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1 Introduction

In 1987 Jean-Pierre Serre published a paper [Ser87], “Sur les représentations
modulaires de degré 2 de Gal(Q/Q)”, in the Duke Mathematical Journal.
In this paper Serre outlined a conjecture detailing a precise relationship
between certain mod p Galois representations and specific mod p modular
forms. This conjecture and its variants have become known as Serre’s
conjecture, or sometimes Serre’s modularity conjecture in order to distinguish
it from the many other conjectures Serre has made. The conjecture has since
been proven correct by the work of numerous people, culminating with
that of Khare–Wintenberger and Kisin, published in 2009 [KW09a, KW09b,
Kis09].

Here we provide a motivated account of the original form of the con-
jecture before going on to compute some explicit examples and examining
some interesting consequences.

Beyond Serre’s paper there are many very good accounts of his state-
ment, including articles by Darmon [Dar95] and by Ribet and Stein [RS99]
who also have a book chapter on the topic [RS11]. In 1992 Bas Edixhoven
wrote a paper [Edi92] in which he gave a slight alteration of Serre’s conjec-
ture. There are additional articles covering this version of the conjecture,
such as Cais [Cai09] and Edixhoven [Edi97]. Finally Alex Ghitza has pre-
pared a translation of part of Serre’s paper [Ghi] which has been helpful.
These articles were of great help when preparing the current essay and
many of the ideas used here are contained in at least one of them.

2 Background

We begin by fixing several definitions and key results that will be relevant
when discussing Serre’s conjecture.

2.1 Modular forms

In the interests of space we assume material relating to classical modular
forms. Here we only look at the passage to mod p modular forms, as there
is some amount of choice in how these forms are defined and they form
a key part of Serre’s conjecture. We use Serre and Swinnerton-Dyer’s
original approach to define mod p modular forms, this is detailed in [SD73,
Ser73a, Ser73b]. This approach is a simple one and it allows us to talk about
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congruences involving q-expansions and their coefficients without getting
too bogged down with notation.

Definition 2.1.1. Given a subring R of C we let Sk(N, ε; R) be the space
of cusp forms of weight k, level N and character ε : (Z/NZ)∗ → R, whose
q-expansion coefficients lie in R.

Now fix a prime p - N. Given a character

ε : (Z/NZ)∗ → F∗p

we may lift to a character

ε̂ : (Z/NZ)∗ → Z∗,

with values in the prime to p roots of unity.
Additionally fix a place v of Q above p, this place gives us a reduction

map Z→ Fp. We let the space of cuspidal mod p modular forms of weight k,
level N and character ε : (Z/NZ)∗ → F∗p be the subspace of Fp[[q]] obtained
by reducing the q-expansions of forms in Sk(N, ε̂; Z) using our place v. We
denote this space by

Sk(N, ε; Fp).

Taking the union over all characters ε as above gives us the space of all mod
p cusp forms of weight k and level N,

Sk(N; Fp).

We can in the same way define the full (non-cuspidal) space of mod
p modular forms, along with mod p modular forms for more general
congruence subgroups. But we don’t need to consider such forms in this
essay so we restrict to cusp forms for Γ1 to keep things concise.

Many notions defined for normal modular forms descend to mod p
modular forms in the natural way.

Definition 2.1.2. The standard Hecke operators act on q-expansions in a
way that preserves each space Sk(N, ε; Z) (this action is recalled in the
proof of theorem 2.1.9). So we may define the action of the Hecke operators
on a mod p modular form f by letting them act on a lift of f and then
reducing the q-expansion mod p again. Equivalently we may just define
the action on q-expansions to be given by the same formulae as for normal
modular forms.
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Definition 2.1.3. As for standard modular forms, we say a mod p cusp
form f = ∑n≥1 anqn is normalised if a1 = 1.

An interesting difference between the world of standard modular forms
and that of mod p modular forms comes from the fact that distinct modular
forms may reduce mod p to have exactly the same q-expansion.

Example 2.1.4. Using Sage [S+15] we find the following example, let

f = q− q2 − 2q3 − 7q4 + 16q5 + 2q6 − 7q7 + O(q8) ∈ S4(7, Id; Z),

g = q− 6q2 − 42q3 − 92q4 − 84q5 + 252q6 + 343q7 + O(q8) ∈ S8(7, Id; Z),

then if we reduce mod 5 we see that

f = q + 4q2 + 3q3 + 3q4 + q5 + 2q6 + 3q7 + O(q9) ∈ S4(7, Id; F5),

g = q + 4q2 + 3q3 + 3q4 + q5 + 2q6 + 3q7 + O(q9) ∈ S8(7, Id; F5),

which are indeed equal up to this precision.

This means that we need to be careful if we are just given a q-expansion
corresponding to some mod p modular form as there is no longer necessar-
ily a single weight attached that form. There is a useful necessary condition
controlling when this sort of behaviour can happen however.

Proposition 2.1.5. If f and g are two non-zero mod p modular forms of weights
k and k′ respectively, whose q-expansions are equal, then

k ≡ k′ (mod p− 1).

Proof. See [Ser73a].

In fact for p ≥ 5 it is always the case that Sk(N; Fp) ⊂ Sk+p−1(N; Fp)
[Ser73b]. Due to this behaviour the concept of weight is not particularly
well defined for mod p modular forms, so we introduce the notion of a
filtration to help us deal with the ambiguity.

Definition 2.1.6. The filtration of a mod p cusp form f of level N is the
minimal k ≥ 0 for which f ∈ Sk(N; Fp). We denote this by w( f ).

Now we look at an important operator on the space of mod p modular
forms, which we shall study more in Section 4.3.
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Definition 2.1.7. The Θ operator is defined on (cuspidal) mod p modular
forms via its action on q-expansions, which is

Θ

(
∑
n≥0

anqn

)
= q

d
dq

(
∑
n≥0

anqn

)
= ∑

n≥0
nanqn.

It is not clear from this definition that the resulting q-expansion should
always correspond to another modular form, but this is indeed the case. In
fact many of the properties of the cusp form are preserved by Θ.

Proposition 2.1.8. If f is a mod p cusp form of filtration w( f ) = k, then Θ( f )
is also a mod p cusp form of the same level and character and has filtration

w(Θ( f )) =

{
k + p + 1 if p - k,
k + p + 1− n(p− 1), n ≥ 1 if p | k.

Proof. See [Ser73a] and also [Joc82] for more detail about how the filtration
lowers in the p | k case.

We see straight away from the definition of the action that Θ preserves
the set of normalised mod p cusp forms.

Proposition 2.1.9. Θ semicommutes with the Hecke operators T` (specifically we
have T`Θ = `ΘT`), and hence Θ preserves eigenforms.

Proof. The Hecke operators T` on Sk(N, ε; Fp) act on q-expansions by

T`

(
∑
n≥1

anqn

)
=

{
∑n≥1 a`nqn + `k−1ε(`)∑n≥1 anq`n if ` - N,

∑n≥1 a`nqn if ` | N.

We let f = ∑n≥1 anqn ∈ Sk(N, ε; Fp) and calculate

ΘT` f =

{
∑n≥1 na`nqn + `k−1ε(`)∑n≥1 `nanq`n if ` - N,

∑n≥1 na`nqn if ` | N,

and

T`Θ f =

{
∑n≥1 `na`nqn + `k+p+1−1ε(`)∑n≥1 nanq`n if ` - N,

∑n≥1 `na`nqn if ` | N.

As we are working in characteristic p here `k+p = `k+1, so

T`Θ = `ΘT`,

thus if f is an eigenform for the T` then Θ f is an eigenform too. However
the eigenvalue for each T` is ` times the original.
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2.2 Galois representations

We now move on to the next major component of Serre’s conjecture, Ga-
lois representations. As above we mostly concern ourselves with fix-
ing definitions and recalling important results that shall be needed later.
There are many good references for this type of material, for example
[DDT95, Wie12].

Definition 2.2.1. An n-dimensional mod p Galois representation is a homomor-
phism

ρ : Gal(Q/Q)→ GLn(Fp).

Similarly, an n-dimensional p-adic Galois representation is a homomorphism

ρ : Gal(Q/Q)→ GLn(Qp).

Unless stated otherwise the term Galois representation will refer to a mod p
Galois representation.

Recall that Gal(Q/Q) is defined as the inverse limit of Gal(K/Q) as K
ranges over all number fields. So the group Gal(Q/Q) naturally has the
profinite topology, where the open subgroups are the subgroups of finite
index. We demand that all of our mod p representations be continuous
with respect to this topology and the discrete topology on GLn(Fp).

Remark 2.2.2. The continuity condition for mod p Galois representations
reduces to having an open kernel, so continuous mod p Galois representa-
tions always have finite image.

We deal mostly with 1 and 2 dimensional mod p Galois representations.
Those of dimension 1 (i.e. maps φ : Gal(Q/Q)→ F∗p) are called characters.
Given a 2-dimensional mod p representation ρ : G → GL2(Fp) we often use
the notation

ρ ∼
(

α β

γ δ

)
,

where α, β, γ and δ are functions G → Fp, to indicate that there is some
A ∈ GL2(Fp) such that for every σ ∈ G

ρ(σ) = A
(

α(σ) β(σ)
γ(σ) δ(σ)

)
A−1.
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Definition 2.2.3. Let ρ be a mod p Galois representation and φ be a mod p
Galois character. We can form a new mod p Galois representation of the
same dimension as ρ by taking the product of the images for each element
of Gal(Q/Q). This is called the twist of ρ by φ, and is denoted φ⊗ ρ.

Definition 2.2.4. Let φ : Gal(Q/Q) → K∗ be a character for some field K
and fix an embedding Q ↪→ C. We may then view complex conjugation
as an element c ∈ Gal(Q/Q), looking at its image φ(c) we see it is an
element of order 2 in K∗, so φ(c) must be ±1. If φ(c) = −1 we say φ is
odd, otherwise we say φ is even (though we shall mostly be concerned with
distinguishing odd representations here).

Now given any Galois representation

ρ : Gal(Q/Q)→ GLn(K),

we define the parity of ρ to be that of the character det ρ.

Due to theorem 2.2.2 all of our Galois representations will factor through
finite extensions, and so our understanding of finite Galois groups will be
essential in what follows. The next few definitions and results will allow
us to talk about the properties of finite Galois extensions of Q and Qp.

Definition 2.2.5. Given a finite Galois extension K/Q we may define a
series of subgroups of G = Gal(K/Q) that measure the ramification of
K/Q at a prime `. Let L be a prime of K above ` and let

D` = {σ ∈ G : σ(L) ⊂ L}

be the decomposition group at ` of G. Now take i to be a non-negative integer,
we define the ith higher ramification group to be

G`,i = {σ ∈ D` : σ(x)− x ∈ Li+1 ∀x ∈ OK}.

These groups tell us how much of the whole of G we are seeing if we just
look modulo powers of L. They form a descending chain as i increases

D` ⊇ G`,0 ⊇ G`,1 ⊇ G`,2 ⊇ · · · .

Now we recall a result of Kummer theory, which tells us how to obtain
abelian Galois extensions of certain fields, see [Bir67] for the full story.
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Proposition 2.2.6. Suppose K is a field containing all nth roots of unity, then
there is a bijection

{subgroups H ⊂ K∗/(K∗)n} ↔ {abelian extensions L|K : Gal(L/K)n = 1},

defined by sending H 7→ K( n
√

H) and K∗ ∩ (L∗)n ← [ L. The notation K( n
√

H)
simply means we adjoin nth roots of all elements of H to K.

Although our main objects of study are representations Gal(Q/Q) it
will be very useful for us to take a prime ` and also consider representations
of

G` = Gal(Q`/Q`).

Such representations can be obtained from those of Gal(Q/Q) using an
inclusion

Q ↪→ Q`

to define a restriction map

G` → Gal(Q/Q).

In fact due to Krasner’s lemma [Coh08, p. 238] the map G` → Gal(Q/Q)
is injective and so we may view G` as a subgroup of Gal(Q/Q). The way
this subgroup sits inside Gal(Q/Q) depends on the choice of embedding
Q ↪→ Q` and varies by conjugation as this embedding changes.

The group G` has several subquotients which will be helpful for us to
study restrictions of representations to.

Definition 2.2.7. The ring of integers of Q` is stable under the action of G`,
as is its unique maximal ideal. So we get an action of G` on the residue
field, this field may be identified with Fp. We therefore obtain a map

G` → Gal(F`/F`).

The inertia subgroup I` is defined to be the kernel of this map.
The group Gal(F`/F`) is topologically cyclic, generated by the Frobe-

nius morphism x 7→ x`. In fact the above map G` → Gal(F`/F`) is surjec-
tive and so we may let Frob` ∈ G` be a preimage of this morphism under
the restriction map, we call such elements Frobenius elements.

Next the wild inertia group I`,w is the maximal pro-`-subgroup of I` and
the tame inertia group is the quotient

I`,t = I`/I`,w.
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The groups we have been looking at give rise to Galois extensions
of Q`. The fixed field of I` is the maximal non-ramified extension of Q`,
denoted Qnr

` . Similarly, the fixed field of I`,w is the maximal tamely-ramified
extension of Q`, denoted Qtr

` . So the full set-up looks as follows

Q`

I`,w

G`

I`Qtr
`

I`,t

Qnr
`

Q`

The field Qtr
` is generated by the fields Qnr

` ( n
√
`) [Frö67] and so, using

theorem 2.2.6 the tame inertia I`,t may be identified with

lim
←−

Gal(Qnr
` (

n√
`)/Qnr

` ) = lim
←−

F∗`n ,

where the maps in the last inverse limit are the norm maps.

Definition 2.2.8. We say a Galois representation ρ is unramified at ` if ρ|I`
is trivial. Otherwise, we say ρ is ramified at `. Similarly we say ρ is tamely
ramified at ` if ρ|I`,w is trivial.

The usefulness of the Frobenius elements for us stems in part from the
following theorem.

Theorem 2.2.9. Let S be a finite set of primes, then:

1. A semi-simple mod p representation

ρ : Gal(Q/Q)→ GL2(Fp)

is determined by the values of tr ρ(Frob`) and det ρ(Frob`) for all ` 6∈ S at
which ρ is unramified.

2. A mod p character
φ : Gal(Q/Q)→ F∗p

is determined by the values of φ(Frob`) for all ` 6∈ S at which φ is unrami-
fied.
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Proof. See [DDT95, prop. 25].

Definition 2.2.10. Each character

φ : Gal(Q/Q)→ F∗p

has finite image and so factors through some F∗pn , the smallest n for which
this can happen is called the level of the character.

For each n ≥ 1 we now distinguish n special mod p characters of Ip,t of
level n, these will allow us to describe all such characters of a particular
level.

Definition 2.2.11. The identification

Ip,t = lim
←−

F∗pn

gives us a natural map
ψn : Ip,t → F∗pn

for each n. The fundamental characters of level n are defined by extending
ψn to an Fp-character of Ip,t via the n embeddings Fpn ↪→ Fp.

While any individual fundamental character is not canonically defined,
the set of all of them of a particular level is.

Remark 2.2.12. The embeddings are all obtained from any chosen one by
applying Frobenius and as such the product of all fundamental characters
of level n is the same as the composition of the norm map F∗pn → F∗p with
any one. So this product will always be the unique fundamental character
of level 1.

Proposition 2.2.13. The fundamental characters of level n generate the set of all
characters of level n.

Proof. See [Ser72, prop. 5].

As any character φ : Gal(Q/Q) → F∗p factors through an abelian quo-
tient, the Kronecker–Weber theorem tells us that any such character factors
as

φ : Gal(Q/Q)→ Gal(Q(ζN)/Q) ∼= (Z/NZ)∗
φ′−→ F∗p,

where ζN is a primitive Nth root of unity. We can also use this factorisation
to extend any Dirichlet character to a character of the absolute Galois group.
Thus characters of the absolute Galois group are in bijection with Dirichlet
characters

(Z/NZ)∗
φ−→ F∗p.
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Definition 2.2.14. The identity map

(Z/pZ)∗ → F∗p ↪→ F∗p

is a Dirichlet character and thus gives us a character of Gal(Q/Q). This
character is called the mod p cyclotomic character, and denoted χp.

Remark 2.2.15. Taking any σ ∈ Gal(Q/Q) the definition above is saying
that σ sends

ζp 7→ ζ
χp(σ)
p ,

where ζp is a primitive pth root of unity. If we take some ` 6= p prime and
denote reduction mod ` of Z[ζp] by · we have that

Frob`(ζp) = ζp
`
,

and so as χp takes values mod p we find that

χp(Frob`) = `.

Now if we fix an embedding Q ↪→ C and consider complex conjugation
as some element c ∈ Gal(Q/Q) we see that it takes ζp 7→ ζ−1

p and hence

χp(c) = −1,

so χp is an example of an odd character.
Finally, χp was defined to factor through Gal(Q(ζp)/Q), this extension

is tamely ramified and hence so is χp. Therefore χp passes to a character on
the group Ip/Ip,w = Ip,t. Straight from the definition we see that χp, when
viewed in this way, is an example of a level 1 character of Ip,t, but in fact
more is true.

Proposition 2.2.16. The fundamental character of level 1 is the cyclotomic char-
acter χp (or rather its induced character on Ip,t).

Proof. See [Ser72, prop. 8].

Definition 2.2.17. We now classify Galois representations

ρ : Gp → GL2(Fp)

of the form

ρ ∼
(

χpε1 ∗
0 ε2

)
,
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for some unramified characters ε1 and ε2.
Let K be the fixed field of the kernel of ρ. There is a unique maximal

tamely ramified extension Kt of Qnr
p that is contained inside of K. These

fields fit together as follows

K
ρ(Ip,w)

ρ(Ip) Kt

Qnr
p

Qp

As
Gal(Kt/Qnr

p ) = (Z/pZ)∗

we may write
Kt = Qnr

p (z),

where z is a primitive pth root of unity. If we look at Gal(K/Kt) we see that

Gal(K/Kt) = ρp(Ip,w)

consists only of elements of the form(
1 ∗
0 1

)
.

So Gal(K/Kt) is a finite elementary abelian p-group and hence isomor-
phic to (Z/pZ)m for some m. Applying theorem 2.2.6 we see that K is in
fact given by

K = Kt(x1/p
1 , . . . , x1/p

m ),

where in fact we may take the xi ∈ Qnr
p . The valuations of these xi will

determine our classification. If

νp(xi) ≡ 0 (mod p)

for all i then we say that ρ is peu ramifé, otherwise if any of the νp(xi) is
coprime to p then we say it is très ramifé.

12



Finally we introduce a notion that will allow us to obtain semisimple
representations from arbitrary Galois representations.

Definition 2.2.18. The semisimplification of a 2-dimensional representation
ρ is another representation, denoted ρss, that is obtained as follows. If ρ

is irreducible (and hence semisimple) we leave it as it is and set ρss = ρ.
Otherwise if ρ is reducible we know that there is some subspace on which
ρ acts via a character and so we may write

ρ ∼
(

φ1 ∗
0 φ2

)
.

The semisimplification ρss is then the representation given by(
φ1 0
0 φ2

)
,

conjugated in the same way ρ was. This is indeed semisimple.
In general the process of semisimplification is analogous, it is obtained

by taking the direct sum of the Jordan–Hölder constituents of a representa-
tion, though for us the above description suffices.

3 Obtaining Galois representations from modu-
lar forms

The two concepts just introduced, modular forms and Galois representation,
appear at first glance not to be particularly related to each other. However
in reality they are inextricably linked, and exploring some of the links
between them will be the goal of the rest of this essay.

3.1 Congruences for Ramanujan’s τ function

We will start with a historically important example that provides the first
glimpse of the sort of connection we will be looking at in this essay.

Example 3.1.1. Let
∆ = ∑

n≥1
τ(n)qn

be the unique normalised cusp form of weight 12 for Γ1(1) = SL2(Z).
The coefficients of this q-expansion were studied in detail by Ramanujan,

13



who made many influential conjectures concerning them. The function
n 7→ τ(n) is now known as the Ramanujan τ function. The properties of
this function provide the first glimpses of behaviours occurring for more
general systems of Hecke eigenvalues.

Various people, including Ramanujan in the mod 691 case, found con-
gruences involving the coefficients τ(`) modulo powers of primes for prime
`. Below are a few examples, though others do exist for higher powers of
these primes.

τ(`) ≡ 1 + `11 (mod 28), if ` 6= 2, (1)

τ(`) ≡ `2 + `9 (mod 33), if ` 6= 3, (2)

τ(`) ≡ `+ `10 (mod 52), (3)

τ(`) ≡ `+ `4 (mod 7), (4)

τ(`) ≡


0 (mod 23) if

(
`

23

)
= −1,

2 (mod 23) if ` is of the form u2 + 23v2,
−1 (mod 23) otherwise,

 if ` 6= 23, (5)

τ(`) ≡ 1 + `11 (mod 691). (6)

The original proofs of these congruences were in many cases quite in-
volved and did not all work in the same manner. Indeed Peter Swinnerton-
Dyer writes in [SD73] that these proofs “do little to explain why such
congruences occur”. So in order to try to explain all of the congruences in a
unified manner, Serre predicted [Ser67] for each prime p the existence of a
p-adic Galois representation

ρp : Gal(Q/Q)→ GL2(Qp)

such that

1. tr(ρp(Frob`)) = τ(`) for all ` 6= p,

2. det(ρp(Frob`)) = `11 for all ` 6= p.

The congruences would then follow from these Galois representations
being of specific forms. For example Eqs. (1) to (4) and (6) can all be
obtained from these Galois representations if the ρp satisfy

ρp ≡
(

χa
p ∗

0 χ11−a
p

)
(mod pb),
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where a is 0, 2, 1, 1 or 0 respectively and b is as in the original congruences
in each case. Here in each case we can see that det ρp ≡ χ11

p , which is
consistent with Item 2 above, and knowing Item 1 would give us the
desired congruences.

Serre’s prediction for the representation ρ23 has a more interesting form,
but nevertheless the images of Frobenius elements can be described explic-
itly. Following Serre we take K to be the splitting field of x3 − x− 1, this is
ramified only at 23 and has Galois group S3. We then let r be the unique
irreducible degree 2 representation of S3 taken with coefficients in Q23, this
satisfies

tr(r(σ)) =


0 if |σ| = 2,
2 if |σ| = 1,
−1 if |σ| = 3,

for each σ ∈ S3. As Gal(K/Q) is a quotient of Gal(Q/Q) the representation
r extends to a representation of Gal(Q/Q). If some ρ23 exists satisfying the
conditions above it being isomorphic to r then gives rise to Eq. (5) in the
same way as before.

Shortly after Serre hypothesised their existence Pierre Deligne con-
structed the representations ρp for all primes p [Del69]. In doing so Deligne
also reduced another conjecture of Ramanujan’s, that |τ(p)| ≤ 2p11/2 for
all p, to the Weil conjectures. This provided an indication that relating
questions regarding τ to Galois representations is a natural and effective
way of working on these questions. Being able to compute these associated
representations makes it possible to read off many more congruences for
τ(n) (see, for example, [Mas13]).

3.2 Attaching Galois representations to general eigenforms

Given the above example it is natural to wonder whether such a relationship
holds more generally. Indeed Serre also asked if one could associate to each
normalised cuspidal eigenform a Galois representation whose traces of
Frobenius elements match the q-expansion coefficients. Serre’s conjectures
on this led to the following more general theorem, which we state for mod
p modular forms now.

Theorem 3.2.1 (Deligne). Let p be a prime, k ≥ 2, N ≥ 1 an integer coprime
to p and ε : (Z/NZ)∗ → F∗p. Given a normalised eigenform f ∈ Sk(N, ε; Fp)
which has q-expansion coefficients ai, there exists a two-dimensional mod p Galois
representation ρ f such that
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(i) ρ f is semi-simple,

(ii) ρ f is unramified outside Np,

(iii) tr(ρ f (Frob`)) = a` for all ` - Np,

(iv) det(ρ f (Frob`)) = ε(`)`k−1 for all ` - Np.

We often refer to the representation ρ f as arising from, or being attached to, f .

The construction of these representations in this generality is due to
Deligne [Del69], building on work of Shimura and others. There is also
a similar statement for weight 1 due to both Deligne and Serre [DS74].
However, as we will discuss Serre’s original statement of his conjecture
here, we will ignore weight 1 forms. (There is a translation of Deligne’s
paper available from the IAS [Del04], it has nicer typesetting too.)

In fact the representations obtained in these constructions are p-adic
Galois representations ρ f : Gal(Q/Q) → GL2(Qp), as they were in theo-
rem 3.1.1. The representations of the theorem are then obtained from the
p-adic ones via a process of mod p reduction and semisimplification. The
mod p representations are the ones that we will be most interested in from
here on though.

Remark 3.2.2. Let ρ f be a Galois representation attached to a normalised
eigenform f ∈ Sk(N, ε; Fp) as in the theorem. As ρ f is semisimple and

det(ρ f (Frob`)) = χk−1
p (Frob`)ε(Frob`)

for all ` - Np (here viewing ε as character of Gal(Q/Q) now) we may apply
theorem 2.2.9 to see that condition (iv) of the theorem is equivalent to the
statement that

det ρ f = εχk−1
p .

By looking at the action of 〈−1〉 on f we find ε(−1) f = 〈−1〉 f = (−1)k f ,
and so

ε(c)χk−1
p (c) = (−1)k(−1)k−1 = −1,

hence det ρ f must be odd (i.e ρ f is odd).

We will look at some more properties of this construction in Section 4.3,
but first we move on to the conjecture itself.
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4 Serre’s conjecture

4.1 The qualitative form

Given the above result one might wonder about a converse statement,
given a mod p Galois representation satisfying some necessary conditions,
does it arise from an eigenform? Serre’s conjecture was that the answer
to this question is yes, all Galois representations that could possibly arise
from an eigenform, based on theorem 3.2.1 and the remark following it, do.

The conjecture naturally comes into two parts, a weaker existence state-
ment, and another refined form that makes exact predictions about an
extremal eigenform from which the Galois representation arises. We look
at the existence statement, or qualitative form first.

Conjecture 4.1.1 (Serre’s conjecture, qualitative form). Let

ρ : Gal(Q/Q)→ GL2(Fp)

be a continuous, odd, irreducible Galois representation. Then there exists a nor-
malised cuspidal mod p eigenform f , such that ρ is isomorphic to ρ f , the Galois
representation associated to f .

This is already a very useful thing to know, any statement one could
prove about Galois representations attached to mod p modular forms, by
using the theory of these forms for example, would hold for all odd 2-
dimensional mod p Galois representations. One interesting consequence of
this type stems from the fact that Deligne’s construction of Galois represen-
tations from modular forms is actually of p-adic representations. If we were
to assume theorem 4.1.1 and then apply this construction, we would be
able to lift all irreducible odd 2-dimensional mod p Galois representations
to p-adic Galois representations.

A similar statement to the one above also holds for reducible represen-
tations, which correspond to Eisenstein series instead. We will not consider
this more general setup here as it is not what the refined form of Serre’s
conjecture deals with.

This conjecture (at least for Galois representations unramified outside p)
appeared much earlier than the Duke paper and is mentioned by Serre in a
1975 paper [Ser75, sec. 3]. It was computations performed by J.-F. Mestre
that convinced Serre that strengthening this conjecture was plausible, and
this led to the form we are about to see.
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4.2 The refined form

After seeing the qualitative form of Serre’s conjecture it is natural to also ask
about the properties of the form f whose existence is claimed. Can anything
be said about the weight and level of f , based only on the properties of ρ?
Serre also conjectured that the answer to this question is yes. He defined
a weight, level and character for each ρ, such that there should be a form
f of that weight, level and character that ρ is attached to. In a slightly
backwards manner we will first state this refined form of the conjecture
more precisely, before moving on to motivate and define the integers N(ρ),
k(ρ) and character

ε(ρ) : (Z/N(ρ)Z)∗ → F∗p
used in the statement.

Conjecture 4.2.1 (Serre’s conjecture, refined form). Let

ρ : Gal(Q/Q)→ GL2(Fp)

be a continuous, odd, irreducible Galois representation. Then there exists a nor-
malised eigenform

f ∈ Sk(ρ)(N(ρ), ε(ρ); Fp)

whose associated Galois representation ρ f is isomorphic to ρ.
Moreover N(ρ) and k(ρ) are the minimal weight and level for which there

exists such a form f .

From now on we refer to a Galois representation ρ satisfying the hy-
potheses of this conjecture as being of Serre-type.

This conjecture is very bold, even given the existence statement of
theorem 4.1.1 it is not clear that there should be a simultaneously minimal
weight and level, let alone that they should be given by the relatively
straightforward (though intricate) description that we will soon see.

If correct however, the refined form is eminently more useful than the
qualitative form for specific applications. The precise definition of the level,
weight and character often allow one to actually find an associated eigen-
form and work explicitly with it to study a particular Galois representation.
Doing this would be far more difficult in general if no knowledge of the
modular forms side could be obtained from the representation.

We will soon give Serre’s explicit recipe for the weight, level and charac-
ter. First however we will look at some results that might lead one to make
these definitions in the first place.
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4.3 Results on Galois representations associated to modu-
lar forms

In order to try and understand which eigenforms can give rise to a partic-
ular Galois representation, it is useful to take an arbitrary eigenform and
study the properties of the representation attached to it, in an attempt to see
what information about the eigenform may be recovered. Several people
have obtained interesting results of this type which will be helpful for our
definition of the weight and level.

We fix a prime p and a normalised eigenform f ∈ Sk(N, ε; Fp) with
q-expansion

f = ∑
n≥1

anqn.

Let ρ f be the mod p Galois representation attached to f by theorem 3.2.1.
Concerning the conductor of ρ f there is the following result due to Carayol
and Livné [Car86, Liv89].

Theorem 4.3.1. Let N(ρ f ) be the level associated to ρ f (which we will define
explicitly in Section 4.4), then

N(ρ f )|N.

Given this it is natural to hope that any Galois representation ρ of Serre-
type arises from a form of level exactly N(ρ) as this is the minimal possible,
of course we still have yet to define this quantity!

We can also make useful observations concerning the restriction of ρ f to Gp,
and its subgroups, these have implications for our definition of the weight.
There are two main cases here depending on whether ap 6= 0 (the ordinary
case) or otherwise (the supersingular case). We start with the supersingular
case.

Theorem 4.3.2 (Fontaine). Suppose that 2 ≤ k ≤ p + 1 and that ap = 0 then
ρ f |Gp is irreducible, moreover, letting ψ1 and ψ2 be the two fundamental characters
of level 2, we have

ρ f |Ip ∼
(

ψk−1
1 0
0 ψk−1

2

)
.

This was originally proved by Fontaine in letters to Serre in 1979. There
is a published proof in [Edi92, sec. 6]. So in this case we can certainly
recover some information about the weight by looking at the restriction to
inertia.
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In the ordinary case we have slightly different behaviour.

Theorem 4.3.3 (Deligne). Suppose 2 ≤ k ≤ p + 1 and ap 6= 0 then ρ f |Gp is
reducible. Moreover, letting λ(a) : Gp → F∗p be the unramified character of Gp

that takes each Frobp ∈ Gp/Ip to some a ∈ F∗p, we have

ρ f |Gp ∼
(

χk−1
p λ(ε(p)/ap) ∗

0 λ(ap)

)
.

In particular when we look at the restriction to inertia we get

ρ f |Ip ∼
(

χk−1
p ∗
0 1

)
.

A proof of this result when k ≤ p is given in [Gro90] and the general
case was originally proved in an unpublished letter from Deligne to Serre.

Once again we can recover some information about the weight by
looking at the restriction to Ip. As χ2

p = χ
p+1
p eigenforms of weight 2 and

p + 1 give us similar looking representations when restricted to inertia.
This makes it more difficult to tell exactly what k was just by looking
at restriction to inertia in this case. This will cause us some issues later,
fortunately the following result will allow us to distinguish these two cases.

Theorem 4.3.4 (Mazur). Let f have filtration p + 1 and be such that ρ f is
irreducible, then ρ f |Gp très ramifé.

For p > 2 and trivial character this is due to Mazur [Rib90, sec. 6]. In
[Edi92, sec. 2] Edixhoven gives a modification to the general case.

In all the theorems we have just introduced the weight k is at most p + 1,
of course we can also make Galois representation from higher weight
eigenforms. So we need some way of finding out about the representations
attached to higher weight forms, using what we know about low weight
ones. To do this we use the Θ operator. Which preserves the set of mod
p normalised cuspidal eigenforms of a particular level, but in most cases
increases the filtration of the eigenform.

We then need to know how the action of Θ affects the associated Galois
representation, it turns out that Θ changes these representations in a very
simple way.
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Proposition 4.3.5. Let

Θ : Sk(N, ε; Fp)→ Sk+p+1(N, ε; Fp)

be the operator defined in theorem 2.1.7. Then if f ∈ Sk(N, ε; Fp) is a normalised
eigenform the Galois representation associated to Θ( f ) is

ρΘ( f )
∼= χp ⊗ ρ f .

Proof. In theorem 2.1.9 we saw that Θ took eigenforms to eigenforms, but
with the eigenvalue for each T` being ` times the original. So

tr(ρΘ( f )(Frob`)) = `a` = tr((χp ⊗ ρ f )(Frob`))

and

det(ρΘ( f )(Frob`)) = `k+p+1ε(`)

= `k+1ε(`)

= `2`k−1ε(`)

= det((χp ⊗ ρ f )(Frob`)).

By theorem 2.2.9 the representations ρΘ( f ) and χp ⊗ ρ f are isomorphic.

So applying Θ twists the associated representation by χp and if p - w( f )
then Θ increases the filtration by p + 1. Hence we can use the Θ operator to
transfer our understanding of Galois representations attached to modular
forms of weight at most p + 1 to modular forms of higher weight.

It is worth noting that the proofs of some of the above theorems actually
came after Serre’s paper. However it seems likely that observations of these
results in specific examples informed the recipe below.

4.4 The level

Assume that we have a Galois representation ρ : Gal(Q/Q)→ GL2(Fp) of
Serre-type. We now define the integer N(ρ) ≥ 1 which plays the role of the
level in the refined conjecture.

We can view our representation ρ as a homomorphism

Gal(Q/Q)→ Aut(V),

where V is a two-dimensional Fp vector space. Let G ∼= im ρ be the finite
Galois group obtained by quotienting out by the kernel of ρ. Then for each
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prime ` we let G`,i ⊂ G be the ith ramification group at ` of G, as defined
in theorem 2.2.5. Now, for each ` and i, consider the fixed subspace of V

V`,i = {v ∈ V : ρ(σ)v = v ∀σ ∈ G`,i}.

For each ` we define

ν`(ρ) =
∞

∑
i=0

1
[G`,0 : G`,i]

dim(V/V`,i),

this quantity is (non-trivially) an integer [GS95, p. 99]. We then set the level
to be

N(ρ) = ∏
` 6=p

` prime

`ν`(ρ).

This is indeed a positive integer, and by construction it is coprime to p, this
is necessary for it to be the level of a mod p cusp form. This number serves
to quantify the higher ramification of a Galois representation at all primes
other than p, the larger the ramification groups for a particular prime, the
larger the power of that prime in N(ρ). The definition here is almost that
of the Artin conductor of a representation, but here the p-part is ignored.

Remark 4.4.1. Unwinding this definition when ρ is unramified at some
`, we see that each V`,i is in fact the whole of V, as all the ramification
groups involved are trivial. Hence in this case ν`(ρ) = 0 and so N(ρ) is
only divisible by the primes ` 6= p at which ρ is ramified.

theorem 4.3.1 stated that when ρ comes from an eigenform f the integer
N(ρ) defined here divides the level of f . With that in mind conjecturing
that any Serre-type representation comes from an eigenform of level exactly
N(ρ) is fairly logical, though perhaps optimistic without more evidence.

4.5 The character and the weight mod p− 1

Beginning with a Galois representation of Serre-type, as before, we now
define the character

ε(ρ) : (Z/N(ρ)Z)∗ → F∗p.

We also state the class of k(ρ) mod p− 1, though the full definition of k(ρ)
will be given in the following section.
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Given a Serre-type Galois representation ρ we can compose with the
determinant map to obtain a continuous character

det ρ : Gal(Q/Q)→ F∗p.

The Artin conductor of a 1-dimensional Galois representation (i.e. the level
N(ρ) introduced in Section 4.4, but including the p-part now) is actually
equal to the conductor of the associated Dirichlet character [GS95, p. 228].
So we now partially compute the Artin conductor of det ρ in order to find a
number field that det ρ factors through.

Let V1 be the 2-dimensional vector space realising ρ and V2 be the 1-
dimensional vector space realising det ρ. If ρ|G`,i is trivial then det ρ|G`,i is
also trivial. So having dim(V2/V`,i

2 ) > 0 implies that dim(V1/V`,i
1 ) > 0. As

0 ≤ dim(V2/V`,i
2 ) ≤ 1 we get that

dim(V2/V`,i
2 ) ≤ dim(V1/V`,i

1 )

for all ` and i and so
ν`(det ρ) ≤ ν`(ρ).

This gives us that
N(det ρ) | N(ρ).

As the restriction of det ρ to Ip,w is trivial (see the proof of theorem 4.6.1,
using that characters are simple) we find that νp(det ρ) ≤ 1. So the full
Artin conductor of det ρ divides pN(ρ).

We can therefore identify det ρ with a homomorphism

(Z/pN(ρ)Z)∗ → F∗p,

or equivalently with a pair of homomorphisms

φ : (Z/pZ)∗ → F∗p,

ε : (Z/N(ρ)Z)∗ → F∗p.

The group (Z/pZ)∗ is cyclic of order p− 1 and so the image of φ lies
inside F∗p. So φ is an endomorphism of the cyclic group (Z/pZ)∗ and hence
is of the form

x 7→ xh,

for some h ∈ Z/(p− 1)Z. We have expressed the fact that φ = χh
p, where

χp is the mod p cyclotomic character.
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This gives us the factorisation

det ρ = εχh
p

and so, comparing with theorem 3.2.2, we set ε(ρ) to be the ε obtained here.
We also see that h had better be the same as k(ρ)− 1 modulo p− 1.

4.6 The weight

We now come to the final ingredient in Serre’s recipe, the weight k(ρ). The
general strategy of our approach here is to express a representation of
Serre-type as a twist of another representation, one that looks like it comes
from a cusp form of weight at most p + 1. We then read off the minimal
weight of a cusp form that could give this twisted representation. Then we
can apply the results above regarding the Θ operator (theorem 2.1.8 and
theorem 4.3.5) to define the weight of the original representation.

Given our Galois representation

ρ : Gal(Q/Q)→ GL2(Fp)

we restrict to the subgroup Gp to form

ρp : Gp → GL2(Fp).

The definition of k(ρ) will only depend on this ρp (in fact it will only depend
on ρp|Ip). We will from here on refer to k(ρ) as k(ρp) to emphasise this fact.
As such the weight will only reflect the behaviour at p of the representation,
whereas the level reflected the behaviour away from p.

Proposition 4.6.1. (Serre [Ser72, prop. 4]) The semisimplification ρss
p of ρp is

trivial when restricted to Ip,w.

Proof. It suffices to prove this for simple representations ρp, as a sum of
trivial representations is trivial.

The wild inertia Ip,w is a pro-p-group, and so the image is also a pro-
p-group. This group is finite, so it is simply a p-group, and defined over
some finite field Fq. Consider an Fq-vector space V that realises ρss

p |Ip,w .
Additively V is a p-group too, of order qn, where n is the dimension of V.
Looking at the action of ρss

p |Ip,w on V we see that there is a singleton orbit
{0}. As all orbits are of p-power order there must be an additional p− 1
singleton orbits at least, else the orbits could not partition V. Therefore the
fixed subspace W of V is non-trivial. However as Ip,w is normal in Gp the
subspace W is stable under Gp, hence W must equal V by simplicity.
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We may therefore view ρss
p as a representation of Ip,t, we shall write ρss

t
for this new representation. The tame inertia group is abelian, and so this
representation is diagonalisable. The representation ρss

t is therefore given
by a pair of characters

φ1, φ2 : Ip,t → F∗p.

Proposition 4.6.2. Both of the characters φ1 and φ2 are of the same level, and
that level is either 1 or 2.

Moreover if they are both of level 2 then they are pth powers of each other.

Proof. Letting a Frobenius element at p act by conjugation on σ ∈ Ip we
have that [RS99, p. 167]

Frobp σ Frob−1
p ≡ σp (mod Ip,w),

and so
ρss

t (Frobp σ Frob−1
p ) = ρss

t (σ
p) = ρss

t (σ)
p,

so we have an equivalence of representations

ρss
t
∼= (ρss

t )
p.

Hence the set {φ1, φ2}must be fixed by pth powering.
We then have two possibilities, either taking the pth power fixes each of

φ1 and φ2 or it swaps them. If they are both fixed then their images lie in
the prime field, so they are of level 1. Otherwise, if they swap under pth
powering, each of them is fixed under powering by p2, and hence they are
of level 2.

We now treat three different cases separately, based on the levels of the
characters just obtained and whether or not ρ|Ip,w is trivial.

4.6.1 The level 2 case

If the two characters φ1 and φ2 are of level 2 then ρp is irreducible.
To see this, assume otherwise and consider a stable 1-dimensional sub-

space of the vector space realising ρp. The representation ρp acts by a
character on this subspace, which is tamely ramified by the argument in
theorem 4.6.1. So this gives a character φ of Ip,t which extends to all of Gp,
so we have

φ(σ) = φ(Frobp σ Frob−1
p ) = φp(σ).
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Hence φ must factor through F∗p, i.e. φ is of level 1. This is a contradiction
as φ must be one of φ1 or φ2.

So ρp is irreducible and hence ρp = ρss
p , therefore the characters φ1 and

φ2 above define the representation ρp|Ip . We can write them in terms the
fundamental characters of level 2, ψ1 and ψ2 (as defined in theorem 2.2.11)
and use this description to define k(ρp). Specifically we can write φ1 as

φ1 = ψa
1ψb

2

with 0 ≤ a, b ≤ p − 1. If a = b then φ1 = (ψ1ψ2)
a = χa

p (recall theo-
rem 2.2.12), which contradicts φ1 being of level 2 as the mod p cyclotomic
character is of level 1. Now we observe that

φ2 = φ
p
1 = (ψa

1ψb
2)

p = ψa
2ψb

1,

so by switching the places of φ1 and φ2 if necessary we may assume that in
fact 0 ≤ a < b ≤ p− 1.

Now when restricting to inertia we have

ρp|Ip ∼
(

ψb
1ψa

2 0
0 ψa

1ψb
2

)
.

This looks a bit like the supersingular case of theorem 4.3.2. So we massage
our representation into the form seen in the theorem by factoring out a
character to get

ρp|Ip ∼
(

ψb
1ψa

2 0
0 ψa

1ψb
2

)
= ψa

2ψa
1

(
ψb−a

1 0
0 ψb−a

2

)
= χa

p

(
ψb−a

1 0
0 ψb−a

2

)

If we were just considering the rightmost matrix we would like to set
k(ρp) − 1 = b − a to be consistent with the theorem, however we have
twisted by χa

p. Recalling theorem 2.1.8 and theorem 4.3.5 we make the
definition

k(ρp)− 1 = b− a + a(p + 1),

or equivalently
k(ρp) = 1 + pa + b. (7)

As we have 0 ≤ a < b ≤ p− 1 we see that

2 ≤ k(ρp) ≤ 1 + p(p− 2) + p− 1 = p2 − p.
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4.6.2 The level 1 tame case

Assuming φ1 and φ2 are of level 1 and that ρp|Ip,w is trivial we can write

ρp|Ip ∼
(

φ1 0
0 φ2

)
=

(
χb

p 0
0 χa

p

)
.

For some integers a and b defined modulo p − 1, we can assume that
0 ≤ a ≤ b ≤ p− 2 by switching φ1 and φ2 if necessary. This looks similar to
the ordinary case we covered in theorem 4.3.3. So we factor out a character
again to get something that looks exactly like that theorem,

ρp|Ip ∼
(

χb
p 0

0 χa
p

)
= χa

p

(
χb−a

p 0
0 1

)
.

If we just had the right hand matrix we would want to set k(ρp)− 1 = b− a,
but once again we have a twist. Taking this into account we try to set

k(ρp)− 1 = b− a + a(p + 1),

or equivalently
k(ρp) = 1 + pa + b

as above, but there is a small issue this time. It is possible here that
a = b = 0, in which case this definition would give us k(ρp) = 1. How-
ever we do not want to consider weight 1 modular forms at all (indeed
we only attached Galois representations to eigenforms of weight at least
2), so our formula needs modifying in this case. Looking at Section 4.5
and theorem 2.1.5 we see that it is only permissible to change the weight
by multiples of p− 1. So to remedy the situation we add p− 1 when we
are in the problem case. The definition in this case is then

k(ρp) =

{
1 + pa + b if (a, b) 6= (0, 0),
p if (a, b) = (0, 0).

(8)

With this definition we have

2 ≤ k(ρp) ≤ 1 + p(p− 2) + p− 2 = p2 − p− 1,

unless p = 2, where the above inequality makes no sense, in which case
k(ρp) = 2 is the only possibility.
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4.6.3 The level 1 non-tame case

The final case is where φ1 and φ2 are of level 1 but the action of Ip,w on V is
non-trivial.

If we consider the subspace of V fixed by Ip,w the same argument we
used in theorem 4.6.1 shows that this subspace is always non-trivial. How-
ever Ip,w is assumed to act non-trivially and so V Ip,w must in fact be a
1-dimensional subspace. This subspace is stable under the action of Gp, as
is the space V/V Ip,w , so we may write

ρp ∼
(

θ2 ∗
0 θ1

)
,

where θ1 and θ2 are characters of Gp.
Using this decomposition we see that upon restricting to Ip we have

ρp|Ip ∼
(

χ
β
p ∗

0 χα
p

)
,

for some α, β ∈ Z/(p− 1)Z as the restrictions of θ1 and θ2 to Ip must be of
level 1.

We fix representatives α and β such that

0 ≤ α ≤ p− 2,
1 ≤ β ≤ p− 1.

We can then proceed in the same way as we did before, factoring out a twist
by χa

p to get

ρp|Ip ∼ χα
p

(
χ

β−α
p ∗
0 1

)
.

As before this looks like theorem 4.3.3, and at first glance it seems as if the
representation given by the right hand matrix comes from an eigenform
of weight β− α + 1. However if β− α = 1 this representation could have
come from a form of weight β− α + p + 1 instead, because χp = χ

p
p and

we cannot determine what the correct power of χp is.
This is a real problem as it is incorrect to simply use the smallest weight

here (or the largest for that matter). For example, let ρ be the mod 11
representation arising from the mod 11 reduction of the eigenform ∆ of
weight 12. This representation is unramified outside of 11 and so N(ρ) =
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1. Then, as the 11th Fourier coefficient of ∆ is 534612 ≡ 1 (mod 11),
theorem 4.3.3 tells us that

ρ|I11 ∼
(

χ11
11 ∗
0 1

)
=

(
χ11 ∗
0 1

)
.

So if we use β− α+ 1 for our definition here this would predict the existence
of a mod 11 eigenform of weight 2 and level 1 from which ρ arises, but
there are no such forms.

If β 6= α + 1 we do not have this problem, so Serre lets

a = min(α, β),
b = max(α, β).

and defines, as we did in Section 4.6.1,

k(ρp) = 1 + pa + b. (9)

When β = α + 1 we have to deal with the ambiguity by finding some
way of distinguishing representations that come from eigenforms of weight
2 and p + 1. In order to decide case we are in we can make use of theo-
rem 4.3.4. This theorem stated that if a Galois representation arises from a
filtration p + 1 form, then the representation at p is très ramifé.

So if ρp is peu ramifé this cannot be the case, and the twist of ρp looks
like it came from an eigenform of weight 2 rather than p + 1. We then
define k(ρp) as we did earlier via

k(ρp) = 1 + pa + b = 2 + α(p + 1). (10)

If ρp is très ramifé then it looks as if the twist comes from a form of
weight p + 1. So we make an analogous definition to what we have done
before, simply accounting for the twist starting from a weight p + 1 form.
We have one final adjustment to make, if p = 2 this definition would give
k(ρp) = 3, in Serre’s definition this is set to be 4 instead. In the end we
obtain the following definition

k(ρp) =

{
1 + pa + b + p− 1 = p + 1 + α(p + 1) if p 6= 2,
4 if p = 2.

(11)

Looking at the bounds for k(ρp) now we see that if β 6= α + 1 or if ρp is
peu ramifé then for all p

2 ≤ k(ρp) ≤ 1 + p(p− 2) + p− 1 = p2 − p.
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Otherwise for the très ramifé case we get

2 ≤ k(ρp) ≤ p2 − p + p− 1 = p2 − 1,

unless p = 2 where k(ρp) = 4 is the only possibility.
Considering all cases together we see that k(ρp) has range of

2 ≤ k(ρp) ≤ p2 − 1

for odd p, and k(ρp) ∈ {2, 4} for p = 2.

To see why this approach might be expected to produce the minimal possi-
ble weight when twisting is involved depends on analysis of the sequences
of filtrations

w(Θi f ) for 0 ≤ i ≤ p + 1,

for mod p eigenforms f . These sequences are known as Θ-cycles and they
are studied in detail in [Joc82].

4.7 A counterexample

In fact the conjecture exactly as stated above is in fact incorrect, this was
noted by Serre in a letter to Ken Ribet in 1987. The following counterex-
ample is due to Serre and is given in [Rib95, sec. 2] and also in [RS11, sec.
21.6.1] which we are following here (see also the notes for Serre’s paper
introducing the conjecture in his collected works).

Example 4.7.1. Let α be a root of x2 + 3x + 3, so that Q(α) = Q(
√
−3). The

space S2(13; Z) is spanned by the normalised eigenform

f = q + (−α− 3)q2 + (2α + 2)q3 + (α + 2)q4 + (−2α− 3)q5 + O(q6)

and its Gal(Q(α)/Q) conjugate form

g = q + αq2 + (−2α− 4)q3 + (−α− 1)q4 + (2α + 3)q5 + O(q6),

which is the other normalised eigenform in S2(13; Z).
The mod 3 Galois representation attached to f has determinant χ3φ,

where φ is the non-trivial Galois character coming from the extension
Q(
√

13)/Q. We can view φ as a Dirichlet character (Z/13Z)∗ → F3 using
the arguments of Section 4.4. Serre’s conjecture tells us that this character is
our ε(ρ) and so ρ should arise from some eigenform f in S2(13, φ; F3).
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We claim that no such non-zero f can exist. First, let H be the group of
squares in (Z/13Z)∗, i.e. the kernel of φ. Doing this we may view f as a
mod 3 cusp form of weight 2 for the group

ΓH(13) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod 13), d ∈ H

}
.

Although we did not define mod p modular forms for more general con-
gruence subgroups the definition is the same. We can see that the order of
the character of such a form must divide 2. However the space of weight
2 cusp forms on ΓH(13) is a subspace of S2(13; F3). This larger space is
spanned by f and g, both of which have a character of order 6. So the space
of mod 3 weight 2 cusp forms on ΓH(13) is zero, and f cannot exist.

This problem is fairly isolated and only arises when we work with
mod 2 Galois representations, or mod 3 Galois representations that have
abelian restriction to Gal(Q/Q(

√
−3)). In order to fix this issue whilst

sticking with our definition of modular forms it is necessary to change the
definition of the character in these cases. This problem is not a serious issue
with the validity of the conjecture in general however, if one simply ignores
the character completely or is a bit careful in the situations mentioned this
can be completely resolved.

4.8 The proof

As mentioned at the start, this conjecture is in fact now a theorem, due to
Khare and Wintenberger using results of Kisin and others.

For p 6= 2 it was known that the qualitative and refined forms were
equivalent before either was known in general. This reduction of the
refined form to the qualitative form was incremental and is due to a large
number of people, for example Ribet [Rib94] lists N. Boston, H. Carayol, F.
Diamond, B. Edixhoven, G. Faltings, B. H. Gross, B. Jordan, K. Ribet, H. W.
Lenstra, Jr., R. Livné, B. Mazur and J-P. Serre. The reduction for p 6= 2 was
completed by Diamond around 1993 [Dia95]. The missing case of p = 2
was completed by Khare and Wintenberger as part of their proof of the
conjecture.

Many special cases of Serre’s conjecture were also known long before
the general case. Indeed in 1973, 14 years before the Duke paper, John
Tate proved the conjecture when p = 2 for Serre-type representations
unramified outside 2 [Tat94]. Serre himself used similar techniques to

31



prove the same thing for p = 3 (published as a note on page 710 of volume
III of his collected works). As we will see in Section 6.2, for these cases what
needs to be shown in these proofs is that no such Galois representations
exist, to match the lack of cusp forms of level 1 for weights less than 12. It
is interesting to note that these proofs were not completely subsumed or
rendered obsolete by the proof of Khare and Wintenberger. Rather they
help form the base case for an induction type argument which gives the
full conjecture.

5 Examples

One of the great things about Serre’s conjecture, even if it were not yet
known to be correct, is the fact that it can be used in concrete cases easily.
Specifically, given a Galois representation of Serre-type we can calculate
the weight and level along with the character as detailed above, then in
many instances we can compute the associated space of eigenforms and
look for a form from which our Galois representation arises.

5.1 A Galois representation arising from ∆

Let’s return first to theorem 3.1.1, which concerned the cusp form ∆, and
check that everything we have just done is consistent with what we saw
there.

Example 5.1.1. We consider the 23-adic Galois representation ρ23, as out
of the representations we considered there it is the only irreducible one
and so the only case in which Serre’s conjecture may have something to
say. Recall that this was defined by taking K to be the splitting field of
x3 − x − 1, this is ramified only at 23 and has Galois group S3. We then
took r be the unique irreducible degree 2 representation of S3 taken with
coefficients in Q23, this representation satisfies

tr(r(σ)) =


0 if |σ| = 2,
2 if |σ| = 1,
−1 if |σ| = 3,

for each σ ∈ S3. The Galois representation ρ23 was then the composition

Gal(Q/Q)→ Gal(K/Q)
∼−→ S3 → GL2(Q23).
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In order to use Serre’s conjecture we need a mod p representation so we
reduce mod 23 to obtain ρ = ρ23.

Straight away we see that N(ρ) = 1 due to the fact K is unramified
outside 23 (see theorem 4.4.1). The determinant is the sign character φ of
S3, taken with values mod 23 and viewed as a character of Gal(Q/Q). As
φ is of order exactly 2 it must be the 11th power of χ23.

The inertia group is of order 2, and the wild inertia is trivial. Addition-
ally, as our whole representation lands in the prime field we are in the level
1 tame case. The two diagonal characters must be either 1 or φ|I23 , we know
their product is φ|I23 so we have

ρ23|I23 ∼
(

χ11
23 0
0 1

)
hence our weight is k(ρ23) = 11 + 1 = 12.

So ρ should have arisen from a normalised eigenform in

S12(1, Id; Fp) = Fp · ∆,

as we would expect.

5.2 A Galois representation arising from a D4 extension

Now we move to a new example, once again arising from the Galois group
of a number field.

Example 5.2.1. Take the K to be the splitting field of

f = x4 − 3,

so K = Q( 4
√

3, i). This extension has Galois group D4, generated by some σ

and τ, where

σ(
4
√

3) = 4
√

3, σ(i) = −i, τ(
4
√

3) = i 4
√

3, τ(i) = i.

We can turn this into a mod 5 Galois representation using the fact that D4
embeds into GL2(F5) via its natural 2-dimensional faithful representation

σ 7→
(

1 0
0 −1

)
, τ 7→

(
0 −1
1 0

)
.

So we obtain an irreducible a mod 5 Galois representation

ρ : Gal(Q/Q)→ Gal(K/Q)
∼−→ D4 → GL2(F5).
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What does Serre have to say about ρ? After fixing an embedding K ↪→ C,
complex conjugation corresponds to a reflection which maps to a matrix
of determinant −1, so we see that this representation is indeed odd, and
Serre’s conjecture will apply.

The determinant of ρ takes τ to 1 and σ to −1, so it factors through
Gal(Q(i)/Q) and corresponds to the non-trivial Dirichlet character of con-
ductor 4.

The conductor N(ρ) will only be divisible by 2 and 3, as these are the
primes dividing disc K and so ρ is unramified outside of these two primes.
We first note that any order 4 subgroup of D4 contains τ2. The image of
such a subgroup will therefore contain−I2 and hence will have trivial fixed
subspace.

For ` = 2 we find the following ramification groups

G2,0 = G2,1 = V4,

G2,2 = G2,3 = 〈τ2〉,
G2,4 = 1.

and so

dim V/V2,0 = dim V/V2,1 = 2,

dim V/V2,2 = dim V/V2,3 = 2,

dim V/V2,4 = 0.

Giving ν2(ρ) = 2 · 2 + 2 · 1
2 · 2 = 6.

For ` = 3 we find the following ramification groups

G3,0 = C4,
G3,1 = 1.

and so

dim V/V3,0 = 2,

dim V/V3,1 = 0.

Giving ν3(ρ) = 2. Together we get that N(ρ) = 2632 = 576.
As K is unramified at 5 the restriction to inertia is trivial. So we are in

the level 1 tame case, with trivial characters, and hence the weight k(ρp) is
5. Finally we let ε be the extension of the non-trivial Dirichlet character of
conductor 4 to a Dirichlet character for N(ρ).
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So ρ should come from some eigenform f ∈ S5(576, ε; F5). We can
explicitly compute this space using, for example, Sage [S+15]. Doing this
gives us a number of eigenforms, including

q+ 2q5 + 2q13 + 4q25 + 3q37 + q49 + 3q61 + 4q65 + 3q73 + 3q97 +O(q109),

which we verify has the expected q-expansion coefficients ap for prime p
up to q1000 (i.e. 2 if Frobp = 1, −2 if Frobp = τ2 and 0 otherwise).

6 Consequences

Serre’s conjecture is a strong statement that implies many other results
within number theory. We now mention briefly a few of these. The first two
are little more than examples but interesting ones nonetheless, whereas the
third is a very deep statement within arithmetic geometry.

6.1 Finiteness of classes of Galois representations

First let us examine a very direct consequence. Fix a prime p and an integer
N and consider Serre-type Galois representations

ρ : Gal(Q/Q)→ GL2(Fp)

whose associated levels N(ρ) divide N. Serre’s conjecture states that each
corresponds to some normalised mod p eigenform of level N(ρ)|N and
weight k(ρ) in the range [2, p2 − 1] (or {2, 4} for p = 2). However there are
only finitely many spaces of forms satisfying these requirements and only
finitely many normalised eigenforms in each. Therefore for each prime p
and integer N there are only finitely many isomorphism classes of mod p
Serre-type Galois representations of conductor dividing N. Apparently
there are no alternative methods of proving this result currently known
[Wie13].

6.2 Unramified mod p Galois representations for small p

We can specialise the previous type of direct argument further to get more
control over the number of representations with particular properties. In
fact we can get enough control to prove the following non-existence result.
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Let ρ be a Serre-type mod p Galois representation for some p ≤ 7 that
is unramified outside of p. In this case, due to the absence of ramification,
N(ρ) is simply 1 (recall theorem 4.4.1). The idea of our definition of the
weight was that each Galois representation ρ should be the twist by a power
of the cyclotomic character of another form ρ′, such that 2 ≤ k(ρ′) ≤ p + 1.

So Serre’s conjecture predicts there is some mod p cusp form of level 1
and weight ≤ 8 from which some twist of ρ arises. But there are no cusp
forms of level 1 of weight < 12 and so such a twisted representation cannot
exist, hence the original ρ cannot exist either. As mentioned in Section 4.8
this sort of statement was shown via other methods prior to the proof of
the full conjecture and provided important theoretical evidence in support
of Serre’s conjecture.

6.3 Modularity of abelian varieties

In this section we look briefly at another strong result that follows from
Serre’s conjecture, despite it not obviously concerning the objects related
in the conjecture. This was a genuinely new result that was not known
before the proof of Serre’s conjecture and so serves as a good example of the
usefulness of the conjecture outside of its immediate domain. Going into
detail would take us too far afield so this section is necessarily sketch-like
and without background material. For more details see [Rib04] or [RS11,
chap. 15].

Definition 6.3.1. An abelian variety A over Q is modular if there exists an
N such that there is a surjective map defined over Q

J1(N) � A.

Definition 6.3.2. An abelian variety A defined over Q is said to be of GL2-
type if it is simple and its endomorphism algebra

Q⊗ EndQ(A)

contains a number field E whose degree is equal to the dimension of A.

Example 6.3.3. Elliptic curves are of GL2-type because all endomorphism
rings over characteristic 0 fields of elliptic curves contain Z and hence

Q ⊂ Q⊗ EndQ(E).
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Ken Ribet has shown [Rib04] that Serre’s conjecture implies the follow-
ing nice classification of modular abelian varieties.

Theorem 6.3.4. Every abelian variety of GL2-type is modular.

This theorem is a generalisation of the Taniyama–Shimura–Weil con-
jecture, or modularity theorem, first proved by Breuil, Conrad, Diamond
and Taylor in 2001 [BCDT01]. However this modularity statement is signif-
icantly stronger and uses the full power of Serre’s conjecture. Indeed this
theorem was not known prior to the proof of the conjecture.
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In Modular functions of one variable III, pages 191–268. Springer,
1973.

[Ser75] Jean-Pierre Serre. Valeurs propres des opérateurs de Hecke
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