only f € L* with |A| > 24/g are A = +(q + 1).
Proof. Normalise f, by
(x2—x1)f = x?_l(/\xl —-q(g+1) - xg_l(sz -q(g+1))

assume WLOG [x1]| > 4/ = [x2| < 4/7 (since [A] > 24/7) s0 x] = o(q”/2),
So Ax1 —q(g+1) =0 (tobein L2). So A = +4q(q + 1). n

What about the rest?
Note: |A]| < 2\/6_] = X1 = X».
Renormalise: Let x1 = y/7e'%, x, = y/ge .

A=2+gcos0,0<0<m

f@(”) = 9612;\/;2](2\@&)58(”)

SO

- |q"?i(sin(n +1))0 — g sin(n — 1)0
foln) = {(q +1)isin 6
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Proposition 3.46 ~
fo ¢ L?
for0< 6 <.

Spectral decomposition of L2(I'\X). Continuous spectrum: Extend fp to an
odd function -1t < 6 < . Given ¢ € L?(A\X) consider

Fon) =5 [ wi0)atn do.
Theorem 3.47 Fy, € L*(T'\X).
(Fy Fo), = (¥, 0) %/O PP — 1) - 4qsin’(x)) dx

Theorem 3.48 Let ¢ € L?(T'\X). Then

de
1)2 — 44 sin? 0

g(n) = (g, u1) ur(n) + (g, uz) uz(n) +27T/ (g, fo) fo
0 (q -

_ q2_1 _ q2_1_ n
ul—\f 27 ,M2—\f 27 (=",

where
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