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In this talk

• Past – some results and areas that people have thought

about in the past

• Present – some current works in progress

• Future – where we are going, what needs to be different

to make progress

In number theory particularly, but also other areas of interest.
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In the 2000s

Large projects such as the Kepler conjecture and the Odd

order theorem.

These were big collaborations with one main goal, and did

involve some number theory adjacent topics.

Now there is more of a trend to build on existing libraries to

make more progress on deeper topics.
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Perfectoids

Peter Scholze won a Fields medal in 2018 for “transforming

arithmetic algebraic geometry over p-adic fields through his

introduction of perfectoid spaces, with application to Galois

representations, and for the development of new cohomology

theories.”

The definition is highly nontrivial, an unusual

geometric object created from an extremely non-Noetherian

ring.

In 2020ish Kevin Buzzard, Johan Commelin, Patrick Massot

(building on others) completed a long term project to define a

perfectoid space formally in Lean.
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Perfectoids

Lean has accepted the chain of definitions that lead to this are

all valid, topological spaces, sheaves, valuations, adic spaces,

perfectoid rings,...

It is difficult to estimate the amount of human effort expended

to achieve this. Their work relied on that of many others who

are building mathlib, a general purpose library of

mathematics from the ground up.

However, it also takes a long time for a human with no

mathematical background to learn such a definition.
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One side effect: ”new” algebraic structures

One ingredient of the theory surrounding perfectoid spaces

(adic, spectral, Huber rings, etc.) is the notion of a valuation

K → Γ ∪ {0}

sending 0 to 0.

In the course of the project the authors noticed they were

having to repeat a lot of work on basic lemmas that were true

both for fields and the value group above, inspired the

creation of a new definition, a group with zero (and monoid

with zero, etc.).

“Every sufficiently good analogy is yearning to become a

functor.” – John Baez

Every sufficiently similar proof is yearning to become a

new algebraic structure.
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Niche algebraic structures

There is even a lot of duplication between lemmas about

groups, and those about groups with a zero.

Earlier this year Yaël Dillies introduced a new algebraic

structure, a division monoid, to be the correct setting for

theorems, this is a monoid with an involutive inverse operation

that doesn’t always have a · a−1 = 1, but does have a · b = 1

implies a−1 = b.

Upshot: In order to formalize effectively and reduce

duplication of effort generalizing proofs to unfamiliar algebraic

structures is helpful.
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Generalizing theorems automatically

When we have so many algebraic structures, we don’t want to

spend our time trying to find the right structure to prove

theorems in.

Would prefer to write the proof under some assumptions we

know work, and then let the proof assistant tell us the most

general and widely useful assumptions.

Lemma

Let f : K → L be a ring homomorphism between two fields, and

p be a natural number, then K is characteristic p if and only if L

is (including p = 0).

A Lean based tool I wrote last year will happily inform us that

K can be any division ring and L can in fact be any nontrivial

semiring. This works just by inspecting the original formalized

proof.
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Backing up

Despite there being impressive progress on very advanced

number theory, at least in the mathlib library there was not

even the definition of a number field in Lean at the time

Baanen, Dahmen, Ashvni Narayanan, Filippo Nuccio added

Dedekind domains, and proved finiteness of the class group

last year.

Interestingly this formalization is uniform in the number field

and function field cases, and avoids Minkowski’s theorem in

favour of simpler pigeonhole-type principles.

But the basics of algebraic number theory are not really

complete (Kummer-Dedekind, Kummer theory,

Kronecker-Weber) in any formal system that I know.
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FLT-regular

In attempt to fill the gaps and add more down-to-earth

algebraic number theory we have started a project to formalize

Kummer’s proof of Fermat’s last theorem for regular primes

p - hQ(ζp)

this splits into two cases for

xp + yp = zp

Case I: p - xyz (comparatively elementary, lots of progress,

computing basics about cyclotomic fields, ...)

Case II: p | xyz (requires some class field theory in an essential

way, even on paper the proofs are long)
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Some progress

María Inés de Frutos Fernández has formalized the ring of

Adèles (and Idèles) and given the statement of the main

theorem of global CFT in Lean:

Theorem

Let K be a number field. Denote by C1
K the quotient of CK by

the connected component of the identity. There is an

isomorphism of topological groups C1
K ' Gab

K .
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Descent

With Anne Baanen, Nirvana Coppola, Sander Dahmen, we have

been formalizing some Mordell-style descent to find integral

points on elliptic curves: for example the non-existence of

integral points on

y2 = x3 − 5

Basically works, except, we still need to compute the class

group of Q(
√
−5)!

This sort of proof necessarily involves some amount of hands

on calculation, this is often harder to formalize than clean

theory.

In order to work conveniently with such calculations we have

added tactics to handle calculations in rings with a finite

“multiplication table” automatically, and write formal proofs

that aren’t significantly longer than paper ones.

The other strategy is to leverage existing computer algebra

systems where possible but still checking the output.
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Certifying number theoretic computations

Eventually would be helpful to have code that computes class

groups implemented in a formal system.

Right now this is a lot of work repeating the excellent

pre-existing algorithms in a new language.

Question: Is it possible to compute the class group with a

computer algebra system (e.g. Sage), and write down a

certificate of the result that is easily checkable (fast to check,

not too long, and mathematically simple!)

Ideally the certificate would be a text file, other users shouldn’t

need to install the CAS to repeat the calculation, but it should

be provable in the system.

But the certification itself should not rely on GRH etc.
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The Hasse Norm theorem

Suppose we want to check that an explicitly given ideal in a

number field is non-principal, can we give a certificate for this.

One idea: If an ideal is principal, it’s norm must be equal to the

norm of an element (and this holds everywhere locally too).

Theorem (Hasse Norm theorem)

If K/Q is a cyclic Galois extension and x ∈ Q is everywhere

locally a norm, then x is globally a norm.

There are counterexamples to this in the biquadratic case due

to Hasse (and Serre-Tate) (and for any non-cyclic case Frei,

Loughran, Newton).

Number fields for which this property holds are said to satisfy

the Hasse norm principle.
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The Hasse Norm theorem

Theorem (Frei, Loughran, Newton)

Let k be a number field and G a finite abelian group. Then 100%

of G-extensions of k, ordered by conductor, satisfy the Hasse

norm principle.

But if we order by discriminant:

Theorem (Frei, Loughran, Newton)

Let G be a non-trivial finite abelian group and let Q be the

smallest prime dividing |G|. Assume that G is not isomorphic to

a group of the form Z/nZ⊕ (Z/QZ)r for any n divisible by Q

and r ≥ 0. Then a positive proportion of G-extensions of k fail

the Hasse norm principle, ordered by discriminant.

So locally verifying non-principality might be viable for abelian

number fields.
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Other ideas

There are many useful algorithms with ”obvious” certificates:

• Ideal membership

• Matrix normal forms (SNF, HNF, LU, RREF)

• Factoring

• Checking solubility modulo primes

Have a tool that talks to Sage to certify some of these in Lean

already, working on others.

I’d be happy to learn of other instances of this pattern!

This might be independently a nice check for CASes, when

further advanced.
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Implementing number theoretic algorithms

Alternatively we can implement algorithms within a proof

assistant, as efficient functions that give the same output as

what we want to compute

• Gives us a guaranteed correct implementation.

• We can experiment with modifying / improving the

algorithm, and prove correctness or equality with the

original one.

• We can prove properties, or ”run” the algorithm in families,

in ways normal code can’t.

After writing the algorithm down, it is only accepted as a

genuine mathematical function when it is shown to halt. With

some functions this is obvious, but for algorithms that use

recursion or unbounded loops, less so!
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Tate’s algorithm

Sacha Huriot-Tattegrain (+B.+Dahmen) has implemented

Tate’s algorithm in Lean(4).

• Complete algorithm to compute local invariants of an

elliptic curve, including the cp(E), ordp(∆E), ordp(NE)

• Works in characteristic 2 and 3.

• Based on Cohen’s description of the algorithm, but at

times consulting other sources and even the GP source

code was necessary to get it right.

• It runs fast!

• Partly generalized to base rings beyond Z.

Without an independent definition of the Kodaira types and

conductor exponent we cannot actually check the algorithm

does what it says. Nevertheless we could prove certain

properties of the algorithm in future, such as invariance under

change of the initial model.
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Unit fractions

In December 2021 Thomas Bloom posted a paper: On a

Density Conjecture about Unit Fractions to arXiv (2112.03726)

Abstract: We prove that any set A ⊂ N of positive upper

density contains a finite S ⊂ A such that
∑

n∈S
1
n = 1,

answering a question of Erdős and Graham.

18 pages, quickly recognized as correct and widely applauded

in popular press (Quanta, etc), generalizes an older result of

Croot.

Thomas Bloom and Bhavik Mehta are working hard to

formalize the paper.
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Many nice outputs from this project for analytic number theory

and density results too.
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Collaboration Galore

One nice aspect of formalization is community, we are building

on each others work, but the gaps have to line up precisely.

This both eases collaboration (I can not worry about the details

of your proof if it compiles and I understand the statement),

but it also makes it harder, I have to contend and work with

the community agreed upon definition of an object, rather

than make my own variant.

Nevertheless working on such a library has the feeling of

collaborating on a large textbook / reference work.
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Collaboration Galore

• Chris Birkbeck: Defining modular forms + Eisenstein series

(like Manuel!)

• David Loeffler: Defining the Gamma function, analytic

continuation

• Antoine Chambert-Loir: Finite groups, simplicity of An ’s

• Amelia Livingston: Group cohomology

• Brandon H. Gomes and Alex Kontorovich: statement of

the Riemann Hypothesis

• Michael Stoll: re-doing Legendre symbols, proved Hilbert

reciprocity for quadratic Hilbert symbols over Q

• Sophie Bernard & Cyril Cohen & Assia Mahboubi &

Pierre-Yves Strub, and Thomas Browning: Insolvability of

General Higher Degree Equations

• Kevin Wilson: calculation of the density of squarefree

numbers as ζ(2)−1 = 6/π2.
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Closing thoughts

Formalization of mathematics (including number theory) is still

slow and painful at times.

But we have several thousand years of mathematics, and

learning how to think about, and explain mathematics, to catch

up on.

Thinking about these issues and finding clean arguments can

be a lot of fun, and the tool may occasionally surprise you.
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