
SQUARE ROOT TIME COLEMAN INTEGRATION ON
SUPERELLIPTIC CURVES

ALEX J. BEST

Abstract. Since Kedlaya first introduced a ?-adic algorithm for computing
zeta functions of hyperelliptic curves, many related algorithms for comput-
ing both zeta functions and Coleman integrals on various classes of alge-
braic curves have been studied. These algorithms compute in the Monsky-
Washnitzer cohomology or the rigid cohomology of the curve to determine
the action of Frobenius on this cohomology.

We give a new algorithm for explicitly computing Coleman integrals on
superelliptic curves over unramified extensions of ?-adic fields. The runtime
is softly linear with respect to the square root of the size of the residue field,
bringing the runtime in line with that of the corresponding zeta function
algorithms. We also describe the implementation of this algorithm in Nemo,
a newpackage for the Julia programming language, which adds functionality
for computational number theory. We compare Nemo with other systems in
use in this area.

1. Introduction

In [18], Kedlaya introduced an algorithm using ?-adic cohomology to com-
pute the zeta function of a hyperelliptic curve defined over a finite field. Since
then, there have been advances and generalisations of this method in (at
least) three different directions. Firstly [13], [14] and [22, 23] have introduced
variants that work on more general curves, respectively; superelliptic curves,
cyclic covers of P1 and general curves with a map to P1. Secondly, Harvey [16]
introduced a variant that runs in time quasilinear in√?. Finally, Balakrishnan-
Bradshaw-Kedlaya [1] gave an algorithm to compute ?-adic Coleman integrals
on curves over the ?-adics. A large part of the runtime of this algorithm is
taken up by computing explicit relations in Monsky-Washnitzer cohomology,
the same core procedure used in Kedlaya’s algorithm.

In [20], Minzlaff showed that the first and second of these could be com-
bined; that is, there exists an algorithm that computes the zeta function of
superelliptic curves over F?= in $̃(?1/2) time. Additionally the paper [7] gives
an algorithm based on the work of Balakrishnan-Bradshaw-Kedlaya and of
Harvey that computes Coleman integrals on hyperelliptic curves over Q? in
time quasilinear in √?.

In this paper, we incorporate thework ofMinzlaff into that of [7]. Let 0, 1 be
coprime integers with 0 > 1, 1 > 2, let ? be a prime and @ = ?= , take ℎ ∈ Z@[G]
a squarefree polynomial of degree 1, and consider the curve

�/Z@ : H0 = ℎ(G).

Let 6 = (0 − 1)(1 − 1)/2 be the genus of �. Let " be the matrix of @-power
Frobenius acting on �1

dR(� ×Z@ Q@) (via comparison with �1
cris(� ×Z@ F@ ,Q@)),

in terms of the basis � = {$8 , 9 = G
8 dG/H 9}

8=0,...,1−2, 9=1,...,0 and # ∈ N≥1 be such
that both � and points %, & ∈ �(Q?=) are known to precision ?# , and assume
? > (0# − 1)1. Then, if multiplying two < × < matrices requires $̃(<$) ring
operations we have:

1

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 2

Theorem 1.1 The vector of Coleman integrals (
∫ &

%
$)$∈� can be computed in time

$̃
(
6$
√
?=#5/2 + #464=2 log ?

)
to absolute ?-adic precision # − E?(det(" − �)).

The work of Balakrishnan-Tuitman [4] has shown that there exists an al-
gorithm to compute Coleman integrals on general curves defined over ?-adic
fields. This article shows that fast Coleman integration algorithms are not
limited just to the hyperelliptic case.

We also take the opportunity to work out the practical details of the theory
without restricting to the case of monic ℎ(G) or curves only defined over Q? ;
instead we work over arbitrary unramified extensions of Q? throughout.

The algorithms described in this paper have been implemented using the
Nemo computer algebra system [12], which is a specialised package for num-
ber theory and related mathematics for the programming language Julia [8].
This is a relatively new system for computing in commutative algebra, number
theory and group theory that is based on several low-level libraries such as
MPIR, Flint, Arb and Antic. A secondary goal of this paper is therefore to
compare the performance of the various computer algebra systems available
to mathematicians for running this type of computation. The implementa-
tion also allows for ℎ to be non-monic and the curve � to be defined over an
unramified extension of Q? .

1.0.1. Acknowledgements. This work was supported by Simons Foundation
grant #550023 and a Hariri Institute Graduate Fellowship.

I would like to thank Jennifer Balakrishnan for many valuable pieces of ad-
vice regarding this project and her constant encouragement. Tommy Hofman
has patiently answered many of my questions about Nemo and Hecke and
has also improved the Julia implementation, making it both more idiomatic
and faster; I am very grateful for all of his help. I would also like to thank the
anonymous referees for their helpful feedback.

2. Set-up and notation

The major outline of the algorithm presented in this paper follows that of
[7], adapted to the case of a (tamely) superelliptic curve: these will be smooth
projective curves � of a specific form, which will be defined over the ring of
integers of an unramified extension of Q? (such extensions will be denoted as
Q@ , where @ = ?= is the cardinality of the residue field). The present work can
be read in conjunction with [7].

Wewill denote by � theWitt vector Frobenius on Z@ and Q@ . The restriction
of being superelliptic for us means that the curve should be given by an affine
equation of the form

H0 = ℎ(G), deg(ℎ) = 1, ℎ squarefree

where gcd(0, 1) = 1 and 0 > 1, 1 > 2. Tameness means that, in addition, we
assume ? - 0, though this will be implied by our later assumption (2.1). We
will write ℎ = �G1 + ℎ̃ with deg ℎ̃ < 1. We can view the projective curve �
as living inside of the weighted projective space P(0, 1, 1), where there is a
unique point at infinity on the curve, denoted ∞. As ℎ might not be monic,
this will be of the form (�C : �B : 0) for some B, C ∈ Z such that 0B − 1C = 1. A
superelliptic curve of this form will have genus

6 =
(0 − 1)(1 − 1)

2 .

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 3

Each set of points � ⊆ �(Q@) that is the full preimage of some G ∈ �F@ (F@)
under the reduction map is known as a residue disk.

Such a superelliptic curve comes equipped with a natural map to P1 given
by

(G : H : I) ↦→ (G : I0).
Wewill often be interested in the points where this map is branched (i.e. those
with H = 0), and call them the branch points of this curve. We also call any
residue disk containing one of these points a branch disk.

These play the analogous role to that of the Weierstrass points in the hy-
perelliptic case, but we prefer to avoid calling them Weierstrass points as the
notion of aWeierstrass point in algebraic geometry would include non-branch
points in general, see [21, p. 3372].

We will often work with the affine open subset of the curve obtained by
removing all branch points (including∞), writing

� = Z@[G, H, H−1]/(H0 − ℎ(G)).
This affine space is then

Spec� = * ⊆ �.
We denote by �† the weak completion of �; this is the ring of formal power
series

�† =

{ ∞∑
8=−∞

'8(G)
H 8

: '8 ∈ Z@[G]deg≤1−1 , lim inf
|8 |→∞

E?('8)
|8 | > 0

}
.

We will consider the module of 1-forms

Ω1
�†
= �† dG ⊕ �† dH/(0H0−1 dH − ℎ′(G)dG)),

and the exterior derivative map is denoted

d: �† → Ω1
�†
.

We also use �loc to denote the Q@-algebra of Q@-valued functions on �(Q@)
that are given by a convergent power series on each residue disk and are
Gal(Q@/Q@)-equivariant. Note that �† ↩→ �loc. The Monsky-Washnitzer
cohomology of � is then defined to be �1

MW(�) = Ω
1
�†
/d(�†).

From now on, we make the assumption that

(2.1) ? > (0# − 1)1;
this simplifies the analysis of denominators appearing later in the algorithm.
This assumption is likely completely removable without affecting the asymp-
totic complexity, or at least smaller ? may be used by doing a more involved
precision analysis to ensure the right amount of extra precision is used.

3. Coleman integration

Coleman integration is an integration theory that is in particular defined
for 1-forms on curves, viewed as ?-adic analytic spaces. This theory has been
applied to various questions in the arithmetic of curves over number fields
and ?-adic fields. These applications include provably determining the set
of rational points on a curve using Chabauty-Coleman(-Kim) [19, 3] and de-
termining torsion points on curves. For background on Coleman integration,
especially the details of the action of Frobenius when = > 1, we refer to [5].

Coleman integration for curves is computable in many cases [6, 1, 4]; that
is, given a base point and a 1-form to some finite ?-adic precision, the corre-
sponding integral can be computed to some (smaller) precision. This can be

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 4

done inmany instances of interest to arithmetic geometers. Moreover these al-
gorithms performwell in practice, returning an answer in examples of interest
to mathematicians in an acceptable real-world runtime.

Coleman integration requires the choice of a lift of Frobenius, that is a map

) : �† → �†

such that the reduction of this map to F@
)̄ : �†F@ → �†F@

is the ?-power Frobenius map and)(:) = �(:) for all : ∈ Z@ . There are
many possibilities for such a lift in general; in this paper, we will make an
explicit choice of a lift for superelliptic curves that allows us to analyse its
action in detail. It is therefore important to note that the theory is known to
be independent of the choice of).

We define the action of) on �(Q@) via

(3.1))(G0 , H0) = (�−1()(G)(G0 , H0)), �−1()(H)(G0 , H0))).
On functions 5 : �(Q@) → Q@ the action of) is then

(3.2))(5)(%) = � 5 ()(%)).
The key theorem proved by Coleman describing this integration theory can

be stated in our setting as follows.

Theorem 3.1 (Coleman). There is a unique (up to a global constant of integration)
Q@-linear integration map

∫
: Ω1

�†
⊗ Q@ → �loc satisfying the following:

(1) Frobenius equivariance:
∫
()$) =)

(∫
$
)

(2) the fundamental theorem of calculus: d ◦
∫
is the canonical inclusion

Ω1
�†
⊗ Q@ → Ω1

loc

(3) and
∫
◦d is the natural map �† → �loc/(constant functions).

Given points %, & ∈ �(Q@) the definite integral
∫ &

%
$ is then defined as

(∫
$
)
(&)−(∫

$
)
(%), which is a well-defined function of %, &.

Balakrishnan-Bradshaw-Kedlaya [1] describe how, using these properties,
the computation of Coleman integrals of 1-forms on a curve can be broken up
into two parts:

(1) The computation of tiny integrals between points in the same residue
disk, using local coordinates on the curve.

(2) The evaluation of exact forms appearing when reducing Frobenius
pullbacks of differentials in Monsky-Washnitzer cohomology.

In the remainder of this section, we give a description of local coordinates that
can be used to compute tiny integrals and describe how this method works in
our setting in more detail, and in the next section we describe a procedure for
evaluating the relevant exact forms.

3.0.1. Local coordinates on superelliptic curves. In order to compute Coleman
integrals locally on a ?-adic disk, we need an explicit local parametrisation of
such a disk. To do this we apply Newton’s method/Hensel’s lemma; to find
a power series solution G(C) to a polynomial �(G(C)), we start with some G0(C),
and iterate G8(C) = G8−1(C) − �(G8−1(C))/�′(G8−1(C)). The limiting power series is
the desired solution; applying this directly with �(G(C), H(C)) = H(C)0 − ℎ(G(C))
in the G or H variable leads to the next results, giving local coordinates around
a finite branch point or non-branch point.

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 5

Proposition 3.2 Local coordinates around a point not in a branch disk. Let
% ∈ �(Q@) be a point not in a branch disk, represented as % = (-,.) on H0 = ℎ(G).
Then local coordinates (G(C), H(C)) around % can be given by

G(C) = - + C,
H0(C) = .,

H8(C) =
1
0

(
(0 − 1)H8−1(C) +

ℎ(G(C))
H8−1(C)0−1

)
, and

H(C) = lim
8→∞

H8(C).

Proof. We may simplify

H8(C) = H8−1(C) −
H8−1(C)0 − ℎ(G(C))

0H8−1(C)0−1 = H8−1(C) −
1
0
H8−1(C) +

ℎ(G(C))
0H8−1(C)0−1

=
1
0

(
(0 − 1)H8−1(C) +

ℎ(G(C))
H8−1(C)0−1

)
.

�

Proposition 3.3 Local coordinates around a point in a finite branch disk. Let
% ∈ �(Q@) be a point in a non-infinite branch disk, represented as % = (-,.) on
H0 = ℎ(G). Then local coordinates (G(C), H(C)) around % can be given by

H(C) = . + C,
G0(C) = -,

G8(C) = G8−1(C) +
H(C)0 − ℎ(G8−1(C))

ℎ′(G8−1(C))
, and

G(C) = lim
8→∞

G8(C).

Proof. Direct application of Newton’s method. �

For the infinite disk the choice of uniformiser is less obvious and several
different choices can be made. For instance, one could take a local coordinate
C at∞ to be such that G = C−0 . Then given a point (G0 , H0) in the same residue
disk as ∞, to find the value of the parameter C that gives (G0 , H0), we can take
each of the possible roots 0

√
G0 and check which of these give H0.

Instead, we take C to be an appropriate monomial in G, H. This has the
advantage that, to find the value of the local coordinate for a point (-0 , .0),
we may compute the corresponding coordinate C0 using only multiplication
of the values -0 , .0. Precisely, we do the following:

Proposition 3.4 Local coordinates around ∞. Let ∞ be the point at infinity on
�. Then local coordinates (G(C), H(C)) around ∞ can be given as follows. Let ℓ , : be
such that 1ℓ − 0: = 1. Set

G0(C) = �−ℓ C−0 ,

H0(C) = �−: C−1 ,

�(G, H) =
(
−ℎ′(G) 0H0−1

−:G:−1 ℓ CHℓ−1

)
,(

G8(C)
H8(C)

)
=

(
G8−1(C)
H8−1(C)

)
− �(G8−1(C), H8−1(C))−1

(
CH8−1(C)ℓ − G8−1(C):
H8−1(C)0 − ℎ(G8−1(C))

)
.

Then
G(C) = lim

8→∞
G8(C),

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 6

H(C) = lim
8→∞

H8(C).

Proof. Using the assumption that gcd(0, 1) = 1, we may find ℓ , : such that
1ℓ − 0: = 1. We now find G(C), H(C) such that C = G(C):/H(C)ℓ . To do this,
we solve CH(C)ℓ = G(C): and H(C)0 = ℎ(G(C)) simultaneously using multivariate
Newton’s method; this gives the recurrence stated. �

When working with hyperelliptic curves, one can use the hyperelliptic
involution to avoid computing integrals from infinity to points in branch disks,
where the exact forms that would need to be evaluated fail to converge. We
can also avoid this issue when working with superelliptic curves as follows:

Proposition 3.5 Fix � to be the automorphism of the cover

�
G−→ P1

given by
� : � → �

(G, H) ↦→ (G, �0H)

for some fixed primitive 0-th root of unity �0 ∈ Q@ . If %, & are branch points and $
is a differential for which �∗$ = �

�
0$ for some � ∈ {1, . . . , 0 − 1}, then∫ %

&

$ = 0.

Proof. We have ∫ &

%

$ =

∫ �&

�%
$ =

∫ %

&

�∗$ = �
�
0

∫ &

%

$.

�

Corollary 3.6 Let % be a point in a branch disk. We have for any branch point &∫ ∞

%

$ =

∫ &

%

$.

Choosing & to be the branch point in the same disk as % we can therefore compute∫ ∞

%

$

by expanding only in local coordinates around &.

3.0.2. The action of @-power Frobenius. We now assume that we know the action
of) on Ω1

�†
in the sense that we have the following:

(1) A fixed basis ($8)8 of �1
",
(�), thought of as a column vector

(2) a matrix of Frobenius ",
(3) and a vector of primitives (58)8 such that,

()∗$8)8 = "($8)8 + (d 58)8 ∈ (Ω1
�†
)26 .

This data is what will be returned by (our generalisation of) Kedlaya’s algo-
rithm.

The next lemma calculates the action of)∗= on Ω1
�†

from this data; this is
consistent with [2, Rmk. 1] but appears to be different from [1, Rmk. 12].

Lemma 3.7 The action of a power of Frobenius on the basis differentials is given by

)∗=($8)8 =
∑

C==−1,...,0

(∏
B==−1,...,C+1

)B(")
)
)∗C(d 58)8 +

∏
B==−1,...,0

)B(")($8)8 .

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 7

Proof. By induction on =, we will apply the relation
)∗($8)8 = (d 58)8 +"($8)8 .

The base case
)∗0($8)8 = 0 + 1 · ($8)8

holds trivially (as does the = = 1 casewhich is simply the fundamental relation
above), and we have

)∗=+1($8)8 =)∗

(∑
C==−1,...,0

(∏
B==−1,...,C+1

)B(")
)
)∗C(d 58)8

)
+)∗

(∏
B==−1,...,0

)B(")($8)8

)
=

∑
C==−1,...,0

(∏
B==−1,...,C+1

)B+1(")
)
)∗C+1(d 58)8 +

∏
B==−1,...,0

)B+1("))∗ (($8)8)

=

∑
C==−1,...,0

(∏
B==−1,...,C+1

)B+1(")
)
)∗C+1(d 58)8

+
∏

B==−1,...,0
)B+1(")(d 58)8 +

∏
B==−1,...,0

)B+1(")"($8)8

=

∑
C==−1,...,0

(∏
B==−1,...,C+1

)B+1(")
)
)∗C+1(d 58)8

+
∏

B==−1,...,0
)B+1(")(d 58)8 +

∏
B==,...,0

)B(")($8)8

=

∑
C==−1,...,0

(∏
B==,...,C+2

)B(")
)
)∗C+1(d 58)8 +

∏
B==−1,...,0

)B+1(")(d 58)8 +
∏

B==,...,0
)B(")($8)8

=

∑
C==,...,0

(∏
B==,...,C+1

)B(")
)
)∗C(d 58)8 +

∏
B==,...,0

)B(")($8)8 .

�
We therefore have(∫ &

%

$8

)
8

=

(∫)=%

%

$8 +
∫)=&

)=%
$8 +

∫ &

)=&
$8

)
8

=

(∫)=%

%

$8 +
∫ &

)=&
$8

)
8

+
∑

C==−1,...,0

(∏
B==−1,...,C+1

)B(")
) (∫ &

%

)∗C d 58
)
8

+
∏

B==−1,...,0
)B(")

(∫ &

%

$8

)
8

=

(∫)=%

%

$8 +
∫ &

)=&
$8

)
8

+
∑

C==−1,...,0

(∏
B==−1,...,C+1

)B(")
) (
58()C&) − 58()C%)

)
8

+
∏

B==−1,...,0
)B(")

(∫ &

%

$8

)
8

,

hence (
1 −

∏
B==−1,...,0

)B(")
) (∫ &

%

$8

)
8

=(3.3)

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 8

(∫)=%

%

$8

)
8

+
(∫ &

)=&
$8

)
8

+
∑

C==−1,...,0

(∏
B==−1,...,C+1

)B(")
) (
58()C&) − 58()C%)

)
8
.

(3.4)

So computing
(∫ &

%
$8

)
8
reduces to computing (3.4) and inverting the matrix

1 −∏
B==−1,...,0)

B(").
Thus in order to compute theColeman integrals between twopoints%, &we

need to know" and evaluations of)C 58 at the points %, & for C = 0, . . . , = − 1.
From (3.1), (3.2) we see that to compute each ()C 58)(%) we need to compute
58()C%) and apply �C .

Remark 3.8 This makes the Teichmüller point variant of Coleman integration
algorithms more appealing when working over extensions. In that approach,
the Teichmüller point is used in each non-branch disk as a base point and all
integrals are computed in two parts: an integral to the Teichmüller point and
then tiny integrals for reaching the rest of the disk. The advantage is that all
of the points)C% will be equal for a Teichmüller point %, hence also the values
58()C%), so fewer evaluations of 58 need to be carried out. We do not take this
approach in the current implementation, however cf. Remark 6.1.

4. Reductions in cohomology

We now describe the reduction process. The foundation for this is the
work of Minzlaff in [20], which gives explicit maps, reducing elements ofΩ1

�†

to cohomologous ones with smaller G- or H-degree. To compute Coleman
primitives, we must, in addition, record the exact forms subtracted to obtain
these cohomologous elements and determine a recurrence that computes the
evaluation of the sum of these forms at the end of the reduction process.

We consider the following spaces of differentials for B, C ∈ Z and B ≥ −1:

,B,C = {G 8H−9 · GBH−0C dG : 0 ≤ 8 ≤ 1 − 2, 1 ≤ 9 ≤ 0 − 1},

and for B = −1 we take only the subspace with 8 ≥ 1.
These differentials are such that ,−1,0 is spanned by the basis chosen in

Theorem 1.1.
We may decompose,B,C into eigenspaces under the action of the superel-

liptic automorphism � to obtain

,B,C =,
1
B,C ⊕ · · · ⊕, 0−1

B,C ,

where
,

�
B,C = {G

8H−� · GBH−0C dG : 0 ≤ 8 ≤ 1 − 2}.
As the subspaces indexed by � are all preserved in everything that follows,

we consider each 1 ≤ � ≤ 0 − 1 independently from now.
We may choose a lift of Frobenius on �̃ by letting � : Q@ → Q@ be the Witt

vector Frobenius and setting
�(G) = G?

as shown in [20, Sec 4.] this forces us to take

�(H) = H?
∞∑
:=0

(1
0

:

)
(�(ℎ) − ℎ?):

H0?:
.

Minzlaff also determined an approximation of the action of Frobenius on the
basis differentials. Specifically we have

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 9

Lemma 4.1 ([20, Prop. 4.1]). If we let �(:)A be the coefficient of GA in ℎ: and

�:,A, 9 = ?�(�(:)A)
#−1∑
ℓ=:

(−1)ℓ+:
(
− 9

0

ℓ

) (
ℓ

:

)
∈ Z@ ,

then the reduction in cohomology of the 1-form
#−1∑
:=0

1:∑
A=0

�:,A, 9G
?(8+A+1)−1H−?(0:+9) dG

is congruent to that of �(G 8 dG/H 9)modulo ?# . Moreover the exact forms that reduce
these respective cohomology classes to the cohomologous linear combination of our
chosen basis elements are also congruent modulo ?# .

Proof. We denote by �� the divisor � r* . Then Minzlaff [20, Lem. 3.4] shows
that for any $ ∈ Ω�/Z@ with pole divisor

($)∞ ≤ <��,
we have

?

⌊
log? (<−1)

⌋
�($) ∈ Ω�/Z@ .

However the proof of this statement given there shows that in fact if
$ = �($) + d�

then we also have
?

⌊
log? (<−1)

⌋
� ∈ �.

As in the proof of [20, Prop. 4.1], we apply this to the series

�(G 8 dG/H 9) =
∞∑
:=0

?

(
− 9

0

:

)
(�(ℎ) − ℎ?):G?(8+1)−1H−?(0:+9) dG,

and writing (: for the :th summand of the infinite sum on the right, we need
to show that if : ≥ # and

(: = �((:) + d�: ,
then �((:) ≡ 0 (mod ?#) and �: ≡ 0 (mod ?:). Fixing : ≥ # , we can write

(: = ?
:+1
(:+1)?−1∑
ℓ=0

5ℓ (G)H<ℓ dG, where <ℓ = −?(0: + 9) + 0ℓ

with 5ℓ ∈ Z@[G]deg≤1−1.
So we apply the above integrality statement to each

5ℓ (G)H<ℓ dG.
The same power of ? used by Minzlaff is therefore sufficient. �

The reductionproceeds in two stages, first horizontal reduction that reduces
the index B and hence the power of G appearing in the 1-forms and leaves us
with forms in ,−1,C to consider. Then vertical reduction is performed that
reduces the power of H appearing and reduces all forms to,−1,0.

We present the vertical reduction step first however, as although it takes
place after the horizontal steps when the algorithm is executed, knowing
the form of the vertical reduction ahead of time allows us to make some
simplifications in the description of the horizontal reduction.

4.0.1. Vertical reduction. Because ℎ is squarefree and � is a unit, we can find for
each 8 = 0, . . . , 1 − 2, a pair of polynomials '8 , (8 ∈ Z@[G] with deg'8 ≤ 1 − 2

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 10

and deg (8 ≤ 1 − 1, such that

G 8 = '8ℎ + (8ℎ′.
We fix a choice of such polynomials now.

The vertical reduction proceeds by reducing a 1-form in ,�
−1,C to a coho-

mologous one in,�
−1,C−1 using the following lemma:

Lemma 4.2 Vertical reduction. We have
G 8H−0C−� dG − −0

0C + � − 0 d((8(G)H−0C−�+0)

=
(0C + � − 0)'8(G) + 0(′8(G)

0C + � − 0 H−0(C−1)−� dG ∈,�
−1,C−1.

Proof. Via our choice of '8 , (8 we have that
G 8H−0C−� dG = ('8(G)ℎ(G) + (8(G)ℎ′(G)) H−0C−� dG,

and also that
d((8(G)H−0C−�+0) = (′8(G)H

−0C−�+0 dG + (−0C − � + 0)(8(G)H−0C−�+0−1 dH

= (′8(G)H
−0C−�+0 dG + (−0C − � + 0)1

0
(8(G)H−0C−�ℎ′(G)dG

so
−0

0C + � − 0 d((8(G)H−0C−�+0) =
−0

0C + � − 0 (
′
8(G)H

−0C−�+0 dG+(8(G)H−0C−�ℎ′(G)dG,

and the above equality holds. �

This reduction is a Q@-linear map

,
�
−1,C →,

�
−1,C−1.

To express it inmatrix form,we denote the coefficients of'8 by A8 , 9 and likewise
B′
8 , 9

for those of (′
8
, each '8 and (′8 is of degree at most 1 − 2.

To compute evaluations of the primitives for Coleman integration, we aug-
ment these linear maps to also include a vector of length !, that holds the data
of evaluations of the exact form subtracted so far at several points %8 ∈ �(Q@),
8 = 1, . . . , !. We assume that all of these points do not lie in a branch disk
(including the infinite disk). This implies that G(%8) and H(%8) are both integral
for all 8 and that H(%8) is a unit in Z@ . So we have linear maps

,
�
B+1,C ×Q!

@ →,
�
B,C ×Q!

@ .

Doing this as described gives a matrix whose entries are non-linear functions
of the index C, due to the presence of the term H−0C+0−� in the exact form

−0
0C + � − 0 (8(G)H

−0C−�+0 .

To remedy this, weuse the approach of [7] andmodify the reductionprocess
to obtainmatriceswith entries linear functions of C, by factoring out the powers
of H in the exact form. As we reduce monomials from,

�
B,C →,

�
−1,C , we can let

each later reduction step multiply the exact form by G. This results in a total
power of GB when the reduction finishes in,�

−1,C , which is the same power of
G as in the exact form obtained from,

�
B+1,C →,

�
B,C .

Let ��
+
(C) be the scalar 0C + �− 0 ∈ Z@[C] and define a (1 − 1+ !) × (1 − 1+ !)

matrix
'
�
+
(C) = "�

+
(C)��

+
(C)−1,

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 11

where "�
+
(C) is the matrix

©«

�
�
+
(C)A0,0 + 0B′0,0 · · · �

�
+
(C)A1−2,0 + 0B′1−2,0

...
. . .

...

�
�
+
(C)A0,1−2 + 0B′0,1−2 · · ·�

�
+
(C)A1−2,1−2 + 0B′1−2,1−2

−0(0(G(%1))H(%1)−�+0 · · · −0(1−2(G(%1))H(%1)−�+0 H(%1)−0�
�
+
(C) · · · 0

...
. . .

...
...

. . .
...

−0(0(G(%!))H(%!)−�+0 · · · −0(1−2(G(%!))H(%!)−�+0 0 · · · H(%!)−0�
�
+
(C)

ª®®®®®®®®®®¬
.

(4.1)

4.0.2. Horizontal reduction. We now describe the horizontal reduction process.
The horizontal reduction proceeds by reducing a 1-form in ,

�
B+1,C to a

cohomologous one in,�
B,C using the following lemma:

Lemma 4.3 Horizontal reduction. We have

G1+B−1H−0C−� dG − d
(

0

0B� − (0C − 0 + �)�1 G
BH−0C+0−�

)
= −

0(B ℎ̃ − 1
0 (0C − 0 + �)Gℎ̃′)

0B� − (0C − 0 + �)�� GB−1H−0C−� dG ∈,�
B,C .

Proof. We directly compute
d(GBH−0C+0−�) =BGB−1H−0C+0−� dG − (0C − 0 + �)GBH−0C+0−�−1 dH

=

(
BGB−1ℎ − 1

0
(0C + � − 0)GB ℎ′(G)

)
H−0C−� dG

=

(
BGB−1(�G1 + ℎ̃) − 1

0
(0C + � − 0)GB(�1G1−0 + ℎ̃′)

)
H−0C−� dG

=

(
B(�G1 + ℎ̃) − 1

0
(0C + � − 0)G(�1G1−0 + ℎ̃′)

)
GB−1H−0C−� dG.

Therefore, by subtracting 0
0B�−(0C−0+�)1� d(GBH−0C+0−�) from G1GBH−0C−� dG, the

remaining terms are all as stated, and of lower degree so that they lie in,�
B,C .
�

As above we augment our linear maps

,
�
B+1,C →,

�
B,C

to also include a vector of length ! that holds the data of evaluations of the
exact form subtracted so far at %8 ∈ �(Q@), 8 = 1, . . . , ! not in the branch disks:

,
�
B+1,C ×Q!

@ →,
�
B,C ×Q!

@ .

Doing this gives a matrix whose entries are non-linear functions of the index,
due to the presence of the term GB in the exact form

−0
�((0C − 0 + �)1 − 0B)G

BH−0C+0−�.

Instead wemultiply the reduction evaluation computed so far by G(%8) at each
reduction step which results in a total power of GB when the reduction finishes
in ,�

−1,C . This is precisely the power of G in the exact form obtained from
,

�
B+1,C →,

�
B,C . We also do not multiply by H−0C+0−�, as this is the same power

of H that is multiplied by in the vertical reduction steps that take place after
the horizontal ones.

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 12

Rephrasing this in terms of a matrix, the reduction process is given by
multiplying by a matrix of the form

'
C ,�
�
(B) = "C ,�

�
(B)�C ,�

�
(B)
−1
,

where�C ,�
�
(B) = �((0C−0+�)1−0B), and ?C ,�

8
is the linear function of B obtained

as the coefficient of G 8 in 0B ℎ̃(G) − (0C − 0 + �)Gℎ̃′(G) and where "C ,�
�
(B) is the

matrix

©«

0 · · · 0 ?
C ,�
0

�
C ,�
�
(B) · · · 0 ?

C ,�
1

...
. . .

...
...

0 · · · �
C ,�
�
(B) ?

C ,�
1−1

0 · · · 0 −0 G(%1)�C ,�
�
(B) · · · 0

...
. . .

...
...

...
. . .

...

0 · · · 0 −0 0 · · · G(%!)�C ,�
�
(B)

ª®®®®®®®®®®®®¬
.(4.2)

This is the linear recurrence to which we may now apply the modified
Bostan-Gaudry-Schost algorithm [7, Thm. 5.2], to compute the result more
efficiently than the step-by-step approach alluded to above.

Remark 4.4 This is a slight modification of the approach used in [7, Sec.
4]. Here we make use of the commonality between the factors appearing in
the vertical and horizontal stages to give a cleaner recurrence without the
“correction factors” appearing in [7, Thm. 4.4].

Remark 4.5 Regularity. For some applications (such as Chabauty-Coleman)
one is only interested in invariant differentials on the Jacobian, or, equivalently,
regular 1-forms on the curve, as these are the forms whose integrals define
abelian integrals and provide logarithm-type maps to Q@ . In [21, Prop. 2]
it is shown that of the 26 basis differentials G 8 dG/H 9 , as above, the 6 regular
1-forms are those for which

8 <

⌈
1

0

⌉
9 − 1 −

⌊
9

(⌈
1

0

⌉
− 1
0

)⌋
.

It is interesting to note that the algorithmdevelopedhere computes the integral
of all 26 basis differentials simultaneously and there seems to be no way of
computing integrals of only a subset of them via this approach.

5. Runtime and precision

We now analyse the runtime of the above algorithm, proving Theorem 1.1.
We only analyse the steps which differ from that occurring in [20, Sec. 6]. All
preparatory steps remain the same. It is only the main reduction steps where
we now have larger matrices to compute the evaluations of exact forms.

We may apply [7, Thm. 5.2] to this as the reduction matrices above are
(< + =) × (< + =) matrices with < × = block which is zero and a = × = block
which is diagonal. This uses

$
(
(MM(<) +MM(<, =))

√
 +

(
<2 + <=

)
M(
√
)

)
ring operations. We apply this for each row of horizontal reductions (with
 = $(?#) in the worst case) and for the vertical reductions also (where
 = $(?#) again).

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 13

The precision loss and gain throughout the algorithm is as in [7, Sec. 7]
and [20, Sec. 5.3]. We can therefore compute (3.4) for & = ∞ and ! distinct
Teichmüller points % via the above reduction procedure to precision # in time

$̃
(
(6$ + !6$−1)√?=#5/2 + #463(6 + !)=2 log ?

)
where $̃(C) := $(C 5 (log C)) for some polynomial 5 . The precision loss from
inverting 1 −∏

B==−1,...,0)
B(") is precisely

E?

(
det

(
1 −

∏
B==−1,...,0

)B(")
))
= # Jac�F?= (F?=).

Specifying the above to ! = 2 gives Theorem 1.1.

6. Implementation

We have implemented the algorithm outlined above in Julia using the func-
tionality provided by theNemopackage [12] and its extensionHecke. This im-
plementation is available online at https://github.com/alexjbest/Coleman.jl.

In this section we describe the implementation and discuss some surround-
ing issues. To check correctness of the algorithm and implementation, we
begin with some examples:

6.1. Examples.

6.1.1. A Picard curve. The curve
� : H3 = ℎ(G) = G4 + 7G3 + 3G2 − G

was suggested tome byHashimoto-Morrison [17], it has an algebraic 9-torsion
point

% = (1, 3√10),
sowe take ? = 41, which splits inside the ringof integers ofQ(3√10) as aproduct
of a prime of norm 41 and one of norm 412, using the latter embedding we can
take % ∈ �(Q412). Explicitly if Q412 = Q41[]/(2 + 38 + 6)we have

% = (1 + $(416), (14 + 30 · 411 + 19 · 412 + 24 · 413 + 35 · 415) ·
+ 11 + 20 · 411 + 33 · 412 + 23 · 413 + 32 · 414 + 34 · 415 + $(416)).

As the G-coordinate of this point is 1, it is actually a Teichmüller point (fixed
under)), thuswe do not have to do any tiny integralswithin a disk to compute
the Coleman integrals ∫ ∞

%

$

for all $ in the basis. Using our package and running the command
julia> ColemanIntegrals(3, h, 3, 41, 2, P, :inf)

(where respectively the arguments are, degree of the cover, G-polynomial,
precision requested, baseprime, extensiondegree, andendpoints) this returns:

©«

0
(3 + 21 · 411 + 32 · 412 + $(413)) · 0 + (15 + 37 · 411 + 37 · 412 + $(413))
(32 + 18 · 411 + 25 · 412 + $(413)) · 0 + (37 + 10 · 411 + 9 · 412 + $(413))

0
0

(27 + 10 · 411 + 21 · 412 + $(413)) · 0 + (30 + 20 · 411 + 7 · 412 + $(413))

ª®®®®®®®¬
.

This exactly reflects the fact that [% − ∞] is torsion in the Jacobian and
that only the invariant differentials provide group homomorphisms from the

https://github.com/alexjbest/Coleman.jl

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 14

Jacobian to Q412 (forcing the images of torsion points to be trivial). Note that
the basis of differentials is ordered by 9 and then 8 here and that the regular
differentials are as described in Remark 4.5.

We can also check Galois equivariance for this example, by computing that(∫ ∞

%�
$8

)
8

=

((∫ ∞

%

$8

)�)
8

as both evaluate to

©«

0
(38 + 19 · 411 + 8 · 412 + $(413)) · 0 + (24 + 15 · 411 + 32 · 412 + $(413))
(9 + 22 · 411 + 15 · 412 + $(413)) · 0 + (10 + 35 · 411 + 25 · 412 + $(413))

0
0

(14 + 30 · 411 + 19 · 412 + $(413)) · 0 + (29 + 25 · 411 + 19 · 412 + $(413))

ª®®®®®®®¬
.

6.1.2. An elliptic curve over a quartic field. The elliptic curve with LMFDB label
4.4.725.1-16.1-a1 is defined over the quartic number field = Q()where is
a root of G4 − G3 − 3G2 + G + 1. This curve can be given by the model

H2 = G3 + (23 + 62 − 9 − 4)G2 + (322 − 8)G + (163 + 482 − 16 − 16).
On this model there is a -rational 17-torsion point with coordinates

% = (0, 42).
We work with ? = 43, which remains inert in , and fix an embedding

 ↩→ Q434 .

We can then compute the pair of Coleman integrals∫ ∞

%

dG
H
,

∫ ∞

%

G
dG
H

as before, obtaining the values 0 and

(14 + 31 · 431 + 29 · 432 + 32 · 433 + $(434)) · 03

+ (41 + 5 · 431 + 15 · 432 + 12 · 433 + $(434)) · 02

+ (11 + 17 · 431 + 30 · 432 + 11 · 433 + $(434)) · 0
+ (26 + 12 · 431 + 28 · 432 + 28 · 433 + $(434)),

respectively.

6.2. Implementation details. Minzlaff has made available an open-source
implementation of the algorithm in [20]. This includes an implementation
of the algorithm of Bostan-Gaudry-Schost and Harvey in the Magma [10]
programming language, and computes zeta functions of superelliptic curves
over F@ in √@ time. This implementation is included in recent versions
of Magma (as ZetaFunction) and is separately available online at https:
//github.com/mminzlaff/superelliptic. Our implementation is built on top
of a direct translation of Minzlaff’s code into Nemo/Julia.

Remark 6.1 There are two (related) ways to set up a Coleman integration
algorithm: integrating to Teichmüller points, or adding the tiny integrals to
Frobenius. When using the former, checking that additivity in endpoints
holds does not test the implementation for bugs in any serious way as when
broken down, the “paths” integrated along form a tree. However with the

https://lmfdb.org/EllipticCurve/4.4.725.1-16.1-a1
https://github.com/mminzlaff/superelliptic
https://github.com/mminzlaff/superelliptic

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 15

latter approach, checking additivity in endpoints of the form∫ ∞

%

$ +
∫ %

%′
$ =

∫ ∞

%′
$

for %, %′ in the same residue disk, checks that the local and global integrals are
consistent, i.e. there do exist “non-degenerate triangles” here.

6.2.1. A comparison of computer algebra systems. In this section, we take the
opportunity to compare and contrast programming languages available for
working with computational number theory and arithmetic geometry. We
discuss some similarities and differences between these computer algebra
systems andadvantages anddisadvantages in the author’s experience between
the way they behave.

Magma and Julia are similar in several syntactic aspects which made trans-
lation from the former to the latter easier. Both operate in a functional way, i.e.
factor(M) rather than M.factor(). This syntax is more similar to the syntax
used inmathematics. However it presents difficulties for introspection, that is,
it is not always easy to find a function performing a particular task, given only
a description of that task or its common name. In the Python-based SageMath,
given an object M, the user can interactively type M. and press <TAB> to see a
list of all methods associated to the object. It is a common paradigm for a user
to search this list to find functions. In languages such as Julia and Magma
where the dispatch system makes such functionality difficult, it is important
that good searchable documentation exists to help users find the functions
they need. For example, a function with a common name like Normalise
when called as Normalise; will show a list of several possibilities of types of
objects a Normalise function exists for. The user must then search this list to
find the description and signature for the one they wish to call. The Sage user
would instead take their object - and type X.norm<TAB> to see if a normalise
function exists.

Nemo is a new package in comparison to SageMath and Magma, and so
some common general-purpose functionality that would be expected from a
general computer algebra system is yet to be implemented. At present this can
slow down development of mathematical code using Nemo. However Nemo
is built on top of the C libraries Flint, Arb, and Antic, which have been under
development for far longer and contain significant functionality. Missing
features often simply need to be wrapped from these libraries. Wrapping
involves adding only 3-5 lines of code on average as Nemo is tightly coupled to
these underlying libraries. It appears that interfacing with external C libraries
is simpler when using Julia than in SageMath and Magma.

Magma and SageMath are a lot more stable at present due to the maturity
of these systems. This makes continuous integration and testing of code based
on Nemo more vital, to prevent code from diverging when the Nemo core is
modified in an incompatible way.

The open-source development model and Julia’s built-in package manager
alsomitigates the immaturity problem somewhat, as it is easy to create a public
fork of Nemo or to create a package based on it. For instance, at the time of
writing there are at least 30 distinct Julia-based repositories onGitHub that use
Nemo in some way, and many hundreds of independent Julia packages, some
of which also containing functionality relevant to arithmetic geometers. This
iterative and modular way of sharing research code is ingrained in the design
of Julia and has also been proposed as amore lightweight development model
for additional packages on top of the SageMath core https://wiki.sagemath.
org/CodeSharingWorkflow. The advantages over more centralised development
are a lower barrier for research code to be made available. It is trivial for

https://github.com
https://wiki.sagemath.org/CodeSharingWorkflow
https://wiki.sagemath.org/CodeSharingWorkflow

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 16

anyone to host code in a version-controlled repository and create the requisite
Julia package files, so that the code may then be installed using the built-in
package system. With a more modular system, the notions of ownership and
responsibility for individual packages are more clear, users can report bugs
and feature requests directly to the developers of smaller modules, rather than
all traffic going to a centralised bug tracker, or worse, a closed email list with
no public tracking of bugs at all.

For a working mathematician, writing high-level code that is as close as
possible to mathematical language is preferable, for speed of development,
sharing of research code and identification of bugs. In general, the overhead of
using a high-level language can render many potentially practical algorithms
too slow for serious use on large scale. For instance, algorithms such as the
accumulating remainder tree of [11, 15] can lose their practicality when a large
call overhead (such as that in Python) is introduced at each recursive step.
This necessitates the use of low-level languages such as C to implement key
core functionality, like fundamental arithmetic operations in different rings,
operations with polynomials, and linear algebra. When converting from high-
level code to low-level, in general more code must be added, to explicitly
construct and destruct objects, manage memory, iterate over lists, and handle
files. This can often obscure the mathematical process underlying a given
algorithm and obstruct understanding and later generalisation.

In SageMath, Cython is used to mitigate such overhead problems some-
what, and to wrap low-level � libraries. Its Python-like syntax makes conver-
sion easier and makes comprehension of code easier, and it does reduce the
overhead of Python/Sage code.

Using domain-specific Julia packages to write high-level code, which is
compiled at runtime to a fast lower-level implementation can provide a useful
balance for a mathematical user. While there are applications where low-level
control is essential: for instance in [9, Sec. 3.2] working at the machine level is
necessary to obtain results on such a large scale in as small amount of time (and
also therefore cost) as possible. Using a high-level language that is compiled
(at runtime or before) into a lower-level language can strike a good balance
between speed of the computation and time taken to write the code.

The distinction between compiling at runtime vs. before the software is run
is most apparent when experimenting with new code. Anything that can be
done at runtime can of course be done before, but the user has more flexibility
when they do not have to exit the CAS and recompile to take advantage of
compiled code.

6.3. Timings. We provide here some timings of both the Magma implemen-
tation of Minzlaff and Julia/Nemo implementation of the underlying zeta
function algorithm, which is the only part common to both implementations,
and this uses the same algorithm due to Minzlaff. Hence the comparison be-
low is really a test of how the underlying systems handle the operations used
by this algorithm (of course further optimizations to both implementations
may well be possible). We do not time the Coleman integration code here as
the linear recurrence method that underlies the zeta function algorithm is the
main component of the runtime for computing Coleman integrals also.

Thedash indicates aparameter rangewhereneither implementation applies
due to the standing assumption on ? in (2.1). All times are measured in
seconds.

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 17

Table 6.2 Timings for the Magma implementation

@�(0, 1) (2, 5) (2, 7) (3, 7) (4, 7)
257 0.180 0.647 4.357 10.140
521 0.253 0.963 4.373 10.260
1031 0.290 1.017 6.860 16.543
2053 0.413 1.673 7.080 16.680
4099 0.487 0.960 7.473 21.530
8209 0.750 1.440 8.407 21.767
2572 0.700 2.743 21.643 −
5212 1.167 4.060 30.500 78.850

Table 6.3 Timings for the Nemo implementation

@�(0, 1) (2, 5) (2, 7) (3, 7) (4, 7)
257 0.197 0.651 4.695 15.267
521 0.366 1.27 4.779 17.892
1031 0.415 1.348 13.287 43.691
2053 0.973 3.727 14.135 44.516
4099 1.133 2.332 30.306 114.239
8209 3.261 6.486 36.414 114.61
2572 0.339 1.487 23.569 −
5212 0.803 2.992 44.461 111.966

References
[1] Balakrishnan, Jennifer S., Robert W. Bradshaw, and Kiran S. Kedlaya. Explicit Coleman Integra-

tion for Hyperelliptic Curves. In ANTS-IX 2010, LNCS 6197, pp. 16-31, 2010.
[2] Balakrishnan, Jennifer S. Coleman integration for even-degree models of hyperelliptic curves. LMS

Journal of Computation and Mathematics 18.1 (2015): 258-265.
[3] Balakrishnan, Jennifer S., Netan Dogra, J. Steffen Müller, Jan Tuitman, and Jan Vonk. Explicit

Chabauty—Kim for the Split Cartan Modular Curve of Level 13. Annals of Mathematics 189, no. 3
(2019): 885–944. https://www.jstor.org/stable/10.4007/annals.2019.189.3.6.

[4] Balakrishnan Jennifer S., and Jan Tuitman. Explicit Coleman integration for curves. arXiv preprint
arXiv:1710.01673. 2020 Jan 13.

[5] Besser, Amnon. Heidelberg lectures on Coleman integration. In The Arithmetic of Fundamental
Groups, pp. 3-52. Springer, Berlin, Heidelberg, 2012.

[6] Besser, Amnon, and Rob De Jeu. !8(?)-Service? An Algorithm for Computing p-Adic Polyloga-
rithms. Mathematics of Computation 77, no. 262 (2008): 1105–34.

[7] Best, Alex J. Explicit Coleman integration in larger characteristic. Proceedings of the Thirteenth
Algorithmic Number Theory Symposium, The Open Book Series, 2(1), 85-102, 2019.

[8] Bezanson, Jeff, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A Fresh Approach
to Numerical Computing. (2017) SIAM Review, 59: 65-98. doi: 10.1137/141000671. https:
//julialang.org/research/julia-fresh-approach-BEKS.pdf.

[9] Booker, Andrew R., Jeroen Sĳsling, Andrew V. Sutherland, John Voight, and Dan Yasaki. A
Database of Genus 2 Curves over the Rational Numbers. LMS Journal of Computation and Math-
ematics 19, no. A (2016): 235–54. https://doi.org/10.1112/S146115701600019X.

[10] Bosma, Wieb, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user
language, J. Symbolic Comput., 24 (1997), 235–265.

[11] Costa, Edgar, Robert Gerbicz, and David Harvey. A Search for Wilson Primes. Math-
ematics of Computation 83, no. 290 (2014): 3071–91. https://doi.org/10.1090/
S0025-5718-2014-02800-7.

[12] Fieker, Claus,WilliamHart, TommyHofmann, and Fredrik Johansson.Nemo/Hecke: Computer
Algebra and Number Theory Packages for the Julia Programming Language. In: Proceedings of ISSAC
’17, pages 157-164, New York, NY, USA, 2017. ACM, http://doi.acm.org/10.1145/
3087604.3087611.

[13] Gaudry, Pierrick, and Nicolas Gürel. An extension of Kedlaya’s point-counting algorithm to
superelliptic curves. Advances in Cryptology - ASIACRYPT 2001, Springer, Berlin, Heidelberg,
2001.

https://www.jstor.org/stable/10.4007/annals.2019.189.3.6
https://julialang.org/research/julia-fresh-approach-BEKS.pdf
https://julialang.org/research/julia-fresh-approach-BEKS.pdf
https://doi.org/10.1112/S146115701600019X
https://doi.org/10.1090/S0025-5718-2014-02800-7
https://doi.org/10.1090/S0025-5718-2014-02800-7
http://doi.acm.org/10.1145/3087604.3087611
http://doi.acm.org/10.1145/3087604.3087611

SQUARE ROOT TIME COLEMAN INTEGRATION ON SUPERELLIPTIC CURVES 18

[14] Gonçalves, Cécile.Apoint counting algorithm for cyclic covers of the projective line. Contemporary
mathematics 637 (2015): 145.

[15] Harvey, David. Counting points on hyperelliptic curves in average polynomial time. Annals of
Mathematics 179, no. 2 (2014): 783-803.

[16] Harvey, David. Kedlaya’s Algorithm in Larger Characteristic. IMRN: International Mathematics
Research Notices 2007 (2007).

[17] Hashimoto, Sachi, and Travis Morrison. Chabauty-Coleman Computations on Rank 1 Picard
Curves, preprint.

[18] Kedlaya, Kiran S. Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology,
J. Ramanujan Math. Soc. 16 (2001), no. 4, 323-338; errata, ibid. 18 (2003), 417--418.

[19] McCallum,William, and Bjorn Poonen.TheMethod of Chabauty and Coleman. ExplicitMethods
in Number Theory 36 (2012): 99–117.

[20] Minzlaff, Moritz. Computing zeta functions of superelliptic curves in larger characteristic. Mathe-
matics in Computer Science 3.2 (2010): 209-224.

[21] Towse, Christopher. Weierstrass Points on Cyclic Covers of the Projective Line. Transactions of
the American Mathematical Society 348, no. 8 (1996): 3355–3378.

[22] Tuitman, Jan. Counting points on curves using a map to P1. Mathematics of Computation 85.298
(2016): 961-981.

[23] Tuitman, Jan. Counting points on curves using a map to P1, II. Finite Fields and Their Applica-
tions 45 (2017): 301-322.

A. J. Best, Department of Mathematics & Statistics, Boston University, 111 Cummington Mall,
Boston, MA 02215, USA

Email address: alex.j.best@gmail.com

	1. Introduction
	2. Set-up and notation
	3. Coleman integration
	4. Reductions in cohomology
	5. Runtime and precision
	6. Implementation
	6.1. Examples
	6.2. Implementation details
	6.3. Timings

	References

