
Coleman Integration in Larger Characteristic

ANTS XIII — University of Wisconsin, Madison

Alex J. Best

17/7/2018

Boston University

The big picture

Be

Ba-BaTu BaBrKe

Mi-ArBeCoMaTr Ha

CaDeVe-Go-GaGu-Sh-Tu Kedlaya
Õ(
√
p)

More curves

Coleman integration

Arul, Balakrishnan, Best, Bradshaw, Castryck, Costa, Denef, Gaudry, Gurel, Harvey, Kedlaya, Magner,

Minzlaff, Shieh, Triantafillou, Tuitman, Vercauteren, and more. . .

There is (at least) one dimension missing: Small p!

Motivation

(Explicit) Coleman integration is a central tool in (non-abelian)
Chabauty and can be applied to find: heights, torsion points and
regulators also, but, algorithms lag behind the related ones for zeta
functions.

Longer term goals:

• Adapt descendants of Kedlaya’s algorithm to compute
(iterated) Coleman integrals, e.g.:
• Larger characteristic (Harvey)
• Average polynomial time (Harvey)
• Effectiver average polynomial time (Harvey-Sutherland)

• Applications to rational points, combining congruence
information for many primes, 1-step (Mordell-Weil) sieving.

Coleman integration

Throughout we take X/Zp a genus g odd degree hyperelliptic
curve, and p an odd prime. We pick a lift of the Frobenius map,
φ∗ : X → X , and write A† (resp. Aloc(X)) for overconvergent (resp.
locally analytic) functions on X .

Theorem (Coleman)

There is a Qp-linear map
∫ x
b : Ω1

A†
⊗Qp → Aloc(X) for which:

d ◦
∫ x

b
= id : Ω1

A† ⊗Qp → Ω1
loc “FTC”

∫ x

b
◦ d = id : A† ↪→ Aloc∫ x

b
φ∗ω = φ∗

∫ x

b
ω “Frobenius equivariance”

Reduction to reduction

Balakrishnan-Bradshaw-Kedlaya reduce the problem of computing
all Coleman integrals of basis differentials ωi of H1

dR(X) between
∞ ∈ X and a point x ∈ X (Qp), to:

1. Finding “tiny integrals” between nearby points,

2. Writing φ∗ωi − dfi =
∑

j aijωj and evaluating the primitive fi

for a point P near x , for each i .

Applying φ∗ to the basis x i dx/2y for i = 0, . . . , 2g − 1 gives

φ∗ωi ≡
N−1∑
j=0

(2g+1)j∑
r=0

Bj ,rx
p(i+r+1)−1y−p(2j+1)+1 dx

2y
(mod pN)

Bj ,r ∈ Zp are in terms of coefficients of the curve and binomial
coefficients.

Kedlaya’s algorithm

Theorem (Kedlaya)

The action of φ∗ on H1
MW(X) (which determines the zeta

function of X) can be computed in time

Õ(p).

Theorem (Harvey)

If p > (2g + 1)(2N − 1) the action of φ∗ on H1
MW(X) can be

computed in time
Õ(
√
p).

The problem solved here is almost the same: determining aij s.t.

φ∗ωi −
∑
j

aijωj ∈ image(d).

Primitive technology

Revised problem
Computing f along with ω − df when reducing degree.

For vanilla Kedlaya this is “easy”, the reduction procedure is
transparent, whenever we subtract dg to reduce, add g onto f .

For faster variants, this is not so simple!

The reduction process

Harvey uses horizontal and vertical reductions to find the action
of Frobenius on cohomology, abstractly we have:

Spaces of differentials Wt , indexed by degree, each of dimension 2g .

Goal
Reduce all differentials from Wt to a cohomologous one in W0,
write in terms of fixed basis of W0.

Relations in the de Rham cohomology linear maps
R(t) : Wt →Wt−1 ∀t, with R(t)ω ∼ ω. Want to evaluate

Wt 3 ω 7→ R(1)R(2) · · ·R(t − 1)R(t)ω ∈W0

O(
√
p)

Key fact

Entries of R(t) are fractions of linear functions of t, with Zp

coefficients; work of Bostan-Gaudry-Schost (& Harvey) =⇒
products can be interpolated
R(a, b) = R(a + 1) · · ·R(b) R(a + 1 + t, b + t)

This is what gives a Õ(
√
p) algorithm.

We also want an evaluation of the primitive fω for which
ω − dfω = R(t)ω. We can keep this extra data throughout the
recurrence as fω is linear in ω.

Vital remark
We must use evaluations of primitives here, instead of trying to
compute f as a power series.

A problem and a solution

Stumbling block
This is no longer linear in the index t! You cannot apply BGS to
evaluate this recurrence faster.

Horner to the rescue!

Instead of computing a series
∑N

i=0 aix
i by computing sequentially(

N∑
i=t

aix
i

)
t=N,N−1,...,0

we can instead compute

((· · · ((aN)x + aN−1)x + · · ·)x + a0)

from the inside to the out. This is an iterated composition of
linear functions, each of which is linear in the index t.

Explicit recurrence

In matrix form we augment the (numerators of) the reduction
matrices:



y−2t dx/2y ··· x2g−1y−2t dx/2y f (P)

y−2(t−1) dx/2y (2t − 1)r0,0 + 2s ′0,0 · · · (2t − 1)r2g−1,0 + 2s ′2g−1,0
...

...
. . .

...
x2g−1y−2(t−1) dx/2y (2t − 1)r0,2g−1 + 2s ′0,2g−1 · · · (2t − 1)r2g−1,2g−1 + 2s ′2g−1,2g−1

f (P) −S0(x) · · · −S2g−1(x) y−2DV (t)


so that we keep in memory a vector v ∈Wt ×Qp which gives the
evaluation at the end.

Many integrals simultaneously

We may wish to do this with multiple points in several residue
disks. Instead of repeating the whole procedure (repeating
computing the Frobenius matrix), augment with many points.



y−2t dx/2y ··· x2g−1y−2t dx/2y f (P1) ··· f (PL)

y−2(t−1) dx/y (2t − 1)r0,0 + 2s ′0,0 · · · (2t − 1)r2g−1,0 + 2s ′2g−1,0
...

...
. . .

...
x2g−1y−2(t−1) dx/y (2t − 1)r0,2g−1 + 2s ′0,2g−1 · · · (2t − 1)r2g−1,2g−1 + 2s ′2g−1,2g−1

f (P1) −S0(x(P1)) · · · −S2g−1(x(P1)) y−2(P1)DV (t) · · · 0
...

...
. . .

...
...

. . .
...

f (PL) −S0(x(PL)) · · · −S2g−1(x(PL)) 0 · · · y(PL)−2DV (t)



Note
This matrix and its iterates have the same fixed form, when
running BGS don’t try and interpolate entries that are always 0
 better run time.

Thanks for listening!

Questions/comments?

