## CS137 Seminar Week 7 Alex Best, Peter Davies & Marcin Jurdziński

1. Solve the recurrence

$$a_0 = 1,$$
  
 $a_k = 3a_{k-1} + 4^k.$ 

- 2. Find a generating function for the number of ways to make k pence with 1p, 2p 5p 10p, 20p and 50p coins.
- 3. Let  $F_n$  be the Fibonacci sequence  $(F_0 = F_1 = 1, F_n = F_{n-1} + F_{n-2} \forall n \geq 2)$ .
  - (i) Find a simpler form for the generating function F(x) of  $F_n$ .
  - (ii) Show that

$$F_n = \binom{n}{0} + \binom{n-1}{1} + \cdots$$

- 4. Let  $F_n$  be the Fibonacci numbers (as above). Show that:
  - (i)  $F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$ ,
  - (ii)  $F_n$  divides  $F_{2n}$  for all n,
  - (iii) (Bonus)  $F_n$  divides  $F_{kn}$  for all n and k.
- 5. Given a positive integer n let p(n) be the number ways (ignoring orderings) of splitting n up as a sum of positive numbers. These are called *partitions* of n.

For example p(4) = 5 as it can be written as 4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1.

- (i) Find a simpler form for the generating function of p(n).
- (ii) Find a simpler form for the generating function of  $p_o(n)$ , the number of partitions of n as a sum of only odd numbers.
- (iii) Prove that  $p_o(n) = p_d(n)$ , the number of partitions of n into sums of distinct terms (each summand is used at most once).
- (iv) (Bonus) Show that the number of partitions into numbers not divisible by 3 is the same as the number of partitions where each summand is used no more than twice.