
CS301 Complexity of Algorithms Notes

Based on lectures by Dr. Matthias Englert

Notes by Alex J. Best

May 31, 2014

Introduction These are some rough notes put together for CS301 in 2014 to make it a little
easier to revise. The headings correspond roughly to the contents of the module that is on the
module webpage so hopefully these are fairly complete, however they are not guaranteed to be.

What is a problem?

De�nition 1. A problem is a function

f : {0, 1}∗ → {0, 1}∗.

A decision problem is a function
f : {0, 1}∗ → {0, 1}.

We identify a decision problem f with the language

Lf = {x : f(x) = 1}.

and call the problem of computing f the problem of deciding the language Lf .

What is a computation? A set of �xed mechanical rules for computing a function for any
input.

De�nition of a Turing machine.

De�nition 2. A Turing machine consists of an in�nite tape with letters of the alphabet Γ
(usually = {0, 1,�}) written on it. At the start the input is written on the tape beginning at
the head and the state is qstart. The transition function

δ : Q× Γ→ Q× Γ× {L, S,R}

dictates what to read, which state to switch to and which direction to move to after reading a
symbol while in a given state. So the machine is given by (Γ, Q, δ). When the machine reaches
the state qend the computation halts and the output is the section of tape starting at the head
until the �rst blank �.

De�nition 3. A Turing machineM computes a function f : {0, 1}∗ → {0, 1}∗ in time T : N→ N
if for every x ∈ {0, 1}∗ the output of M when given x initially is f(x), this computation must
�nish after at most T (|x|) steps (this implies M halts on every input).

We say M computes f if it computes f in T (n) time for some function T .

1

What happens if we increase the alphabet?

Claim 1. Let f : {0, 1}∗ → {0, 1}∗ and T : N → N be some functions. If f is computable in
time T (n) by a Turing machine M using alphabet Γ then f is computable in time

3dlog |Γ|eT (n)

by a Turing machine M̃ that uses only the alphabet {0, 1,�}.

To see this we can encode all the old symbols in terms of only {0, 1,�} and create a new
Turing machine that does what the old one would do, we have to move back an fourth along a
strip of size log |Γ| at most 3 times to do this however.

k-tape Turing machines. We can also using Turing machines that have k tapes and k heads
rather than simply one however this doesn't make much di�erence either.

Claim 2. Let f : {0, 1}∗ → {0, 1}∗ and T : N → N be some functions. If f is computable in
time T (n) by a k-tape Turing machine M using then f is computable in time

7kT (n)2

by a single tape Turing machine M̃ .

Church-Turing thesis. The Church-Turing thesis is the statement that

Every physically realisable computation device (be it silicon-based, DNA-based, neu-
ron based, ...) can be simulated by a Turing machine.

This is generally believed to be true.

Universal Turing machines. As a Turing machine is given by some �nite amount of data we
can represent it by some string encoding. We assume that we have picked an encoding so that
every string represents a Turing machine and every Turing machine can be encoded by in�nitely
many strings. The Turing machine encoded by a string α is denoted Mα.

Theorem 1. There exists a Turing machine (a universal Turing machine) that when given a
pair 〈α, x〉 as input outputs the result of running the Turing machine encoded by α with input
x. Moreover if the machine encoded by α halts within T (|x|) steps on input x then the universal
Turing machine halts within C · poly(T (|x|)) steps, where C is independent of |x|.

We assume we have �xed some encoding for Turing machines and a corresponding universal
Turing machine, denoted U .

Uncomputable functions. The set of all functions

f : {0, 1}∗ → {0, 1}

is uncountable. So as any Turing machine can be encoded as a �nite string of bits under some
�xed encoding, there are countably many Turing machines.

Corollary 1. There are functions

f : {0, 1}∗ → {0, 1}

that are not computable.

2

Example. The function

f(α) =

{
0 Mα(α) = 1,
1 otherwise

is not computable.
This is as if we had a Turing machine M that computed f then M halts for all x, with

M(x) = f(x). So if we let x be a string representing the Turing machine M then M(x) = f(x),
but this is a contradiction by the de�nition of f .

HALT is not computable.

Claim 3. Another function that is not computable is

HALT(〈α, x〉) =

{
1 Mα halts on input x,

0 otherwise.

Proof. Assume that MHALT is a Turing machine that computes HALT, then we can design a
Turing machine to compute the function f in example , thus deriving a contradiction.

The Turing machine for f would �rst run MHALT(〈α, α〉) outputting 0 if this returned 1.
Otherwise it would then use the universal Turing machine U to compute Mα(α), outputting 1
if this returned 0 and 0 otherwise.

There are more functions that are practically useful that are not computable. For example
deciding if a Diophantine equation (a possibly multivariate polynomial with integer coe�cients)
has a solution in the integers is impossible in general.

The language
{α : Mα halts on all inputs}

is also undecidable. This is as if we could compute this language we could compute HALT by
taking a pair 〈α, x〉 and forming a Turing machine the always computes Mα(x) no matter what
input it is given. If we could decide if the new Turing machine halted on all inputs we could
decide if Mα halts on input x.

Rice's Theorem. All Turing machines correspond to a function

f : {0, 1}∗ → {0, 1}∗ ∪ {⊥}

where f(x) = ⊥ means that the Turing machine does not halt on input x. Not all of these
functions correspond to Turing machines, but we can take R to be the set of all such functions
that do correspond to Turing machines.

Theorem 2 (Rice's Theorem). Let C be a non-empty proper subset of R, then the language

{α : Mα corresponds to a function f ∈ C}

is undecidable.

Proof.

3

The complexity class P. We now de�ne some complexity classes, sets of functions that can
be computed with some given resources.

De�nition 4 (The class DTIME). Let T : N→ N be a function, then we let DTIME(T (n)) be
the set of boolean functions computable in O(T (n)) time.

De�nition 5 (The class P).

P =
⋃
k≥1

DTIME(nk).

This class does not depend on the exact de�nition of Turing machine used. Problems in P are
thought of as e�ciently solvable and are a very natural model for this concept.

Strong Church-Turing thesis. The strong Church-Turing thesis is the statement that

Every physically realisable computation device (be it silicon-based, DNA-based, neu-
ron based, ...) can be simulated by a Turing machine with only a polynomial overhead.

This is more controversial than the normal Church-Turing thesis as either

a) quantum mechanics does not behave as we currently understand it to,

b) a classical computer can factor integers in polynomial time or

c) the strong Church-Turing thesis is wrong.

Reductions.

De�nition 6 (Karp reduction). A language L ⊆ {0, 1}∗ is Karp reducible to a language L′ ⊆
{0, 1}∗ if there exists a computable function

f : {0, 1}∗ → {0, 1}∗,

such that for all x
x ∈ L ⇐⇒ f(x) ∈ L′.

De�nition 7 (Polynomial time Karp reduction). A language L ⊆ {0, 1}∗ is polynomial time

Karp reducible to a language L′ ⊆ {0, 1}∗ if there exists a polynomial time computable function

f : {0, 1}∗ → {0, 1}∗,

such that for all x
x ∈ L ⇐⇒ f(x) ∈ L′.

We denote this relationship by
L ≤p L′.

If L ≤p L′ and L′ ≤p L then we write L ≡p L′.

Vertex Cover and Independent Set are equivalent. INDEPENDENT SET: Given a
graph G = (V,E) and an integer k is there set S ⊂ V of size at least k where each edge of G
has at most one endpoint in S.
VERTEX COVER: Given a graph G = (V,E) and an integer k is there set S ⊂ V of size at
most k where each edge of G has at least one endpoint in S.

Claim 4. VERTEX COVER ≡p INDEPENDENT SET.

Proof. S is an independent set if and only if V \ S is a vertex cover.

4

Vertex Cover reduces to Set Cover. SET COVER: Given a set U , a collection S1, . . . , Sm
of subsets of U and an integer k, does there exist a collection of ≤ k of the subsets whose union
is all of U .

Claim 5. VERTEX COVER ≤p SET COVER.

Proof. We create a set cover instance for a graph G = (E, V) by letting U = E and Sv = {e ∈
E : e is incident to v} be our collection of subsets. Then there exists a set cover of size at most
k if and only if there exists a vertex cover of size at most k in the graph G.

3-SAT reduces to Independent Set.

De�nition 8. A literal is a boolean variable or its negation.
A clause is a disjunction (OR) of literals.
A propositional formula Φ is in conjunctive normal form if it is a conjunction (AND) of clauses.
The problem SAT asks if a given propositional formula Φ that is in CNF has a satisfying
assignment of variables.
A special case of this is 3-SAT where we require that each clause be a disjunction of exactly
three literals.

Claim 6. 3-SAT ≤p INDEPENDENT SET.

Proof. We use the given propositional formula to construct an instance of INDEPENDENT SET
as follows. For each clause we add a triangle of vertices to a graph G, labelled by each literal.
We then connect all literals appearing to all of their negations. Then G contains an independent
set of size k if and only if Φ is satis�able.

Transitivity for the reducibility-relation. Reduction is transitive, i.e. if X ≤p Y and
Y ≤p Z then X ≤p Z. To see this we can think of composing the functions that provide the
reductions from X to Y and Y to Z.

Example.

3-SAT ≤p INDEPENDENT-SET ≤p VERTEX-COVER ≤p SET-COVER

De�nition of NP. For comparison we give an equivalent de�nition of the class P to the one
given above.

De�nition 9 (Complexity class P). A language L is in the class P if there exists a Turing
machine M and polynomial T so that M terminates on input x after at most T (|x|) steps and
M accepts x if and only if x ∈ L.

De�nition 10 (Complexity class NP). A language L is in the class NP if there exists a Turing
machine M and polynomials T and p so that M terminates on any input x after at most T (|x|)
steps. We also require that if x ∈ L then there exists a certi�cate t ∈ {0, 1}p(|x|) so that M
accepts 〈x, t〉, conversely if x 6∈ L we require that M rejects any pair 〈x, t〉 where t ∈ {0, 1}p(|x|).

In the de�nition of NP above M is called a certi�er or veri�er and t a certi�cate or proof for
x.

Claim 7. P ⊆ NP

Proof. Take the certi�erM to be the decider for the problem from P, ignoring the second element
of the input pair.

5

Example. The language

COMPOSITES = {s ∈ N : s is composite}

is in NP. This is as we can use a non-trivial proper factor as a certi�cate, and then the certi�er
just needs to check the factor is as claimed by checking bounds and dividing. Here |t| ≤ |s|.

Example. The problem SAT is in NP as we can take a satisfying assignment of the n boolean
variables in the formula as the certi�cate. The veri�er then needs only run through the formula
checking that each clause has at least one true literal.

Example. Another problem in NP is HAM-CYCLE which asks if a given graph G = (V,E) has
a simple cycle that visits every node. The certi�cate for this problem is a permutation of the
nodes of G and so the certi�er need only check that all nodes are in this permutation exactly
once and that there are edges between consecutive nodes in the permutation.

De�nition of NP-completeness.

De�nition 11 (NP-completeness). A (decision) problem Y is called NP-complete if it is in NP
and has the property that every other problem X in NP reduces to it in polynomial time.

Theorem 3. Let Y be an NP-complete problem, then Y is solvable in polynomial time if and
only if P = NP.

Proof. (⇐) If P = NP then Y can be solved in polynomial time as Y is in NP.
(⇒) If Y can be solved in polynomial time then as any problem X in NP reduces to Y in
polynomial time we can solve X is polynomial time. Hence NP ⊆ P and so P = NP.

An easy arti�cial NP-complete problem: TMSAT.

Alternative de�nition of NP using reductions and a representative (i.e. complete)
problem of the class. Given a natural NP-complete problem we can equivalently de�ne the
complexity class NP to be all problems polynomial time reducible to that problem.

Cook-Levin theorem.

Theorem 4 (Cook, Levin). SAT is NP-complete.

Proof. We know SAT is in NP, in order to show that all other problems in NP reduce to it we
need some more machinery!

Oblivious Turing machines.

De�nition 12. A Turing machine is called oblivious is its head movements do not depend on
the input x but only on the length |x| of the input.

Theorem 5. Given any Turing machine M that decides a language in time TM (n) there exists
an oblivious Turing machine that decides the same language in time O(Tm(n)2).

Proof. Exercise!

6

Proof of the Cook-Levin theorem. We will solve the problem of certi�cate ex
Now we have established a natural NP-complete problem others are easier to do. To establish

the NP-completeness of a given problem Y we can perform the following

Step 1 Show Y is in NP.

Step 2 Choose an appropriate NP-complete problem X.

Step 3 Prove X ≤p Y .

A major problem of complexity theory is determining whether P = NP or not, if they are
equal then there are e�cient algorithms for all NP-complete problems. If not, no such algorithms
are possible, and most computer scientists believe this to be the case. Most NP problems are
known to be in P or NP-complete, factoring and graph isomorphism are exceptions.

3-SAT is NP-complete.

Theorem 6. 3-SAT is NP-complete.

Proof. It su�ces to show that SAT ≤p 3-SAT since we know that 3-SAT is in NP.Let Φ be any
SAT-formula and let C = (L1 ∨ L2 ∨ · · · ∨ Lk) be a clause of size k > 3 (Li = xi or Li = xi).
Introduce a new variable z and replace C with

C ′ = (L1 ∨ L2 ∨ · · · ∨ Lk−2 ∨ z) and C ′′ = (Lk−1 ∨ Lk ∨ z).

Doing this will transform all clauses into clauses of at most 3 literals. Finally we turn the clauses
of length < 3 into ones of length 3.

Subset-Sum is NP-complete. SUBSET-SUM: Given natural numbers w1, . . . , wn and an
integer W , is there a subset that adds up exactly to W?

Example.
{1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344}, W = 3754.

is a yes instance as

1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

Remark. With arithmetic problems, input integers are encoded in binary. Polynomial reduction
must be polynomial in the size of the binary encoding.

Claim 8. 3-SAT ≤p SUBSET-SUM.

Proof. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has a
solution if and only if Φ is satis�able.

Given a 3-SAT instance Φ with n variables and k clauses, form 2n+2k decimal integers, each
of n+k digits. For each variable xi we include two decimal integers with 1 in the (n+k−1−i)th
digit, the �rst with 1s in the last decimal digits corresponding to the clauses xi appears in and
the second with 1s for the clauses where xi appears. We then add in 2k slack variables with
either 1 or 2 for the digit corresponding to each clause and 0s elsewhere, this will allow us to
always reach the target value with 4s in the last k digits and 1s in the �rst n as long as there
is an assignment of each variable to a true or false value such that each clause has at least one
literal true.

7

SchedulingWith Release Times is NP-complete. SCHEDULE-RELEASE-TIMES: Given
a set of n jobs with processing time ti, release time ri and deadlines di, is it possible to schedule
all jobs on a single machine such that job i is processed with a contiguous time slot of ti time
units in the interval [ri, di]?

Claim 9. SUBSET-SUM ≤p SCHEDULE-RELEASE-TIMES.

Proof. Given an instance of subset sum with set {w1, . . . , wn} and target sum W we create n
jobs with ti = wi, release time 0 and deadline di = 1 +

∑
j wj . Now create another job taking 1

unit of time and being released at time W with deadline W + 1.

Hamiltonian cycle is NP-complete. HAM-CYCLE: Given an undirected graph G = (V,E)
does there exist a simple cycle Γ that contains every node in V ?

The answer is no for a bipartite graph with an odd number of nodes.
DIR-HAM-CYCLE: Given a directed graph G = (V,E) does there exist a simple directed

cycle Γ that contains every node in V ?

Claim 10. DIR-HAM-CYCLE ≤p HAM-CYCLE.

Proof. Given a directed graph G = (V,E) construct an undirected graph G′ with 3n nodes by
replacing each node v with 3 nodes vi, v and vo such that all edges (v, w) now go from vo to wi
and so that vi, v and vo are connected in order by edges.

If there were a directed Hamiltonian cycle in G then traversing the vertices in the same order
gives a Hamiltonian cycle in G′ by visiting the vertices in the same order.

Conversely if we have a Hamiltonian cycle in G′ we can see that the cycle must either go
from a o vertex to a normal one to an i vertex and repeat this, or do the reverse, in either case
the sequence of nodes without subscripts is either a Hamiltonian cycle in G or the reverse of
one.

Claim 11. 3-SAT ≤p DIR-HAM-CYCLE.

Proof. We want to create a graph that has 2n Hamiltonian cycles that correspond to truth
assignments of variables for the 3-SAT instance. If the 3-SAT instance has k clauses then we
create n rows of 3k+ 3 nodes each, connected bidirectionally, we then create a source node and
end node connecting the source the each end of the �rst row and then two edges going to both
ends of the next row and the same to the third. Next we connect both end nodes of the last row
to the sink node and connect this to the source allowing for 2n Hamiltonian cycles going from
the start and then picking the direction to traverse each row.

TSP is NP-complete. TSP: Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length ≤ D.

Claim 12. HAM-CYCLE ≤p TSP.

Proof. Given an instance G = (V,E) of HAM-CYCLE create n cities with distance function
de�ned by

d(u, v) =

{
1, if (u, v) ∈ E,
2, if (u, v) 6∈ E.

This TSP instance has a tour of length ≤ n if and only if G is Hamiltonian.

8

3-Colouring is NP-complete. 3-COLOUR: Given an undirected graph G, does there exist
a colouring of the vertices with three colours such that no two adjacent vertices have the same
colour?

REGISTER-ALLOCATION: Is there an assignment of program variables to no more than
k machine registers such that no two program variables that are used at the same time are
assigned to the same register?

We can form a graph to study this problem by making nodes for variables and edges if there
is an operation that uses both variables at the same time. We can then observe that we can
solve the register allocation problem if and only if this graph is k-colourable.

Fact. 3-COLOUR ≤p k-REGISTER-ALLOCATION.

Claim 13. 3-SAT ≤p 3-COLOUR.

Proof. Given 3-SAT instance we create a node for each literal. Then we create 3 new nodes T,
F and B connected in a triangle and connect each literal to B. Next we connect each literal to
its negation.

Planar 3-Coloring is NP-complete. PLANAR-3-COLOUR: Given a planar map, can it be
coloured using 3 colours such that no two adjacent regions have the same colour?

Claim 14. 3-COLOUR ≤p PLANAR-3-COLOUR.

Proof. Given an instance of 3-COLOUR draw the graph in the plane (with edges crossing if
necessary), then replace the edge crossings with a gadget made of edges and vertices with a
gadget such that the colours the vertices are preserved.

Planar k-Coloring. PLANAR-2-COLOUR is solvable in linear time, whereas PLANAR-3-
COLOUR is NP complete note that PLANAR-4-COLOUR is solvable in O(1) time as the answer
is always yes.

Oracle Turing Machines.

De�nition 13. An Oracle machine OM is a Turing machine with a special extra tape called the
oracle tape and three extra states, qask, qyes and qno. OM computes as normal but with access
to an oracle function f : {0, 1}∗ → {0, 1}. When the machine OM enters the state qask the state
changes to qyes if f of the oracle tape is 1 and qno otherwise. The output of the machine OM on
input x when given access to the oracle f is denoted OMf (x).

Cook-reductions.

De�nition 14. A problem f is Cook reducible to a problem g if there exists an oracle machine
M which with access to the oracle g computes f .

De�nition 15. A problem f is polynomial time Cook reducible to a problem g if there exists
a polynomial p(n) and an oracle machine M which with access to the oracle g computes f in
time p(n).

We write this as
f ≤Cp g.

9

Self-Reducibility. Note the di�erence between search and decision problems, e.g. determin-
ing if there exists a vertex cover of size ≤ k is di�erent to actually �nding one of smallest
size.

A problem is said to be self reducible if the search problem ≤Cp the decision problem. This
concept applies to all the problems we consider and thus justi�es our focus on decision problems.

Example. To �nd a minimum cardinality vertex cover we perform a (binary) search for the
cardinality of the minimum cover k. We then �nd a vertex v such that Gr v has a vertex cover
of size ≤ k − 1 any vertex in the minimum vertex cover will have this property so we remove v
from the graph and recursively �nd a cover for the smaller graph.

Asymmetry of NP. NP is asymmetric, we only need short proofs of yes instances.

Example. SAT vs. TAUTOLOGY. In TAUTOLOGY we ask if a given boolean formula is
true for any truth assignment. We can prove a boolean formula is satis�able by giving a truth
assignment, but proving that any assignment satis�es is di�erent.

Example. HAM-CYCLE vs. NO-HAM-CYCLE: We can prove a graph is Hamiltonian by
describing a Hamiltonian cycle, but how can we prove that there isn't one?

SAT is NP-complete, how do we classify TAUTOLOGY.

NP versus coNP.

De�nition 16. Given a decision problem X its complement X is the same problem with yes
and no answers reversed.

So we de�ne the complexity class coNP to be the set of problems whose complements are in
NP.

Example. TAUTOLOGY, NO-HAM-CYCLE and PRIMES are all in coNP.

It is a fundamental question whether NP = coNP, if so all yes instances of a problem have
polynomial time certi�cates i� all no instances do. The consensus opinion is that the answer to
this question is no.

Some properties of NP and coNP.

Claim 15. NP is not a proper subset of coNP.

Proof. Assume there is a problem X in coNP that is not in NP. Its complement X is in NP by
de�nition. Now X is in coNP as we are assuming NP ⊂ coNP and hence X must be in NP, but
this is a contradiction.

Claim 16. P ⊆ coNP.

Proof. If a problem X is in P, then so is its complement as we can decide the problem in
polynomial time and then invert the output. As X is then in P too it must be in NP and hence
X is in coNP.

As P is closed under complement if we had P = NP then P = NP = coNP.
Similarly to the de�nition for NP we say a problem X is coNP-complete if X ∈ coNP and

any other problem in coNP can be reduced to X with a polynomial time reduction.

Claim 17. If an NP-complete problem lies in NP ∩ coNP then NP = coNP.

Proof. Suppose X is NP-complete and in NP ∩ coNP. Then take a problem Y from NP and as
Y ≤p X hence Y is in both NP and coNP too and so NP ⊆ NP ∩ coNP.

10

Well characterized problems. We notice that if a problem X is in both NP and coNP then
there should be short certi�cates for yes instances and short disquali�ers for no instances. We
call this a good characterisation or say that the problem is well characterised.

Example. When deciding if there exists a perfect matching in a bipartite graph we can exhibit
such a matching if one exists otherwise we could give a set of nodes whose neighbourhood is less
than the size of the set, showing that no such matching can exist.

Observe that P ⊂ NP ∩ coNP, sometimes �nding a good characterisation seems easier than
�nding an e�cient algorithm.

Another fundamental question is therefore whether P = NP ∩ coNP? There are mixed
opinions on this, many problems were found to have good characterisations and many years
later found to actually be in P, e.g. linear programming and primality testing. There are still
problems such as FACTOR which are in NP ∩ coNP but are not known to be in P.

PRIMES is in NP.

Theorem 7. PRIMES is in NP ∩ coNP.

Proof. We already know that PRIMES is in coNP, so it remains to show that PRIMES is in NP.
For this we use Pratt's theorem which states that an odd integer s is prime i� there exists an
integer 1 < t < s such that

ts−1 ≡ 1 (mod s),

t(s−1)/p 6≡ 1 (mod s) for all primes p | (s− 1).

We can therefore use the prime factorisation of s−1 as a certi�cate that s is prime, note that this
certi�cate needs to be recursive, all primes in the factorisation of s− 1 need to be proved prime
too, nevertheless this is still small enough! To certi�cate quickly a good method of powering is
needed such as powering by repeated squaring.

FACTOR is well characterized. FACTORISE: Given an integer x, �nd its prime factori-
sation.

FACTOR: Given two integers x and y does x have a non-trivial factor of size at most y.

Theorem 8. FACTORISE ≤Cp FACTOR.

Theorem 9. FACTOR is in NP ∩ coNP.

Proof. We can use a factor p of x that is less than y as a certi�cate. And for a disquali�er we
can take the prime factorisation of x as each prime factor of x must be larger than y in a no
instance.

We have now established that PRIMES ≡Cp COMPOSITES ≤p FACTOR. Does FACTOR
≤Cp PRIMES? The current state of the art is that PRIMES is in P, but FACTOR is not believed
to be in P.

PSPACE.

De�nition 17. The complexity class PSPACE is the set of decision problems that are solvable
using at most polynomial space.

Note that P ⊆ PSPACE as a polynomial time algorithm can use at most polynomial space.

11

Claim 18. 3-SAT is in PSPACE.

Proof. We can enumerate all possible truth assignments by counting in binary from 0 to 2n − 1
using at most n bits. Then we simply check each assignment in turn to see if it satis�es all
clauses.

Theorem 10. NP ⊆ PSPACE.

Proof. Consider some Y in NP, as Y ≤p 3− SAT we can decide whether w ∈ Y by computing
a function f in polynomial time along with deciding if f(w) ∈ 3-SAT. We can decide if f(w) ∈
3-SAT in polynomial space.

QSAT is in PSPACE. QSAT: Let Φ(x1, . . . , xn) be a boolean formula in CNF, is the propo-
sitional formula

∃x1∀x2∃x3 · · · ∀xn−1∃xnΦ(x1, . . . , xn)

true?
We can think about this question by imagining two players playing a game, one picking truth

values for xi when i is odd and the other doing even is and asking if the �rst player can force
the formula to be satis�ed.

Example. For
(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

the answer is yes as the �rst player can set x1 true and then setting x3 to be the same as
whatever x2 was set to.

Example. For
(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

the answer is no as the second player can set x2 to be whatever x1 was set to and then the
formula is not satis�able.

Theorem 11. QSAT is in PSPACE.

Proof. We can use an algorithm that recursively tries all possibilities to answer the question,
we only need one bit of information from each subproblem and so the amount of space used is
proportional to the depth of the function call stack, which is the same as the number of variables.
The algorithm for the for the subproblems where we have a for all �rst should return true if and
only if both subproblems are true, whereas for the subproblems with a there exists �rst true
should be returned when at least one subproblem returned true.

De�nition 18. A problem Y is called PSPACE-complete if it is in PSPACE and every other
problem X in PSPACE we have X ≤p Y .
Theorem 12 (Stockmeyer-Meyer 1973). QSAT is PSPACE-complete.

PSPACE is a subset of EXPTIME.

Theorem 13. PSPACE ⊆ EXPTIME.

Proof. The algorithm described for QSAT above runs in exponential time and QSAT is PSPACE-
complete.

To summarise, we now have

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME.

It is known that P 6= EXPTIME but not known which of the above inclusions is strict. It is
conjectured that all are.

12

Competitive Facility Location is PSPACE-complete. For the competitive facility loca-
tion problem we are given a graph with positive node weights and a target weight B. Two
competing players then alternate selecting nodes and they are not allowed to select a node if
any of its neighbours has already been selected by either player. The problem then asks if the
�rst player can prevent the second from selecting nodes weighing in total at least B.

Claim 19. COMPETITIVE-FACILITY is PSPACE-complete.

Proof. To solve the problem in polynomial space we can use a recursive algorithm as in QSAT
above, but this time we have at most n choices at each stage rather than just 2.

To see completeness we show that QSAT reduces to it in polynomial time we construct a
COMPETITIVE-FACILITY instance that is a yes instance if and only if a given QSAT formula
is true. Let Φ(x1, . . . , xn) = C1 ∧ C2 ∧ · · · ∧ Ck be the formula for a QSAT instance with n
odd. Include a node in the COMPETITIVE-FACILITY graph for each literal and its negation
and connect them so at most one of each xi and its negation can be selected by a player. Let
c = k + 2 an give variable xi the weight c

i and the same weight for its negation. We then set
the target weight B to be cn−1 + · · ·+ c4 + c2 + 1. This ensures that the variables are selected in
the order xn, xn−1, . . . , x1. If we stopped here player 2 will always lose by one unit, so we add in
nodes for each clause that have weight 1 and are connected to each of the literals in the clause.
The second player can now make a �nal move if and only if the truth assignment de�ned by the
players turns fails to satisfy some clause.

RP.

De�nition 19. A language L is in the class RP (randomised polynomial time) if there exists a
Turing machine M and polynomials T and p such that:

• For each input x the machine M terminates after at most T (|x|) steps.

• If x ∈ L then

Pr
t∈{0,1}p(|x|)

[M accepts 〈x, t〉] ≥ 1
2
.

• If x 6∈ L then
Pr

t∈{0,1}p(|x|)
[M rejects 〈x, t〉] = 1.

This is very similar to NP but at least half of all possible certi�cates must make the veri�er
accept. We never get false positives with this set up but we may get false negatives.

We can de�ne this class in an alternate but equivalent manner by using a probabilistic Turing
machine that can generate a random string itself. A probabilistic Turing machine can (in addition
to writing 0, 1 or �) write a symbol that is either 0 or 1 with probability 1/2.

Claim 20. P ⊆ RP.

Proof. Consider a problem X in P. As we have that there is a polynomial time Turing machine
that decides X we can use make a veri�er that ignores the string t in the input and just decides
if x is in the language. This satis�es the de�nition for RP.

Claim 21. RP ⊆ NP.

Proof. The de�nition for NP can be seen to be the same as that of RP but where we have the
line

13

If x ∈ L then

Pr
t∈{0,1}p(|x|)

[M accepts 〈x, t〉] ≥ 1
2
.

replaced with

If x ∈ L then
Pr

t∈{0,1}p(|x|)
[M accepts 〈x, t〉] > 0.

So a machine satisfying the �rst condition satis�es the latter too.

Probability Ampli�cation. Using the technique of probability ampli�cation we can see that
the 1/2 term in

If x ∈ L then

Pr
t∈{0,1}p(|x|)

[M accepts 〈x, t〉] ≥ 1
2
.

can be replaced with any other constant, or even a term of the form 1/|x|c for a constant c. We
can dramatically decrease the chance of false negatives without changing the complexity class.

To achieve this we de�ne a new Turing machine M ′ that takes in ts that are |x| times longer
by splitting the input t into |x| chunks and running M on x along with each of these chunks in
turn. We run M a total of |x| times and accept if M accepts at least once (as we have no false
positives). Now our probabilities are

If x ∈ L then Pr
t∈{0,1}p(|x|)

[M accepts 〈x, t〉] ≥ 1
2
.

If x 6∈ L then Pr
t∈{0,1}p(|x|)

[M rejects 〈x, t〉] = 1.

coRP.

De�nition 20. The complexity class coRP = {X | X ∈ RP}.
Alternatively we can say a language L is in coRP if there exists a Turing machine M and

polynomials T and p such that:

• For each input x the machine M terminates after at most T (|x|) steps.

• If x ∈ L then
Pr

t∈{0,1}p(|x|)
[M accepts 〈x, t〉] = 1.

• If x 6∈ L then

Pr
t∈{0,1}p(|x|)

[M rejects 〈x, t〉] ≥ 1
2
.

This is completely analogous to RP and so we have P ⊆ coRP ⊆ coNP. It is unknown whether
RP = coRP.

14

Polynomial equality. The polynomial equality problem asks if two polynomials P and Q are
the same, that is, whether they agree on all inputs.

Example. Does
P (x, y) = x6 + y6

equal
Q(x, y) = (x2 + y2)(x4 + y4 − (xy)2)?

We might try and answer this by expanding both polynomials and comparing terms, but
there could be exponentially many terms in the expansion compared to the input size. This
problem is not known to be in P, however we can reduce it to another problem by observing
that it is enough to determine whether P −Q is the zero polynomial.

Polynomial identity testing. POLY-ID: Given a polynomial Q in some encoding that has
degree d is this polynomial identically zero.

Claim 22. POLY-ID ∈ coRP.

Proof. To keep things simple we only consider univariate polynomials over the real numbers.
If Q is non-zero there are at most d distinct values x for which Q(x) is zero. So if Q is not
identically zero there and we pick some x at random from {1, . . . , 2d} then Pr[Q(x) = 0] ≤ 1

2 .
We need log d random bits to pick this x randomly. Evaluating the polynomial Q(x) could
actually take exponential time, however as our x is now an integer we can �x this by doing
computations modulo some su�ciently large prime p. We then accept if and only if Q(x) = 0,
so if Q is identically zero we always accept and if it is not we reject with probability ≥ 1

2 .

BPP. For some problems we might need two sided errors (both false positives and false nega-
tives).

De�nition 21. A language L is in BPP (bounded error probabilistic polynomial time) if there
exists a Turing machine M and polynomials T and p such that:

• For each input x the machine M terminates after at most T (|x|) steps.

• If x ∈ L then

Pr
t∈{0,1}p(|x|)

[M accepts 〈x, t〉] ≥ 2
3
.

• If x 6∈ L then

Pr
t∈{0,1}p(|x|)

[M rejects 〈x, t〉] ≥ 2
3
.

So we can decide L with probability of error at most 1
3

We can see that P ⊆ RP ⊆ BPP and that P ⊆ coRP ⊆ BPP. Since this de�nition is symmetric
we have that BPP = coBPP, where coBPP is de�ned in the usual way. It is not known whether
BPP ⊆ NP or NP ⊆ BPP or neither!

15

Probability Ampli�cation for BPP.

Lemma 1 (Ampli�cation lemma). Let 0 < ε1 < ε2 < 1
2 then there is a polynomial time

probabilistic Turing machine M1 which decides L with error probability ε1 if and only if there
is a poly-time PTM M2 which decides L with error probability ε2.

Proof. (⇒) Since ε1 < ε2, M1s error probability is also bounded by ε2.
(⇐) M1 runs M2 a total of 2k+ 1 times and chooses the majority result. M1 is correct if M2 is
correct at least k + 1 times. Each of the runs is an independent Bernoulli trial in which M2 is
correct with probability at least 1− ε2 > 1

2 . The Cherno� bound then says that

Pr[M1 is incorrect] ≤ e−k(
1
2
−ε2)2

so if we take

k >
loge

(
1
ε1

)
(

1
2 − ε2

)2
the error probability is less than ε1.

ZPP. What about if we didn't want any errors? We could allow the Turing machine to either
accept, reject or output that it doesn't know.

De�nition 22. A language L is in ZPP (zero error probabilistic polynomial time) if there exists
a Turing machine M and polynomials T and p such that:

• For each input x the machine M terminates after at most T (|x|) steps.

• If x ∈ L then
Pr

t∈{0,1}p(|x|)
[M accepts 〈x, t〉 or returns dunno] = 1.

• If x 6∈ L then
Pr

t∈{0,1}p(|x|)
[M rejects 〈x, t〉 or returns dunno] = 1.

•
Pr

t∈{0,1}p(|x|)
[M returns dunno on 〈x, t〉] ≤ 1

2
.

As above for RP the choice of constant 1/2 here is not signi�cant. We have that P ⊆ ZPP
by the same arguments as before and as this de�nition is symmetric we have ZPP = coZPP.

ZPP = RP ∩ coRP.
Claim 23. ZPP = RP ∩ coRP.

Proof. We prove both inclusions individually, starting with ZPP ⊆ RP ∩ coRP.
Looking at the de�nitions of ZPP and RP we note that we can turn a machine that satis�es

the requirements for ZPP into one for RP by replacing the output dunno with reject. Therefore
any language in ZPP is also in RP. We can make the same argument for coRP by replacing
dunno with accept and so we can conclude that ZPP ⊆ RP ∩ coRP.

To see the reverse inclusion we make a machine M1 satisfying the de�nition for ZPP out of
two other machines M2 and M3 that are machines for a language that satisfy the de�nitions of
RP and coRP respectively. We run M2 �rst accepting if it does, we then run M3, rejecting if it
does. If neither of these things happen we output dunno and so asM2 accepted with probability
≥ 1

2 and M3 rejected with probability ≥ 1
2 our new machine M1 outputs dunno with probability

≤ 1
2 and so satis�es the requirements of ZPP as it never gives an incorrect result. So we have

ZPP ⊇ RP ∩ coRP and can conclude that ZPP = RP ∩ coRP.

16

ZPP as expected poly-time. We can de�ne ZPP in an alternative way.

De�nition 23. A language L is in ZPP if there exists a zero error probabilistic Turing machine
that computes L in expected polynomial time.

To transform a machine satisfying the old de�nition to one satisfying the new one we can
rerun it until it either accepts or rejects. The new machine either accepts or rejects without
error and never returns dunno. In expectation the machine will run twice so as the original
machine ran in polynomial time the new one runs in expected polynomial time.

To go from a new machine to the old we run the new one for at most some polynomial
number of steps, cutting it o� and returning dunno if it takes too long.

Summary:

• RP - bounded error, false negatives but no false positives.

• coRP - bounded error, false positives but no false negatives.

• BPP - bounded error, false negatives and false positives.

• ZPP - no errors, but may answer dunno with bounded probability.

IP. In an interactive proof the prover writes down a sequence of symbols which the veri�er can
check, only true statements can be proved.

De�nition 24. A k-round interaction between two functions f and g on an input x is a sequence
of strings (called the transcript) a1, . . . , ak de�ned by

a1 = f(〈x, r〉)
a2 = g(〈x, a1〉)
a3 = f(〈x, r, a1, a2〉)
...

a2n+1 = f(〈x, r, a1, . . . , a2i〉)
a2n+2 = g(〈x, a1, . . . , a2i+1〉)

...

where r is a random bitstring of length poly(|x|). The output is then outf,g(x) = f(〈x, r, a1, . . . , ak〉).
We assume this output is either 0 or 1. Since r is random, the transcript and output can be
random too.

De�nition 25. A language L is in the class IP is there exists a poly(|x|)-round interaction
between a function V (veri�er) and P (prover) such that

• If x ∈ L then there exists P such that Pr[outV,P (x) = 1] ≥ 2
3 (completeness).

• If x 6∈ L then for all P Pr[outV,P (x) = 0] ≥ 2
3 (soundness).

Additionally we require that V be computable in time poly(|x|).

As with BPP we can use probability ampli�cation to reduce the error probability. Changing
the constant 2/3 in completeness to 1 does not change the class IP. Changing the constant
in soundness to 1 rather than 2/3 results in the class NP (exercise). As only the veri�er is
computationally bounded the prover can use far more computational resources and this is crucial
to the class.

17

IP protocol for Graph-Non-Isomorphism. GRAPH-NON-ISOMORPHISM: Are two given
graphs G1 and G2 not isomorphic.

Claim 24. GRAPH-NON-ISOMORPHISM is in IP.

Proof. First the veri�er generates another graph H by permuting node and edge labels of one
of G1 or G2. The veri�er then asks the prover which of G1 or G2 the graph H was generated
from, if the graphs are isomorphic the prover has no way to tell other than guessing and gets it
wrong with probability 1/2. If however the graphs are not isomorphic the prover can work out
which of G1 and G2 the graph H came from. So if the prover gets it right the veri�er answers
yes otherwise the veri�er answers no.

Here we use the fact probability ampli�cation can be used to decrease the error probability.
Graph isomorphism is not known to be in NP. Here the prover needs to be able to solve graph
isomorphism which is not known to be in P, but the veri�er does run in polynomial time.

dIP = NP. If in the de�nition of IP we do not allow randomization the resulting class, dIP,
is actually equal to NP. This is as the prover can anticipate all the questions a deterministic
veri�er could ask and give all the answers in a single certi�cate after one step.

coNP is contained in IP, arithmetization, and the sumcheck protocol. We now show
that coNP⊆ IP by showing NON-SATISFIABILITY ∈ IP, this works as NON-SATISFIABILITY
is coNP-complete.

To make an interactive proof that a formula Φ is not satis�able we could instead make
an interactive proof that the number of satisfying assignments is exactly K, the naive way of
implementing this method does not work so well however as the veri�er could only catch the
prover lying with probability 1/2n. So we arithmetize the problem by turning the boolean
formula into a polynomial over Fp for some prime p between 2n and 22n. We take variables X to
1−X and X to X, then a clause of literals V1 ∨ V2 ∨ V3 goes to 1− V1V2V3 and we multiply all
clauses together. The resulting polynomial PΦ is of degree 3m, where m is the original number
of clauses. We then have that the number of satisfying assignments is∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}

PΦ(b1, . . . , bn).

We have now reduced to a di�erent problem for which there is a good interactive proof.

Theorem 14. Given a degree d = poly(n) polynomial g(X1, . . . , xn) over Fp for some prime
p ∈ [2n, 22n] and an integer K there is an interactive proof for

K =
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(b1, . . . , bn) (mod p).

Proof. We �rst de�ne a univariate degree d polynomial by

h(X1) =
∑

b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(X1, b2, . . . , bn).

If n = 1 the veri�er checks that g(0) + g(1) = K, if so the veri�er accepts, otherwise it rejects.
If however n > 1 the veri�er asks the prover to send h(X1).

18

IP = PSPACE.

Theorem 15 (Shamir 1990). IP = PSPACE.

Proof idea. IP ⊆ PSPACE: show an appropriate prover can be found in polynomial space.
PSPACE ⊆ IP: Show QSAT ∈ IP.

Program checking. One application of interactive proofs is on the �y error checking for
programs, in this scenario the program is the prover and the veri�er checks in real time that the
output is correct. As the veri�er normally uses less resources than the prover this can typically
be done with small overhead.

Zero knowledge proofs. Zero knowledge proofs are special interactive proofs, ones that can
give the veri�er no additional information, other than the fact the statement is true.

De�nition 26. An interactive proof for L is zero-knowledge if for any veri�er V ∗ there is an
expected polynomial time Turing machine S, called the simulator, that if x ∈ L can produce
the entire transcript of the interaction between P and V ∗ without access to P .

As the transcripts are randomised we want the transcripts produced by the simulator to have
the same distribution as the actual transcripts.

Zero knowledge proof protocol for graph isomorphism.

Communication Complexity. In communication complexity we have two people (Alice and
Bob) who each know some bits of data (x and y) and wish to compute some function of both
pieces of data (f(x, y)). They must communicate following a prearranged protocol which deter-
mines who communicates when and what they send, the cost of a given protocol is the worst

case number of bits that they exchange.

De�nition 27. The communication complexity of a given function f is then the cost of the best
protocol for f .

Computing OR. Say Alice has x = x1x2 · · ·xn, Bob has y = y1y2 · · · yn and they wish to
compute

f(x, y) = x1 ∨ x2 ∨ · · · ∨ xn ∨ y1 ∨ y2 ∨ · · · ∨ yn.

One protocol is for Alice to send x to Bob then for Bob to compute z = f(x, y) and send the
result to Alice. The cost of this protocol is therefore n+ 1 bits.

In fact the natural extension of this approach shows that for any f : X × Y → Z we have
D(f) ≤ dlog |X|e+ dlog |Z|e.

However for this function we can do better by having Alice compute g(x) = x1 ∨ · · · ∨ xn
and send the result to Bob who can then compute the result f(x, y) = g(x) ∨ y1 ∨ · · · ∨ yn and
sends it to Alice. The cost of this protocol is 2 bits.

Computing MEDIAN. Suppose Alice has x ⊆ {2, 4, . . . , 2n} and Bob has y ⊆ {1, 3, . . . , 2n−
1} together they wish to compute the median of x∪y.One protocol is for Alice to send her subset
to Bob (n bits) and for Bob to �nd the median and send it back to Alice (dlog 2ne bits).

This however can be improved by having both Alice and Bob maintain an interval [i, j] ⊂
[1, 2n] which they are sure contains the median f(x, y). First we let k = (i + j)/2, Alice then
computes Lx = |[i, k] ∩ x| and Rx = |[k + 1, j] ∩ x|, similarly Bob computes Ly = |[i, k] ∩ y| and

19

Ry = |[k+ 1, j]∩y|. Alice and Bob then exchange these numbers and so Alice and Bob can each
decide whether f(x, y) is in [i, k] or in [k + 1, j] and then update the interval they are looking
at because of this. They repeat this until the interval they have contains only one element, the
median.

Each iteration of this involves transmitting O(log n) bits cuts the interval in half so the total
cost of this protocol is O((log n)2).

Protocol Trees. A protocol tree is a binary tree that describes a given protocol for Alice and
Bob to compute f : X × Y → Z. It has each internal node v labelled with a function, either
av : X → {0, 1} or bv : Y → {0, 1} here the a functions correspond to Alice communicating the
bit and the b functions mean that Bob communicates. Each node has two children labelled 0
and 1, which teell us what Alice and Bob do as part of the protocol next.

The cost of the protocol is then the length of the tree.

EQUALITY. For equality Alice and Bob have x = x1 · · ·xn and y = y1 · · · yn respectively
and they wish to compute f(x, y) which is 1 if and only if x = y. We can do this by transferring
n + 1 bits, Alice sends x to Bob who computes f(x, y) and sends it back. How close is this to
the communication complexity of this protocol?

Claim 25. D(f) ≥ n.

Proof. Suppose there is a protocol for f that uses at most n − 1 bits. There are then at most
2n−1 di�erent transcripts. Hence there must be two inputs (a, a) and (b, b) with the same
transcript. We then must have that (a, b) and (b, a) have the same transcript again, but this is
a contradiction as the result of (a, a) is di�erent to that of (a, b).

Deciding Palindromes requires quadratic time. Let PAL be the language of all x ∈
{0, 1}∗ that are palindromes. We can decide this language in time O(n2) using a simple Turing
machine.

Claim 26. PAL cannot be decided in under time O(n2) by a Turing machine.

Proof. Assume we have a Turing machine for PAL that leaves some cell i in the range n/3 to
2n/3 (where cells of the tape are indexed starting from the far left) at most k times, we can use
this Turing machine to �nd a O(k) bit communication protocol for EQUALITY. To do this we
write x in the �rst n/3 cells and y in reverse in the cells from 2n/3 to n and �ll the gap in the
middle with zeroes. For the protocol Alice will simulate the Turing machine on cells 0 to i and
Bob simulates the Turing machine on i+ 1 to n. When the head of the machine crosses between
cell i and cell i + 1 Alice and Bob communicate to hand over the simulation, this takes O(1)
bits each time.

We know that EQUALITY requires Ω(n) communication and so k must be Ω(n). Hence
every Turing machine for PAL must leave each cell in the middle range at least Ω(n) times and
so these Turing machines must take Ω(n2) steps.

Protocol trees and combinatorial rectangles.

De�nition 28. For f : {0, 1}n × {0, 1}n → {0, 1} we let Mf be the 2n × 2n matrix of values of

f , i.e. Mf
x,y = f(x, y). A combinatorial rectangle is then a subset of entries in Mf of the form

A×B where A ⊆ {0, 1}n and B ⊆ {0, 1}n. Such a rectangle is monochromatic if all cells in the
rectangle have the same value.

20

If we consider which possible values for x and y Alice and Bob have after the �rst i messages
have been exchanged we can see that the inputs not ruled out form a combinatorial rectangle,
if the protocol ends at this stage the rectangle must be monochromatic as otherwise the result
may not be correct.

So if we let C(f) be the minimum number of monochromatic rectangles that partition Mf

we know that no correct protocol tree for f can have less than C(f) leaves and hence no protocol
for f can use less than log2C(f) bits. So we get the following result.

Theorem 16.
D(f) ≥ log2C(f).

This will allow us to prove lower bounds for the communication complexity of problems.

EQUALITY (again). We now try and determine C(EQ), the minimum number of monochro-
matic rectangles we can partition MEQ into. A rectangle that contains at least two diagonal
entries (the 1s) must contain at least two o� diagonal entries (the 0s), hence cannot be monochro-
matic. So we need a di�erent rectangle for each of the 2n diagonal entries and so as we need at
least one for the zeroes too we have the following result.

Theorem 17.
D(EQ) ≥ dlog2(2n + 1)e ≥ n+ 1.

DISJOINTNESS. The function DIS(X,Y) is de�ned to be 1 if and only if the bitwise OR
of x and y equals 0.

INNER PRODUCT and the rank technique.

Theorem 18.
C(f) ≥ 2 · rank(Mf)− 1.

Proof.

NP-hard. We now look at how we can express the complexity of non-decision problems.

De�nition 29. A problem A is NP-hard if for every L ∈ NP, L reduces (via a cook reduction)
to A in polynomial time.

Example. Finding a minimum vertex cover, �nding a Hamiltonian cycle and the halting prob-
lem are all NP-hard.

Note that an NP-hard problem can be much harder than anything in NP.

Approximation Algorithms. If we want to solve NP-hard problems we probably have to
sacri�ce one of three things:

1. Solving the problem optimally.

2. Solving the problem in polynomial time.

3. Solving arbitrary instances of the problem.

We now look at what we can do if we sacri�ce 1, but not 2 or 3.

De�nition 30. An α-approximation algorithm for an optimization problem is a polynomial
time algorithm and will �nd a solution that is within α ratio of the optimal solution for an
arbitrary instance of the problem.

21

2-approximation for MAX-SAT. MAX-SAT: Find an assignment that maximises the num-
ber of satis�ed clauses for a formula Φ. We denote this maximum by M(Φ).

The decision version of this problem (is M(Φ) > k) is NP-complete.

Claim 27. There is a 2-approximation algorithm for MAX-SAT that �nds the number of clauses
satis�ed by setting all variables to true and the number satis�ed when all variables are false and
returns the maximum of these two numbers.

Proof. Say Φ has c clauses in total. Any clause not satis�ed when all variables are true must
be satis�ed when all variables are false. Therefore summing the number of satis�ed clauses in
each of these assignments must result in a number larger than c. Hence the maximum of the
two numbers must be at least c/2 and so the algorithm given is a 2-approximation.

2-approximation for Load Balancing (List Scheduling). In the load balancing problem
we are given m identical machines and n jobs to run on them, each job j has a processing time
tj . A job must be run from start to �nish on one machine and a machine can do at most one
job at a time. We de�ne the load of a machine to be the sum of the processing times of the jobs
assigned to it. We also say that the makespan is the maximum load on any machine. The task
is then to minimise the makespan.

There is a greedy algorithm for this problem that �xes some ordering on the jobs and then
goes through the jobs one by one assigning each job to the machine that has the least load so
far.

Theorem 19 (Graham, 1966). The greedy algorithm is a 2-approximation.

Proof. First observe that the optimal makespan L∗ must be greater than the maximum process-
ing time for any job as this job must be processed by some machine.

We also have that the optimal makespan is at least

1
m

∑
j

tj

as the one machine must do at least 1/m times the total work.
Now consider the machine i with the largest load after the greedy algorithm has run and let

j be the problem last assigned to it. When job j was assigned to machine i it must have had
the least load and so we have that its load before Li − tj ≤ Lk for all 1 ≤ k ≤ m. So summing
these inequalities and dividing by m gives that

Li − tj =
1
m

∑
k

Lk =
1
m

∑
k′

tk′ ≤ L∗.

And so
Li = (Li − tj) + tj ≤ 2L∗.

This analysis is tight as using the right jobs we can make the greedy algorithm arbitrarily
bad up to this limit.

22

3/2-approximation for Load Balancing (LPT). One improvement we can make to this
greedy algorithm is called the longest processing time (LPT) rule, we �rst sort the jobs in
descending order of processing time and then we run the greedy list scheduling algorithm. First
note that if there are at most m jobs then list scheduling is optimal as each job can go on its
own machine.

Lemma 2. If there are more than m jobs then after ordering the ti in descending order we have
L∗ ≥ 2tm+1.

Proof. Consider the �rst m + 1 jobs t1, . . . , tm+1. As we have ordered the jobs each of these
takes at least time tm+1. The pidgeonhole principle then gives us that some machine has two
jobs assigned to it and hence has load at least 2tm+1.

Theorem 20. The LPT rule gives us a 3/2-approximation algorithm for load balancing.

Proof. The approach is the same as for the above approximation

Li = (Li − tj) + tj ≤
3
2
L∗.

However this is not tight and we have the following theorem.

Theorem 21 (Graham, 1969). The LPT rule gives us a 4/3-approximation algorithm for load
balancing.

This is essentially tight as we can get arbitrarily bad examples up to this limit.

O(log n)-approximation for Set Cover. SET-COVER: Given a set U of elements, a collec-
tion S1, S2, . . . , Sm of subsets of U , �nd the smallest collection of sets whose union is equal to
U .

A natural greedy algorithm is to repeatedly include the set containing the most uncovered
elements until all are covered.

Theorem 22. This greedy algorithm is a O(log n)-approximation for SET-COVER.

Proof. Let x∗ be the value of the optimal solution. Then let nt be the number of elements not
covered after t iterations, all of these elements can be covered by x∗ many sets so some unused
set must cover at least nt/x

∗ of the nt elements. So

nt+1 ≤ nt −
nt
x∗

= nt

(
1− 1

x

)
and hence

nt ≤ n0

(
1− 1

x∗

)t
= n

(
1− 1

x∗

)t
< n · e−t/x∗ .

So for t ≥ x∗ · log(n) we have nt < 1 and no elements are left.

2-approximation for Vertex Cover. In weighted vertex cover we are given an undirected
graph G = (V,E) with vertex weights vi ≥ 0 and have to �nd a minimum weight subset of nodes
S such that every edge is incident to at least one vertex in S. We can use the so called pricing

method to make a 2-approximation algorithm for weighted vertex cover.

23

PTAS and FPTAS.

De�nition 31. A polynomial time approximation scheme (PTAS) is a family of algorithms
such that for any ε > 0 there is an algorithm Aε in the family with Aε a (1 + ε)-approximation
algorithm.

A PTAS can give us an arbitrarily good solution but trades o� accuracy for time as it does
not have to be polynomial in 1/ε.

De�nition 32. A fully polynomial time approximation scheme (FPTAS) is a PTAS where the
algorithms are also required to be polynomial in 1/ε.

An FPTAS for Knapsack. In the knapsack problem we have n objects and a knapsack.
Each item has some value vi > 0 and weight wi > 0 and we can carry up to weight W . The goal
is to �ll the knapsack to maximise the total value.

We can de�ne the decision problem KNAPSACK by: Given a �nite set X, nonnegative
weights wi, nonnegative values vi, a weight limit W and a target value V is there a subset
S ⊆ X such that

∑
i∈S wi ≤W and

∑
i∈S vi ≥ V .

Claim 28. SUBSET-SUM ≤p KNAPSACK.

Proof. Given an instance (u1, . . . , un, U) of SUBSET-SUM, we create a KNAPSACK instance
by letting vi = wi = ui and V = W = U .

This along with the observation that KNAPSACK is in NP gives that KNAPSACK is NP-
complete.

There is a dynamic programming approach to the knapsack problem which is obtained by
letting OPT(i, w) be the maximum value subset of items 1, . . . , i with weight limit w, this gives
the recurrence

OPT(i, w) =


0 if i = 0,
OPT(i− 1, w) if wi > w,

max{OPT(i− 1, w), vi + OPT(i− 1, w − wi)} otherwise.

The running time of the algorithm that uses this approach is O(n ·W) where W is the weight
limit, this is not polynomial in input size!

We can try another dynamic programming method by letting OPT(i, v) be the minimum
weight subset of items 1, . . . , i with value exactly v, this gives the recurrence

OPT(i, v) =


0 if v = 0,
∞ if i = 0, v > 0,
OPT(i− 1, v) if vi > v,

min{OPT(i− 1, v), wi + OPT(i− 1, v − vi)} otherwise.

The running time of this approach is O(n · V ∗) = O(n2vmax) where V ∗ is the optimal value
which is the maximum v such that OPT(n, v) ≤ W . This is still not polynomial in the input
size.

Linear Programming based approximation algorithm for Weighted Set Cover.

24

