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Elliptic curves with good reduction
outside of the first six primes

Alex J. Best∗ Benjamin Matschke∗∗

July 20, 2020

Abstract

We present a database of rational elliptic curves, up to -isomorphism, with good
reduction outside {2, 3, 5, 7, 11, 13}. We provide a heuristic involving the abc and BSD
conjectures that the database is likely to be the complete set of such curves. Moreover,
proving completeness likely needs only more computation time to conclude. We present
data on the distribution of various quantities associated to curves in the set. We also
discuss the connection to S-unit equations and the existence of rational elliptic curves
with maximal conductor.

1 Introduction

Databases or tables of all elliptic curves subject to various constraints have been published
since the 1970s, including in the well known Antwerp IV conference proceedings [6]. Such tables
are useful both in identifying a given curve appearing in nature, or for proving a curve with
certain properties does not exist. Tables can also be used to answer distributional questions
about properties of elliptic curves when ordered in different ways.

The most well known such tables are those of elliptic curves over with bounded conductor
due to Cremona [12, 11], which now form part of the LMFDB [26].

One may instead, however, construct tables of elliptic curves with bad reduction only at
primes in a specified set S of rational primes. These are exactly the primes dividing the
conductor. Organising curves by their primes of bad reduction can be quite useful in practise;
it is often possible to prove a particular curve has good reduction outside certain places, and
then conclude that the curve is contained in such a table for some S.

In particular many classical diophantine equations can be phrased in terms of the existence
of elliptic curves with specified places of bad reduction, see Sections 4.1 and 4.2.
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In this paper we compute and study what is conjecturally the complete set of isomor-
phism classes of elliptic curves over with good reduction away from the first six primes
{2, 3, 5, 7, 11, 13}. This set and the code and auxiliary data used to compute it (including
Mordell–Weil bases for almost 100,000 Mordell curves) are available at

https://github.com/elliptic-curve-data/ec-data-S6 .

Many of the curves in this set have quite large conductor, but nevertheless, by virtue of having
bad reduction at only a few small primes, can be simpler arithmetically than other curves with
smaller conductor.

History. We now give a non-exhaustive overview of previous work computing databases of
elliptic curves over .

In the late 1980’s, Brumer and McGuinness [8] computed rational elliptic curves of prime
discriminant � bounded by |�|  108. Stein and Watkins [36] then extended this database to
include almost all curves up to |�|  1012 with either conductor N  108 or prime conductor
less than 1010.

To compute the set of elliptic curves with bounded conductor, Tingley [40] used modular
symbols to find all elliptic curves with N  200. This was greatly extended and improved
by Cremona [12, 11], who has currently computed all of these curves up to N  500000.
Initially this approach was only known to compute modular elliptic curves, and it was only
when modularity was proved that it was confirmed [7] that over being modular is not a
restriction.

A third natural way to construct a database of elliptic curves is by restricting the set of
places of bad reduction, i.e. the primes that divide N (or equivalently, primes that divide the
minimal discriminant). For any finite set of rational primes S, let M(S) denote the finite set
of elliptic curves over with good reduction outside of S, up to -isomorphism, and let

NS :=
Y

p2S
p.

We may then hope to compute the set M(S) for various sets S.
The set M({2, 3}) was computed by Coghlan [9] and Stephens [37], and Coghlan’s data

was republished as Table 4 in [6]. Agrawal, Coates, Hunt and van der Poorten [1] computed
M({11}) via a reduction to Thue–Mahler equations. Cremona and Lingham [13] computed
M({2, p}) for p  23 via a reduction to the computation of S-integral points on Mordell
curves. Koutsianas [25] used a reduction to S-unit equations over number fields to compute
M({2, 3, 23}), as well as curves E 2 M(S) for various other S satisfying certain restrictions on
the 2-division field of E. Von Känel and the second author [22] computed M({2, 3, 5, 7, 11})
as well as all M(S) with NS  1000 using an elliptic logarithm sieve to compute S-integral
points on elliptic curves. Bennett and Rechnitzer [4] and Bennett, Gherga and Rechnitzer [3]
computed M({p}) for all p  500000 using a refinement of the reduction to Thue–Mahler
equations and Thue equations. The latter paper also recomputes M({2, 3, 5, 7, 11}) using this
approach. Moreover, using a heuristic they computed all curves in M({p}) for p  1010,
without guaranteeing completeness.

Finally we mention that there are various extensions to the above methods to compute
elliptic curves over number fields with good reduction outside of a given set of places. In
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particular the aforementioned approaches of Cremona and Lingham [13] and of Koutsianas [25]
generalise to the number field setting.

Outline. The aim of this paper is to compute the set M({2, 3, 5, 7, 11, 13}). We have com-
puted a subset of this that is heuristically the full set, but is not proved to be complete by our
method at present.1 In Sections 1.1 and 1.2 we give a summary of our data and discuss some
statistics of the data. We compare our data to Cremona’s database in Section 1.3.

Our computation relies on a reduction to solving Mordell equations in S-integers; this is
discussed in Section 2.1. The main computational bottleneck is computing the Mordell–Weil
bases of a large set of Mordell curves; this is elaborated upon in Section 2.2.

In Sections 2.3 and 2.4, we discuss a heuristic that our database should be complete and
the possibility of proving completeness via additional computation. In Section 3, we show
some results suggested by the data regarding the question for which sets S there are elliptic
curves with good reduction outside S of maximal possible conductor. In Section 4, we discuss
connections and applications to solving other classical diophantine equations including S-unit,
Thue–Mahler and Ramanujan–Nagell equations.

Acknowledgements. It is our pleasure to thank Edgar Costa for various useful comments
and for computing the analytic ranks of all curves in our database, as well as the leading
coefficients and root numbers of the associated L-series. They are available from the same
GitHub repository. We would also like to thank the anonymous referees for their helpful
comments on earlier versions of this article.

1.1 Summary of the database

Let S(n) denote the set of the first n rational primes. According to our computation, the
set M(S(6)) contains 4576128 curves in total; see Table 1. Here, j(M(S(n))) is the set of
distinct j-invariants of curves in M(S(n)); the cardinality of this set is therefore the number
of -isomorphism classes of curves in M(S(n)).

n #M(S(n)) #j(M(S(n)))

0 0 0 Tate (cf. Ogg [29])
1 24 5 [9, 37, 29]
2 752 83 [9, 37]
3 7600 442 [22]
4 71520 2140 [22]
5 592192 8980 [22, 3]
6 4576128⇤ 34960⇤ this paper

Table 1: Numbers of elliptic curves with good reduction outside S(n) up to -isomorphism and
up to -isomorphism. The asterisk refers to the possible incompleteness of this paper’s table.
The case n = 0 is the classical result that there is no elliptic curve over with everywhere
good reduction.

1
However, work in progress by the second author gives the same set of curves using a different method.
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When n � 2 we can obtain all of M(S(n)) by taking a representative of each -isomorphism
class of curves in M(S(n)) and twisting this representative by all integers divisible only
by primes in S(n). For j 6= 0, 1728, we only have quadratic twists. When j = 1728 we
have quartic twists, and for j = 0 sextic twists (our assumption that n � 2 implies that
0, 1728 2 j(M(S(n)))), giving the equation

#M(S(n)) = 2n+1(#j(M(S(n)))� 2) + 2 · 4n + 2 · 6n.

This holds in all cases above and provides a quick check that nothing that obviously should
have been in the database has been missed.

Each curve in M(S(6)) has conductor N | 28355272112132, which gives, a priori, 4374 pos-
sibilities for N . It turns out that exactly 4344 of them are indeed attained by curves in our
set. The 30 exceptions for which there is no curve with that conductor are

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60, 81, 165,

169, 351, 945, 1280, 1820, 2673, 2816, 9984, 13365, 362880}.

These exceptions factor as follows:

{1, 2, 3, 22, 5, 2 · 3, 7, 23, 32, 2 · 5, 22 · 3, 13, 24, 2 · 32, 2 · 11, 52, 22 · 7, 22 · 3 · 5, 34, 3 · 5 · 11,

132, 33 · 13, 33 · 5 · 7, 28 · 5, 22 · 5 · 7 · 13, 35 · 11, 28 · 11, 28 · 3 · 13, 35 · 5 · 11, 27 · 34 · 5 · 7}.

These (non-)conductors are all within the range of Cremona’s database, and we can therefore
check that there are indeed no elliptic curves with any of these numbers as their conductor.
We note that the largest conductor for which no elliptic curve of that conductor exists is less
than the square root of the largest possible conductor of a curve in M(S(6)).

Next we consider isogeny classes in M(S(6)). This is also a natural partition of curves in
the database as M(S(n)) is closed under taking isogenies (any two isogenous curves have the
same conductor). Our data contains 3688192 disjoint isogeny classes in total: 2966912 classes
of cardinality one, 646784 of cardinality two, 4608 of cardinality three, 60928 of cardinality five,
6784 of cardinality six, 2176 of cardinality eight, and no others. An example of a curve in
M(S(6)) with isogeny class of cardinality 8 is

y
2 = x

3 + 827614112325x+ 276113445805174250.

Edgar Costa has computed the analytic ranks of all curves in our table, as well as the
leading coefficients and root numbers of the associated L-series. His computations use interval
arithmetic, and hence the leading coefficients are given with exact error bounds. The standard
problem that remains is that it is impossible to verify numerically that the lower derivatives
vanish exactly, and thus the computed analytic rank is actually only an upper bound once
the rank is large enough. According to his computations, there are 1884428 curves of analytic
rank zero in our data, 2267261 of analytic rank one, 406309 of analytic rank two, 18003
curves of analytic rank three, and the remaining 127 curves are of analytic rank four. We
can compare this to the number of rational elliptic curves with conductor bound N  500000
of each rank using Cremona’s database: for these curves, Cremona computed analytic and
algebraic ranks (and checked that they coincide), and found that there are 1632686 curves of
rank zero, 2124004 of rank one, 461670 of rank two, 11243 of rank three, and 1 of rank four.
In both tables, we observe, similarly, a larger number of rank 1 curves than rank 0 curves. An
intriguing difference is the larger number of rank 4 curves in our data, compared to a similar
total number of curves when ordered by conductor.
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1.2 Distribution of quantities

In this section we study the distribution of various arithmetical quantities associated to curves
in our dataset. As these curves have bad reduction at only the first six primes, they are quite
structured, and it is interesting to compare answers to distributional questions to when curves
are ordered with respect to conductor or discriminant.

5 10 15 20 25
0

2e4

4e4

6e4

8e4

1e5

(a) Elliptic curves in our data set.

4 6 8 10 12
0

5e4

1e5

1.5e5

2e5

(b) Elliptic curves with N  500000.

Figure 1: Histograms of logarithms of conductors: (a) shows the curves we computed
within M(S(6)). For a comparison, (b) shows all rational elliptic curves with N  500000
according to Cremona’s database. The bar at log(500000) ⇡ 13.1 signifies the end of the
overlap of both tables.

One fundamental quantity is the conductor. We plot the distribution of the logarithm
of the conductor for the curves in our database as a histogram in Figure 1(a). We take the
logarithm of N due to the multiplicative nature of the conductor. Indeed, if the conductor
exponents fp in N =

Q
p2S p

fp were uniformly and independently distributed (which they are
not), then in Figure 1(a) we would see an approximately normal distribution with mean 14.037
and standard deviation 4.382. The observed distribution of log(N) is comparatively lopsided:
It appears denser in the larger conductor range. This could be explained by the fact that one
can turn good into additive reduction at p � 3 via twisting by p (as the reduction of E at p

will have Kodaira symbol I⇤0 by Tate’s algorithm), without leaving M(S(6)).
The Szpiro ratio of an elliptic curve over is defined to be the ratio

� =
log |�E |

logN

of the logarithms of the minimal discriminant of the curve and its conductor. Figure 2(a)
sketches the distribution of Szpiro ratios for the curves in our database. Szpiro’s conjecture
states that |�E | = O"(N6+"), or equivalently, that for any � > 0 there are only finitely many
elliptic curves over with � > 6 + �.

Indeed, the largest Szpiro ratios occurring among all curves in our dataset are approxi-
mately

8.757316, 8.371586, 8.11481 and 8.034917 . . . .
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(a) Elliptic curves in M(S(6)).
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(b) Elliptic curves with N  500000.

Figure 2: Histograms of Szpiro ratios � = log(�E)/ log(N). (a) shows the curves we computed
within M(S(6)). For a comparison, (b) shows all rational elliptic curves with N  500000
according to Cremona’s database. We observe three differences: the larger maximal value
for � in (b) (namely 8.903700), the larger mean for � in (a), and (b) contains a significant
number of curves with � = 1 (namely 602).

The curves for which these ratios occur are all in the LMFDB and have labels 858.k2 , 2574.j2 ,
910.e1 , and 9438.m2 respectively. The second and fourth of these are both quadratic twists
of the first. It seems that these three have a large Szpiro ratio due to a factor of 321 in each
of their discriminants. The third has a factor of 263 in its discriminant. These are the only
four curves in our set with � � 8. There are 123 curves in the database with � � 7, only 15
of which have conductor larger than 500000. The largest � from our data with N > 500000
has N = 532350 and � ⇡ 7.161459.

1.3 Comparison with Cremona’s database

Cremona [12, 11] has computed the set of all rational elliptic curves with conductor less than
various bounds, currently up to N  500000.

If S is the set of primes of bad reduction of an elliptic curve E of conductor N , then

NS  N  1728N2
S .

Thus, in principle, the problems of computing M(S) and all curves of bounded conductor
are equivalent. Both parameters S and N stratify the infinite set of rational elliptic curves.
In practise, however, these stratifications differ considerably: for example, M(S(6)) contains
14216 curves of conductor 28355272112132 ⇡ 1012, which is considerably larger than 500000;
and on the other hand, M(S(6)) does not contain the four curves with conductor 17.

Cremona’s database contains at present 1238682 distinct j-invariants, whereas the compu-
tation we performed resulted in 34960, because for each j-invariant, our set contains at least
128 distinct twists. On the other hand, Cremona’s database contains 3064705 -isomorphism
classes of curves, whereas ours contains 4576128. Despite the fact that the two databases
contain more or less the same number of curves, there are 4376070 curves in our set not
contained in the Cremona database, that is, less than 5% of our set overlaps with his. We
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observe significant differences in the distributions of log(N) and of � for both data sets, see
Figures 1 and 2.

Cremona’s tables contain more information about each curve present there than our ta-
bles currently do, including Manin constants, generators for the Mordell–Weil group, BSD
invariants, modular degrees, optimality data, sets of integral points and images of Galois rep-
resentations. Much of this data would be prohibitively difficult to compute for every curve in
our set due in part to the size of the conductors of some of the curves in our table.

2 Computation

In this section, we discuss the reduction of computing M(S) to the problem of solving Mordell
equations, the computation of the requisite Mordell–Weil bases, which is then the dominant
computational task to be undertaken, and the heuristic completeness of the obtained data.

The code implementing the methods described here and computed data are available on-
line. The repository https://github.com/elliptic-curve-data/ec-data-S6 contains the major-
ity of the code, and the file morde��.sage of https://github.com/bmatschke/solving-classical-

diophantine-equations/ contains an implementation of the algorithm of von Känel and the
second author [22].

2.1 Computation method

Let S denote a finite set of rational primes, let M(S) denote the set of elliptic curves over
with good reduction outside of S, up to -isomorphism, and let

NS :=
Y

p2S
p.

For this section, we assume that 2, 3 2 S, which can be achieved by enlarging S if necessary.
Let OS = [1/NS ] denote the ring of S-integers and O

⇤
S the group of S-units.

A theorem of Shafarevich [31] states that for any such S, the set of curves M(S) is finite.
This can be seen as follows: for any E 2 M(S), choose a minimal Weierstrass model for E

and consider the c4 and c6 invariants and discriminant �E of this model. These invariants
satisfy the equation c

2
6 = c

3
4 � 1728�E and �E 2 \ O

⇤
S . If necessary, we may divide this

equation by a power of p
6 for each p 2 S to obtain an equality of the form Y

2 = X
3 + a,

where X,Y 2 OS and a = ±
Q

p2S p
ep with 0  ep  5 (p 2 S). The pair (X,Y ) can then be

regarded as an S-integral point on the Mordell curve

Ea : y
2 = x

3 + a.

By a theorem of Siegel [32, 33], the set Ea(OS) is finite. From any point in Ea(OS), we can
recover potential invariants c4 and c6 that produce the point, up to any factors of p6 in c

3
4 and

c
2
6 for p 2 S. This recovers E up to a quadratic twist by a positive S-unit. Moreover, there

are exactly 2|S| such twists.
We deduce that M(S) is finite, and its computation reduces to the computation of Ea(OS)

for finitely many values of a. To determine Ea(OS), we use the algorithm of von Känel and
the second author [22], who gave a method to compute S-integral points on rational elliptic
curves E provided that generators of the free part of E( ) are known. Their implementation
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uses an elliptic logarithm sieve, which can compute Ea(OS) in quite an efficient manner. Thus
to compute M(S), it turns out that computing the necessary Mordell–Weil bases of 2 · 6|S|

Mordell curves is the computational bottleneck. In Section 2.2 we discuss this in detail.

2.2 Computing Mordell–Weil bases

We have carried out the approach outlined above for S = S(6). We now discuss the most
computationally intensive part of the process, which is finding the generators of the free
part of the Mordell–Weil group for a number of Mordell curves, many of which have large
discriminant. We will use the term Mordell–Weil basis to refer to these generators. Note that
finding the generators of the torsion subgroup is both computationally easier and completely
classified for Mordell curves [19], so henceforth we assume it is known.

The curves we consider are those with

a 2 {±2e23e35e57e711e1113e13 : 0  ep  5}, (2.1)

giving us 93312 curves for which we wish to find the Mordell–Weil bases.
We can reduce the number of curves that we need to consider using the following fact.

Lemma 2.2. All Mordell curves have a 3-isogeny given by

y
2 = x

3 + a ! y
2 = x

3
� 27a (2.3)

(x, y) 7!

✓
y
2 + 3a

x2
, y

y
2
� 9a

x3

◆
(2.4)

As the composition of two such isogenies is an isomorphism between two models of the
same curve, these 3-isogenies partition our set of Mordell curves into pairs. The upshot is
that if we can find generators of the Mordell–Weil group of one of each pair, we can easily
find generators for the other by pushing the basis forward along the isogeny and saturating,
if necessary. Using this we need only compute the Mordell–Weil bases of half the curves, and
we may choose which of each pair to consider.

2.2.1 Standard techniques

Out of the 93312 Mordell curves, we have computed what should be the analytic rank of those
with positive a using Pari/GP’s e��ana�yticrank [39], via Sage [16]. Using the above isogeny,
the other half of the curves will have the same Mordell–Weil rank. Of these curves, 20215
have analytic rank zero, 23186 have analytic rank one, 3112 have analytic rank two, 142 have
analytic rank three, and only 1 curve has analytic rank four which is

y
2 = x

3 + 82063881900.

We assume that the output of e��ana�yticrank is correct and that the analytic ranks are
as stated above. As Pari does not use interval arithmetic, it is not clear to what extent these
computations are guaranteed to be correct (especially for the high rank cases). As we shall see
below we have found as many generators as there should be for almost all curves. For many
of the curves, once a set of generators is found, descent techniques can be used to prove that
the algebraic rank equals what is implied by BSD and that the set of generators is complete.
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By the work of Gross–Zagier [20] and Kolyvagin [24], it is known that analytic rank  1
implies the rank equals the analytic rank. Therefore no further computation is required for
the analytic rank 0 curves above. For the analytic rank 1 curves, we need only to find a single
non-torsion point which we can then saturate to find a basis.

For many rank 1 and 2 curves in the set and for all curves of rank at least 3, a combination
of the built-in Magma and Sage functions and a few other techniques summarized below
sufficed to compute the Mordell–Weil bases. These included two and four-descents methods,
point-searching with Stoll’s ratpoints program [38] and Simon’s e��Q [35] to search for points
in some instances.

For the curves of rank at least 2, sometimes it was only possible to find a subset of a set
of generators on each curve of each three-isogenous pair. However in this case, it was often
possible to map one set of generators via the isogeny to the other curve, and combine the
generators to give a basis for the Mordell–Weil group of one (and therefore both) curves. This
happened mostly when the height of the found generators grew when mapped to the isogenous
curve.

In rank 1, Heegner points are available in addition to the other machinery of point-searching
and descent [10]. In theory, computing a Heegner point is guaranteed to terminate and if the
found point is non-torsion, then it is known that the curve has algebraic rank 1. However,
in order to compute Heegner points, we need to find the images of points under the modular
parameterization, and hence we may need to compute a large number of Frobenius eigenvalues
to find the image to a large enough precision in order to recover an algebraic point.

Using a combination of all of these techniques, we found bases for all curves except for
16481 of the rank 1 curves, and we found a single generator (but not the full basis) for all
but 33 of the rank 2 curves. There was one additional rank 2 curve for which we did not find
any infinite-order points with these methods (Ea for a = 2 · 3 · 5 · 7 · 114 · 135). It is likely that
a part of the rank 1 cases would be amenable to the techniques mentioned, by using larger
search bounds or more time or memory. However it seemed a different approach was needed
to find bases of the hard rank 1 curves as well as all remaining rank 2 curves.

2.2.2 12-descent

To determine the generators on these harder curves, we used the 12-descent routine in Magma
designed and implemented by Fisher [17]. This works by combining a 3-cover obtained from
a 3-descent procedure with a 4-cover from doing 2-descent and then 4-descent. In our setting,
the presence of a 3-isogeny for all of our target curves allows us to use 3-descent by isogeny to
obtain the 3-cover. This is more efficient, as the number fields involved are smaller than those
involved in a general 3-descent. The implementation for this in Magma is due to Creutz.

Fisher’s algorithm then determines a 12-cover and a map to the original curve from each
pair of one 3-cover and one 4-cover coming from these lower descents. Therefore to find a
generator of the Mordell curve, we loop over all, 4-covers and 3-covers of the curve coming
from descent and search for points on the corresponding 12-cover. It is expected that if an
n-cover has small enough coefficients, the height of a preimage of a point of height h is roughly
h/2n. Therefore, given an estimate of the canonical height of a generator of the Mordell curve
(coming from the regulator estimated via BSD) and a bound for the difference of the naïve
and canonical heights on an elliptic curve (such as [28]), we can search for points on the cover
which should map to a generator. Because this point should have smaller height, this should

9



substantially reduce the time needed to search for points, compared with simply searching on
the original curve. Using this, we reduce the bound for the height search by a factor of up to 24
if the coefficients of the 12-cover are not too large. To search for points on the 12-covers, we use
the Magma method PointSearch, implemented by Watkins [41]; see also [43]. This approach
has previously been used to find generators of large height on single Mordell curves [21].

Due to the fact that we do not know the order |X| of the Shafarevich-Tate group for our
curves, the regulator may give an overestimate for the height of a generator, as BSD will only
allow us to determine

p
|X| ·R from readily available information.

This procedure was carried out with increasing timeout, up to a maximum of 12 hours,
and was broadly successful in finding a generator of the rank 1 and 2 curves for which more
standard methods failed.

2.2.3 Remaining curves

The combination of these methods has generally sufficed to determine the Mordell–Weil bases
of the necessary Mordell curves. However, there are 306 rank 1 curves remaining (up to the
3-isogeny above), for which we have so far been unable to find the Mordell–Weil bases2. A
combination of large conductor and large regulator (and hence either large generator height or
large |X|) has prevented any of the above methods from working in a reasonable time frame.

The Mordell curve with smallest regulator for which we do not know a generator is

y
2 = x

3 + 730033053750,

with regulator approximately 167.305352.
The largest regulators occurring for the remaining curves arise for

y
2 = x

3
± 904509009004500900000,

which interestingly are quadratic twists of each other (by �1). Their regulators are 17550.10
in the + case and 17628.52 in the � case. However, these curves are somewhat exceptional;
not all curves are quite so large. The mean of the remaining regulators is 2622.49.

To attack the remaining curves, several options exist to compute a generator. We have
explored these for a few of the remaining curves that we expect to be “easier”.

We attempted to make use of Magma’s HeegnerPoint method. As described in Watkins [42],
this allows the user to use 4-descent to construct a 4-cover of the target elliptic curve and then
find a Heegner point on the cover, reducing the required precision needed and hence the num-
ber of required Frobenius traces. Unfortunately, this Magma method fails on many of our
difficult examples, presumably because both the conductor of the curve and the height of the
Heegner point are both large enough that the number of Frobenius traces needed becomes
unwieldy for Magma. Due to the closed-source nature of Magma (and the HPInterna�2 and
FrobeniusTracesDirect methods in particular) we have been unable to rectify these problems.
It is also unclear whether or not Magma’s algorithm for computing all traces of Frobenius for
primes below a given bound for one of our curves is optimal. As our curves are Mordell curves
they have CM (by

p
�3); therefore, to compute the Frobenius traces, we may make use of

Cornacchia’s algorithm [10, pp. 597].
2
Allan MacLeod has communicated to us the Mordell–Weil bases of 10 more of these curves, using his own

implementations of similar techniques to those outlined above. Nevertheless a fast general method to find bases

for all of our curves remains elusive.
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The highly optimised sma��jac package [23] (available from Sutherland’s webpage) includes
an implementation of this algorithm in the case of j-invariant 0, and we expect that using this
will be the most effective way to compute enough Frobenius traces to find a Heegner point on
the remaining curves.

Happily, Pari/GP’s e��heegner method is more reliable on our examples, though it does
appear to use the covering method. Thus we expect that it will successfully find a generator on
several of the remaining curves given enough time. It is not clear that Cornacchia’s algorithm
is used to compute all of the Frobenius traces in Pari.

For instance, this Pari function has returned a point successfully for one of the “missing”
curves, we have found a point of

y
2 = x

3 + 4259854045547100000

of height 956.2822, and it is possible this case was more tractable due to the fact that this is
really the double of a generator which has height 239.07055 instead. As we are not actually
missing a generator on this curve, we may check that indeed it does not give any extra elements
of M(S(6)). However, as it took far longer to find this point, and it required more interactive
experimentation with parameters than the descent methods that we used for the vast majority
of the curves, we prefer to present it separately from the main data.

In theory, with an increased height bound for point-searching on 12-covers and with enough
time, a point should be found on such a cover in the same way as we found the above. There
are two potential issues with this. Firstly a lattice reduction algorithm is used in the point-
search procedure. It often happens that this method gets stuck if these lattices happen to be
ill-conditioned for Magma’s algorithm. This can stall the point search, and we are not aware
of the true cause or of ways of avoiding this other than restarting and hoping to get lucky.
The second is that the coefficients of the 12-cover can be quite large, which can reduce the
effectiveness of the height-saving of the algorithm. Thus it is very important to minimise the
12-cover, as described by Fisher, as much as possible to get the most use out of the method.
It is plausible that with more work minimizing the 12-covers, the runtime of point-searching
can be made more feasible.

We have checked another “missing” example where 12-descent succeeds with more individ-
ual care than we were able to take at scale. This was curve Ea for a = 139413405126996000,
which has regulator 1504.24027. With a height bound of 1021 on the 12-covers, the descent
finds a point that gives us a generator of height 1504.24027 on Ea. It is interesting that this
point is not a multiple of any smaller generator, suggesting that X is trivial here.

Higher descents are also a potential avenue to complete the process of finding generators
for the remaining curves. The work of Fisher allows one to combine covers of coprime degrees
subject to a numerical condition on the degrees. This includes the case of combining an n-
cover with an (n + 1)-cover to obtain an n(n + 1)-cover. This could conceivably be used to
compute 8 ·9 = 72-covers on Mordell curves by combining 8-descent and 9-descent (as a second
p-isogeny descent), both of which have been implemented in Magma. However, it is unknown
at present how to make describing and combining such covers practical.

2.3 Completeness of the data

First, for many Mordell curves, we have computed what should be their rank by computing
the analytic rank. This is easier to compute than the algebraic rank in general. According
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to BSD, these ranks are equal, but this is not known in general. Computing the algebraic
rank is more computationally intensive and can be obstructed by non-trivial X. However the
analogous computation was performed in [22] for S(5).

We have in some cases allowed Magma to assume GRH, which speeds up computation of
class groups, and hence, descent machinery. This does not invalidate searching for points on
the corresponding covers. Any rational points found are then verified unconditionally to be
independent elements of the Mordell–Weil group, but when proving that the algebraic ranks
agree with the analytic ones, either GRH or a longer computation time is required.

Secondly, and more seriously, we are missing any S-integral points on 612 Mordell curves Ea

of rank 1, because so far we were not able to find the generator of Mordell–Weil for 306 curves
(as once one curve from each isogeny class’s basis is found, the other may be computed
relatively easily). Assuming BSD, we may estimate the regulators of these curves up to a
factor of

p
|X|. In the rank 1 case, the regulator is simply the height of a Mordell–Weil

generator. So in the missing cases, either the generators are of large height or
p
|X|, is large

as their product is at least 150.
To relate this to the S-integral points on these curves, we recall that the abc conjecture

can be used to prove the weak Hall conjecture, which states that integral points (x, y) on the
Mordell curve Ea : y2 = x+ a satisfy x = O(a2+") for any " > 0, see Schmidt [30]. The same
proof can be used to show (asymptotic) upper height bounds for S-integral points on Ea.
These make it seem unlikely that an Ea of rank 1 with a very large Mordell–Weil generator
has an S-integral point. These estimates could be made explicit if we assume, for example,
Baker’s explicit abc conjecture [2]. We give more details on this heuristic in Section 2.4.

These missing Mordell–Weil generators of curves of rank 1 could be computed via the
Heegner point method, which is, for example, implemented in Pari/GP [39], whose complexity
to find P 2 Ea( ) is proportional to

p
Nh(P ). Thus, together with BSD, we estimate that we

can prove completeness of our database in about 50 CPU years. This is probably less than the
(quote) “many thousand machine hours on 80 cores” that Bennett, Gherga and Rechnitzer [3]
used to recompute the database of [22] for S(5). The original computation of M(S(5)) [22]
was not timed, but recalling from memory, it took approximately one CPU year.

2.4 An S-integral weak Hall conjecture and the abc conjecture

In this section, we will discuss an S-integral analogue of the classical Hall conjecture and how
it adds to our heuristic for why our database should be complete. As for the classical Hall
conjecture, we will show that it is implied by the abc conjecture.

For this section, we will use the following terminology. For any finite set of rational
primes S, we call a pair of integers (x, y) S-primitive if there is no p 2 S such that p

6 divides
both x

3 and y
2. We formulate an S-integral generalization of the weak Hall conjecture.

Conjecture 2.5 (An S-integral weak Hall conjecture). Let S be a finite set of rational primes.

Let D 6= 0 be an integer. For any " > 0, any S-primitive solution (x, y) of the equation

y
2 = x

3 + aD, x, y 2 , a 2 \O
⇥
S , (2.6)

satisfies

max(|x|1/2, |y|1/3) = O"((NSD)1+"). (2.7)
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Recall that the abc conjecture states that for any " > 0 the following holds. If a, b, c are
coprime integers with a+ b+ c = 0, then

max(|a|, |b|, |c|)  O"(rad(abc)1+"), (2.8)

where rad(abc) =
Q

p | abc p. More explicitly, (2.8) states that max(|a|, |b|, |c|)  K" rad(abc)1+",
where K" is a constant that depends only on ".

Theorem 2.9. The abc conjecture implies the S-integral weak Hall conjecture. More explicitly,

if the abc conjecture holds for some 0 < "  0.1 with constant K", then any S-primitive solution

(x, y) of (2.6) satisfies

max(|x|1/2, |y|1/3)  K
1+10"
" (NsD)1+12"

. (2.10)

Our proof largely follows Schmidt’s proof [30] that abc implies the classical weak Hall
conjecture, although the proof below avoids some technicalities by choosing s and t (see proof)
in an efficient way.

Proof. Suppose (x, y) is an S-primitive solution of (2.6). Let g = gcd(x3, y2). Let A = x
3
/g,

B = �y
2
/g and C = aD/g, which are coprime integers. As A+B+C = 0, the abc conjecture

implies that
max(|x|3/g, |y|2/g)  K" rad(ABC)1+"

. (2.11)

We claim that
rad(ABC) |

xyNSD

g
. (2.12)

To see this, we consider two cases.
Case 1.) If some p 2 S divides ABC, then by S-primitivity of (x, y) we have ordp(y)  2

or ordp(x)  1. In either case, ordp(g)  4. If ordp(g) = 4, then p
2
|x, p

2
| y, p |NS , and

thus p |xyNSD/g. The cases ordp(g) 2 {0, 2, 3} are similar, and ordp(g) = 1 is a priori not
possible.

Case 2.) Suppose some p 62 S divides ABC. If p - g then the obvious p |xyD suffices. If
p | g, then ordp(xyD/g) � ordp(g)(1/3 + 1/2 + 1� 1) > 0 and so p |xyD/g. This finishes the
proof of (2.12).

Plugging (2.12) into (2.11) implies that max(|x|3, |y|2)  K"(xyNSD)1+" and hence

|x|
3s
|y|

2t
 K

s+t
" (xyNSD)(s+t)(1+")

.

For s = (1� ")/(1� 5") and t = (1 + ")/(1� 5") we obtain

|x|  K
2/(1�5")
" (NSD)(2+2")/(1�5")

.

Similarly for s = (1 + ")/(1� 5") and t = (2� ")/(1� 5") we obtain

|y|  K
3/(1�5")
" (NSD)(3+3")/(1�5")

.

This yields
max(|x|1/2, |y|1/3)  K

1/(1�5")
" (NSD)(1+")/(1�5")

.

For "  0.1 this reduces to the claimed bounds.
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Let us relate this to S-integral points on the above Mordell curves Ea : y2 = x
3+a, where a

is as in (2.1) an S-unit with bounded exponents. Suppose P = (X,Y ) 2 Ea(OS). We can
clear denominators of X and Y by multiplying X

3 and Y
2 by suitable powers of p6 for each

p 2 S, and call the resulting integers eX and eY . This yields a relation eY 2 = eX3 + ea, to which
we can apply the S-integral weak Hall conjecture 2.5 (with D = 1), or alternatively (2.10)
as implied by the abc conjecture. We obtain conjectural asymptotic height bounds for | eX|

3

and |eY |
2, which imply up to a small explicit constant (depending on S) the same bound on

the naïve height of P , which in turn is, up to an explicitly bounded error, the Néron–Tate
height ĥ(P ).

In case S = S(6), we can thus make the following heuristic. First, assume that the abc

conjecture holds for " = 0.1 with a constant K"  1.1 · 108. We checked that this bound
indeed holds for all abc-triples of the ABC@Home project by de Smit [14] for which we could
compute the radical. Using this " and K" and the above reasoning, we would obtain a bound
for ĥ(P ) of approximately 2(2 logK" + 2.2 logNS)  120.

3 Attainability of maximal conductor by curves in M(S)

In this section, we prove some results suggested by empirical observations of our data.
Specifically we ask the following: Given a set of rational primes S, what is the highest

possible conductor of an elliptic curve over with good reduction outside S? An immediate
upper bound is MS :=

Q
p2S p

fp where f2 = 8, f3 = 5, and fp = 2 for p � 5. More specifically
we may then ask:

Question 3.1. Does there exist a curve of conductor of MS for any set S?

The answer to this question is no without further conditions on S. For example there does
not exist an elliptic curve with good reduction away from 5; however, the answer is positive
for a large class of S. Motivated by our data, we have the following sufficient criterion.

Theorem 3.2. Let S be a finite set of rational primes that contains either 2 or 3 (or both).

Then there exists an elliptic curve over with conductor N = MS.

In order to prove the theorem, we recall the notion of quadratic twists of elliptic curves.
For any rational elliptic curve E : y2 = x

3 + ax + b and an integer d, we denote by E
d : y2 =

x
3 + d

2
ax+ d

3
b its quadratic twist by d.

The theorem now follows immediately from the following lemma. The proof is constructive.

Lemma 3.3. Let d be a square-free product of primes p � 5.

1. Let E{2,3} : y
2 = x

3
�18x+24. Then E

d
{2,3} has conductor N = 2835d2 and Kodaira type

III at 2, II at 3, and I⇤0 at p � 5 with p | d.

2. Let E{2} : y
2 = x

3 + 8x. Then E
d
{2} has conductor N = 28d2 and Kodaira type III⇤ at 2

and I⇤0 at p � 5 with p | d.

3. Let E{3} : y
2 + y = x

3
� 1. Then E

d
{3} has conductor N = 35d2 and Kodaira type II at 3

and I⇤0 at p � 5 with p | d.
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Proof. This is a straightforward computation with Tate’s algorithm, which we omit here. For
the convenience of the reader, it is available as an appendix of the GitHub and arXiv version
of this paper, which can be found at:

https://github.com/elliptic-curve-data/ec-data-S6/blob/master/docs/paper.pdf

We remark that in general, twisting an elliptic curve E by a prime p � 5 may change the
reduction type of E at 2 and 3, but this does not happen for the three curves listed in the
lemma.

Silverman [34, Exercises 4.52, 4.53] gives two families of elliptic curves defined over
that have maximal possible conductor exponent at 3 and at 2, respectively, and also have this
property after base changing to a number field. The above curve E{2} belongs to Silverman’s
latter family.

4 Applications

In this section we will briefly discuss some applications of the dataset.

4.1 Solving S-unit equations

Let S be a finite set of rational primes. As above, denote by OS and O
⇤
S the S-integers and

S-units, respectively. The S-unit equation is the equation

x+ y = 1, x, y 2 O
⇤
S . (4.1)

This classical diophantine equation is intimately related to the abc conjecture; this can be seen
by clearing denominators to obtain an abc equation. Also, more generally, S-unit equations
over number fields are known to have only finitely many solutions, as was first shown by
Siegel [32] and Mahler [27]. Siegel [32, 33] used this to prove that any hyperelliptic curve of
genus at least one has only finitely many S-integral points.

It turns out that solving S-unit equations can be reduced to the computation of M(S[{2})
via Frey–Hellegouarch curves: If (x, y) is a solution of the S-unit equation, then Ex : Y 2 =
X(X � 1)(X � x) lies in M(S [ {2}). Moreover any curve E 2 M(S [ {2}) can be obtained
in this way from at most six different solutions of (4.1), and these can be computed from the
six possible modular �-invariants of E. In our case, (4.1) for S = S(6) is exactly the case
that was considered by de Weger [15]. He proved that, up to symmetry, it has exactly 545
solutions. We checked that the curves associated to all of these can be found in our database,
which means that our database certainly contains all Frey–Hellegouarch curves with good
reduction outside S(6). We remark that (4.1) has been solved for S = S(16), as well as for
all S with NS  107 [22]. This is far out of reach for the above method of reducing (4.1) to
computing M(S).

In the other direction, the computation of M(S) can be reduced to solving S
0-unit equations

over finitely many number fields, where the number fields are all possible number fields K of
degree at most six that are unramified outside S [ {2} and S

0 being the primes in K above
S [ {2}. This link was made into an algorithm by Koutsianas [25].
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4.2 Other diophantine problems

Many other diophantine problems reduce to the computation of M(S), notably cubic Thue–
Mahler equations

ax
3 + bx

2
y + cxy

2 + dy
3 = m

Y

p2S
p
ep , x, y 2 , ep 2 �0 (p 2 S),

where a, b, c, d,m 2 and m 6= 0 are given such that the left-hand side has non-vanishing
discriminant. Likewise generalized Ramanujan–Nagell equations

x
2 + b = y, x 2 OS , y 2 O

⇤
S ,

where b 6= 0 is a given integer, can be reduced to computing M(S). In particular, we can
find solutions for these equations for S = S(6) via our computation of curves in M(S), which
subject to the hypothesis that we have in fact found the whole set M(S) should be the complete
sets of solutions of these equations; see the above discussion on completeness in Section 2.3.

4.3 n-congruences between elliptic curves

Given n 2 , a pair of elliptic curves E1, E2/ for which E1[n] ' E2[n] as Galois modules
are called n-congruent. The Frey–Mazur conjecture implies that there should be an absolute
bound C such that if p � C and E1, E2 are p-congruent, then E1 and E2 must be isogenous.
The only known example of a pair of non-isogenous 17-congruent elliptic curves, found by
Cremona and then Billerey [5], occurs for a pair of curves with good reduction outside of
3, 5, 7, 13. Using our database we searched for similar examples of n-congruences between
curves for primes 13  n  47. We found several instances of 13-congruences that were
outside the range of existing databases. Fisher has recently found an infinite family of 13-
congruent curves [18], of which the examples in our database are all members. We did not
find any further examples of 17 (or higher) congruences between curves in our database, other
than quadratic twists of the example of Cremona–Billerey mentioned above.
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