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WHY DO WE INTEGRATE THINGS? LOGARITHMS

Take , as a differential on the group R*, this is translation
mvarlant, l.e. (a-—)*(dx/x) = d(ax)/ax = dx/x, hence

t
dx
/ — =log|t|: R* =R
1 X

has the property that

/dex /Ob dx / / dx ? dx
1 X

Integration can define logarithm maps between groups and
their tangent spaces.

How do we calculate log|t|? Power series on R-( and use the
relation log t| = 1 log t?



WHY DO WE INTEGRATE THINGS? INTERESTING FUNCTIONS

We have already seen polylogarithms, defined recursively by

14(2) = —log(1 — 2), Lp(2) = /OZ L,M(s)%; C[1,00) — C

These functions can alternatively be described via the power
series



COLEMAN INTEGRATION

Is there p-adic analogue of this? Given a p-adic space, (as
p-adic solutions to some equations) we can locally write down
convergent power series for a 1-form and integrate.

For instance near a point a:
 a+Xx a+X
so that

1 X n+1
/a+xw:_2”+1<04) i

But we cannot find C! There is a different choice in each disk.




COLEMAN INTEGRATION: MORE PROBLEMS

Now we have functions

K () = {Z ait’; a; € K, lim |a;| = O}
and
d: T—Q}

and our integral map should send
o ai i
> ait = th

a;
41

but

may not converge to 0.
So instead we work with a subring of overconvergent functions

Th= {Z a;t’; a; € K,3r > 1 such that lim |a;| ' = o}.
i—00



COLEMAN’S THEOREM

Take X/Z, a genus g curve, and p an odd prime.

We pick a lift of the Frobenius map, i.e. ¢: X — X which reduces
to the Frobenius on X x Fp, and write AT (resp. Ajoc(X)) for
overconvergent (resp. locally analytic) functions on X.

Theorem (Coleman)

There is a Qp-linear map [, : Q}; ® Qp — Awe(X) for which:
X
do / =id: Q); ® Qp = Qe “FIC”
b
X
/ od =id: AT — Ay,

b
X X

/¢*w:¢*/ w  “Frobenius equivariance”
b b



COMPUTATION: POLYLOGARITHMS ON P'~.{0,1, 00}

Let's revisit the polylogarithms

L1(2) = —log(1 — 2), L(z) = /OZ L}M(s)%: C~\[1,00) = C

Coleman integration then defines a p-adic analogue of these
functions, with exactly the same definition via iterated
integration on P'~.{0,1, 00}.

(We must choose a branch of the p-adic logarithm, for
simplicity we take the Iwasawa logarithm where log,(p) = 0.)

The power series definition still holds near z = 0, but
otherwise we must use frobenius equivariance to define it.



COMPUTING POLYLOGARITHMS

Besser and de Jeu have given a complete algorithm to compute
these functions, and this is now implemented in SageMath.

For instance we can check relations among polylogarithms

sage: K = Qp(7, prec=30)

sage: x = K(1/3)

sage: (x"2).polylog(4) - 8+x.polylog(s4) -
8x(-x).polylog(4)

0(7"23)

In exactly the same way as:
sage: x = RBF(1/3) # Real ball, or do pari(1/3)
sage: (x"2).polylog(4) - 8+x.polylog(s) -
8x(-x).polylog(4)
[+/- 2.51e-14]




COMPUTATION: GROUP STRUCTURE

If X/Qp is an algebraic group, w is a translation invariant 1-form

we have

P+Q P Q P »] nP
/ w:/w+/w:>/w:/w
0 0 0 0 nJo
but if n = #X(F,) then nP € B(0,1) so the integral on the right

can be performed locally with only power series.

This requires arithmetic in the group, which may be hard. And
can only integrate invariant differentials.



COMPUTATION: p-ADIC COHOMOLOGY
There is an alternate approach via p-adic cohomology, due to
Balakrishnan-Bradshaw-Kedlaya.
Let X/Z, be a smooth curve of good reduction.

Pick a basis ws, ..., wyg for Hi(X) and let U C X be an affine
subspace containing no poles of any w; and on which we have
a lift of frobenius ¢.

If we apply ¢* to w; we may write

29
¢*wi =Y Myw; —df; using Kedlaya’s algorithm, or a variant
=

»(P) P P (29 P
/ wj = / (b*w,‘ = / Z /Vl,-/wj — / df,
$(b) b b \'i5 b



COMPUTATION: p-ADIC COHOMOLOGY

/;::) /(ZMU%) (F(P) — (b))

— for | = (m=1) (mpfﬁ(b)) b= ¢(b), P = ¢(P)

Every point P € U is close to one fixed by Frobenius, so we can
use the above and local integration to find integrals between
points of U.

To move outside of U we have to either work close to the
boundary of the removed disks (i.e. in a highly ramified
extension). Or use tricks due to the special geometry of the
curve (extra automorphisms).



APPLICATIONS: CHABAUTY'S METHOD

Given X/Q a smooth curve and p > 2 - genus(X) a prime of good
reduction for X and base point b € X(Q). If

rank(Jac(X))(Q) < genus(X)

we can find a differential wann € HO(X, Q") such that
Z
X(Q) € F71(0) for F(z) = / Wann
b

this F and its zero set can be computed explicitly in practice,
giving an explicit finite set containing X(Q) in many examples.

Note: We can use either the group theory or p-adic
cohomology method here.



APPLICATIONS: CHABAUTY-KIM

Minhyong Kim has vastly generalised the above to cases where
rank(Jac(X))(Q) > genus(X)

This can be made effective, and computable

Theorem (Balakrishnan-Dogra-Muller-Tuitman-Vonk)
The (cursed) modular curve Xs,i:(13) (of genus 3 and jacobian

rank 3), has 7 rational points: one cusp and 6 points that
correspond to CM elliptic curves whose mod-13 Galois
representations land in normalizers of split Cartan subgroups.

Their method can also be applied to other interesting curves:

Theorem (WIP B.-Bianchi-Triantafillou-Vonk)
The modular curve Xq(67)* (of genus 2 and jacobian rank 2),

has rational points contained in an explicitly computable finite
set of 7-adic points.



MOTIVATING QUESTION

Can p-adic algorithms for computing zeta functions be turned
into algorithms for computing Coleman integrals?

For instance Harvey and Minzlaff have introduced variants of
Kedlaya's algorithm for hyper- and super-elliptic curves that
works well when p is large!

They use interpolation to reduce the work when reducing

¢wj D My
but its not clear where the functions f; went.

Key to their interpolation is the fact that reductions in
cohomology are linear in the exponents of x, y.



SUPERELLIPTIC CURVES

We can write down a similar recurrence that evaluates the
exact forms also, using

(Z a,-x’) = ((--- ((an)X + an=1)X + - - - )X + Q)

Theorem (B.)

Let C/Zpn: y? = h(x)

with ged(a,deg(h)) =1, p 1 a, Let M be the matrix of Frobenius,

acting on H}(C), basis {w;; = b dx/yf}i:O b—2j=1, and

points P,Q € C(Qpn) known to precision pN, if p > (aN — 1)b,

the vector of Coleman integrals (fpo w,-J), ~can be computed in
. ~ '7/

time 0 (93\fpnN5/2 + N*g*n? log p)

to absolute precision N — vp(det(M — 1)).



