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1 Automorphic forms /GL; (possibly GL,)

Lecture118/1/2018

These are notes for Ali Altug’s course MA842 at BU Spring 2018.

The course webpage is http://math.bu.edu/people/saaltug/2018_1/2018_
1_sem.html.

Course overview: This course will be focused on the two papers Eisenstein
Series and the Selberg Trace Formula I by D. Zagier and Eisenstein series and
the Selberg Trace Formula II by H. Jacquet and D. Zagier. Although the titles
of the papers sound like one is a prerequisite of the other it actually is not the
case, the main difference is the language of the papers (the first is written in
classical language whereas the second is written in adelically). We will spend
most of our time with the second paper, which is adelic.

1.1 Goal

Jacquet and Zagier, Eisenstein series and the Selberg Trace Formula II (1980’s).
Part I is a paper of Zagier from 1970 in purely classical language. Part Il is
in adelic language (and somewhat incomplete).

trace formula

Arthur-Selberg) conjecture (Relative
—>
trace formula

the Arthur-Selberg side is used in Langlands functoriality and the Relative is
used in arithmetic applications.

1.2 Motivation

What does this paper do?

“It rederives the Selberg trace formula for GL, by a regularised
process.”

Note 1.1
* Selberg trace formula only for GL,

¢ Arthur-Selberg more general

The Selberg trace formula generalises the more classical Poisson summation
formula.


http://math.bu.edu/people/saaltug/2018_1/2018_1_sem.html
http://math.bu.edu/people/saaltug/2018_1/2018_1_sem.html
http://people.mpim-bonn.mpg.de/zagier/files/scanned/EisensteinSelberg/fulltext.pdf
http://people.mpim-bonn.mpg.de/zagier/files/scanned/EisensteinSelberg/fulltext.pdf
https://www.math.columbia.edu/~hj/EisensteinTrace.pdf
https://www.math.columbia.edu/~hj/EisensteinTrace.pdf

Poisson summation. .
Theorem 1.2 Poisson summation. Let

f:R—R
then Poisson summation says
D= £
nez iez
where

f(é)=%[ Fx)e(x&) dx.

Notation: e(x) = e2™¥,
To make this look more general we make the following notational choices.

G=RT=Z
D= > f©
yer* £e(GIT)Y

where
 T* = conjugacy classes of I (= I in this case since I' is abelian).
e (G/T)Y =dual of G/T.

Selberg.
G =GLx(R), I = GL2(Z)

yer* ne“(G/T)V"

relating conjugacy classes on the left to automorphic forms on the right.
Arthur and Selberg prove the trace formula by a sharp cut off, Jacquet and
Zagier derive this using a regularisation.

1.3 Motivating example

o 1
=2
converges absolutely for s > 1.

Theorem 1.3 Riemann. ((s) has analytic continuation up to R(s) > 0 with a
simple pole at s = 1 residue 1. i.e.

() = = +605)
where ¢(s) is holomorphic for R(s) > 0.

1. Step 1: observe

= /OO t7 dt (for R(s) > 1)
1

L n+1
= Z / £ dt
n=1Y"

s—1



Step 2: this implies
1 n+l
-5 _ -5
Us)=— + nz n /n £ dt
n+1 n+l
([ [l
n n

we denote each of the terms in the right hand sum as ¢,(s)

n+1
On(s) = / n=° —t°dt

1 +
s—1

[ee]
=1

[ee]
n=1

Step 3:
|pn(s)l < sup [n7° - 177
n<t<n+l
wp Bl

n<t<n+l R+ T 4 R(s)+1
by applying the mean value theorem.
So Y4 ¢n converges absolutely. Hence ¢ = ;" ; ¢, is holomorphic
One can push this idea to get analytic continuation to all of C, one strip
at a time. This is an analogue of the sharp cut off method mentioned above.
It’s fairly elementary but somewhat unmotivated and doesn’t give any deep
information (like the functional equation). |

2. Introduce

o(t) = Z N

nez

note that (1) =1+2Y,, g~
Idea: Mellin transform and properties of 0 to derive properties of C.

r (%) i _ /00 efnnztts/Zg
7ts/2 ns 0 t

property of 0:

1 1
o= (7

Step 1: proof of this property is the Poisson summation formula

f)=e™ = f(&) = f(&)

_ - Li[L
g(x) = f(Vix) = §(&) = \/Ef(\/?)

Step 2: Would like to write something like

“ dt
u/ G(t)ts/2_”
0 t

This integral makes no sense



e Ast — o0, 0 ~ 1 thus

<

’/ (9(t)ts/zg
" t

A t

— R(s)<0

— < 00

. Ast—>0consideré=%soé—>ooand

o(t) = ite(%) = VEoE

\/_
1
— 0(t) = VEOE) ~ Ve = —
Vi
so O(t) ~ \/%
A
= / Q(t)ts/zg <o
0 t
= /A t‘(s_l)/zg < o0
0 t

— R(s)>1

so no values of s will make sense for this improper integral.
Refined idea: Consider

1 )
1= [ 0w+ [om-1ers

upshot: I(s) is well-defined and holomorphic for all s € C.
Final step: Compute the above to see

2 2

2
M) =515t wn

S
r (E) C(s)
which implies

1. C(s) has analytic continuation to s € C, with only a simple pole ats =1
with residue 1.

2.
I(s) = I(1-5s),
this follows from the property of 0 so if we let
r()

AGs) = —2-C65)
then

A(s) = A(1 -5s). [ |

1.4 Modular forms

Functions on the upper half plane,
H={zeC:3(z)> 0}

Historically elliptic integrals lead to elliptic functions, modular forms and
elliptic curves.



Note 1.4 When one is interested in functions on O/A where O is some object
and A is some discrete group. Take f a function on O and average over A to

get
2., fAz).

AEA
If you're lucky this converges, this is good.

Elliptic functions. Weierstrass, take A = w1Z + w»Z a lattice and define
1 1 1
z)=—+ —+— .
@ =%+ X (ot )
weAN{0}

Jacobi, (Elliptic integrals) consider

/‘7’ dt
, k>0
0 (1= 2)(1 = xt2)

related by:
(9(2)) = 4pA(2)° = 60G2(A)pA(2) — 140G5(A)
Gia)= > A
AeAN{0}
or .
G= D,
(m,n)eZ2~{0} (Wl"( + 1’1)

the weight 2k holomorphic Eisenstein series.

Fact 1.5 Let
ds

u =
L V453 — 60Gys — 140G

then
y = pa(u).

1.5 Euclidean Harmonic analysis

Lecture 223/1/2018

We'll take a roundabout route to automorphic forms.

Today: Classical harmonic analysis on R”. Classical harmonic analysis on
H.

The aim (in general) is to express a certain class of functions (i.e. £?) in
terms of building block (harmonics).

In classical analysis the harmonics are known (e(nx)), then the question
becomes how these things fit together. In number theory the harmonics are
extremely mysterious. We are looking at far more complicated geometries,
quotient spaces etc. and arithmetic information comes in.

Example 1.6 R, f: R — C, being periodicin £2(S') leads to a fourier expansion

flx) = Z ape(nx).

nez



1.5.1R?
We have a slightly different perspective.

RP=GOUG

via translations (i.e. right regular representation of G willbe G U L*(G)). Le.
g-x=x+g.

Remark 1.7 This makes R? a homogeneous space.

R? with standard metric ds? = dx? + dy? is a flat space « = 0.

To the metric we have the associated Laplacian (Laplace-Beltrami operator,
V-V)
? 9
_ + JR——
ax%  9y?
we are interested in this as it is essentially the only operator, we will define
automorphic forms to be eigenfunctions for this operator.

Note 1.8 The exponential functions

Gup(x,y) =e(ux +vy)

are eigenfunctions of A with eigenvalue A, , = —47?(u? + 2) i.e.

(A+Ayo)Pun =0.

These are a complete set of harmonics for £2(R?). The proof is via fourier
inversion.

= [ [ Fdonsts paudo

where

fu,0) = //1.{2 f(,0)pu,o(x, y) dy dx.

A little twist. We could have established the spectral resolution ( of A) by
considering invariant integral operators.
Using the spectral theorem if we can find easier to diagonalise operators
that commute we can find the eigenspaces for those to cut down the eigenspace.
Recall: an integral operator is

L(F)(x) = / K(x, y)f(y) dy

invariant means
Ligf)=gL(f)g€G
in our case
8§ flx)=f(g +x).
Observation 1.9 If L is invariant then the kernel K(x, y) is given by
K(x, y) = Ko(x = y)

for some function Kj.

Proof. (<) obvious



(=) Suppose L is invariant then

/ K(x, y)f(y +a)dy = / K(x + a, y)f(y)dy Vf
RZ RZ

implies

/ / K(x,y - a)f(y)dy = / K(x + a, y) f(y) dy VF
RZ R2

SO

J K+ 0= K,y = an ) dy =0
which implies with some proof that
Kix+a,y)=K(x,y—-a)

SO
K(x,y)=K(x -y,0).

Observation 1.10 Invariant integral operators commute with each other
LiLa(f)(z) = L2La(f)(z)

Proof.

Ll = [ fo)Ka( = wKs(z = wdwdu = Loy ()

X

after change of variables
U z—-u+w

Observation 1.11 L commutes with A.
Proof. Based on the following;:

K(x,y) = Ko(x - y,0)

LSS
Bxi h 8]/1

which implies

MLNE) = A [ K, w)de

_ / /R A f@K(z,w)dw

= //RZ fw)AypK(z, w)dw

which via integration by parts is
- [ [ dufkiz, o do - Laf)E).
R

Observation 1.12 ¢, ,(x, y) is an eigenfunction of L, (u,v) € R?, (x, y) € R2.



Proof. )
e
Lousl = )= [ duswk(z, ) do
- /R Pun(@)Ko(z - w) o

= / / e(uwy + vwy)Ko(z1 — w1, zo — wy) dwy dws
R JR

= e(uwy + vws) / / Ko(wy, wo)e(—uwi — vwy) dwy dw,
R JR
after the change of variable w; — —w; + z;

(Pu,v(Z)KO(u/ 'U)

ie. A
L¢u,v = Ko(u, v)¢u,v-

Side remark: these are enough to form a generating set.

1.5.2 Poisson summation (yet again)

Let’s consider integral operators on functions on Z2\R? = T2,
Observe: L ~» K(x, y) = Ko(x — y).

L@ = [ fwK(z w dw

:/ /@ (Z K(z,w+n)) dw

nez?

=Zn€Z KO(Z_w+n)=K(Z,w)

now K is a function on T2 x T2.
Trace of this operator

[ 3 o) S

nez? nez?

Using sum of eigenvalues

Kiz,w)= ) Koz—w+n)= > Ads(z—w) = Y Aepe(2)pe(w)

neZz? £e7? £e7?
so the trace is
D e =D, Kol®)
&ez? &ez?
so we get to
D Kolm) = " Ro(é)
neZ? EeZ?

i.e. Poisson summation.
Why care about Poisson summation?

Ko(O)Z/Ko(Z)dZ



Gauss circle problem, how many lattice points are there in a circle of radius R.
We can pick a radially symmetric function that is 1 on the circle and 0 outside,
or a smooth approximation of such an indicator function at least. Poisson
summation packages the important information into a single term, plus some
rapidly decaying ones. Then we get mR?+ error, Gauss conjectured that the

error is R1/2+€,
Lecture 325/1/2018

Last time we gave a conceptual proof of Poisson summation (this strategy
will generalise to the trace formula eventually).

To clean up one loose end: there is a generalisation of Poisson summation
called Voronoi summation, which will actually be useful later. For Poisson

summation we had
Z K(ni,n2) = Z K(&1, &)

1n1,12€Z &1,62€Z
suppose K(x, y): R*? — C is radially symmetric i.e.

K(x,y) = Ko(x* + %), (x,y) € R?
then the fourier transform

K(u,v) = n/ Ko(r)Jo(NAr)dr, A = 4 (u? + v?)
0
where
1 s
Jo(z) = ;/ cos(z cos(a)) da
0

is a Bessel function of the second kind.
Exercise 1.13 Prove this.

Plug this into Poisson summation

Z K(ni,ny) = Z r2(N)Ko(N)
(n1,n2)€Z2 N=0

as K only depends on n + n3 we group terms based on this quantity, so

ro = #{(n1, o) € Z*: n% + n% =N}

Y, [ Knmenyiet + nar

&1,62€Z
= >, n(MKo(M).
M=0
Theorem 1.14 Voronoi summation.
D" nN)Ko(N) = > ra(M)Ro(M)
N=0 M=0

where

Ro(2) = 7 /O " KoM Jo(2mvER) dr.



Note that J5(0) = 1.
How is this useful? Consider point counting in a circle problem. Let Ko(x)
be an approximation to the step function, 1 for x < 1 and 0 for x > 1. With

[ Ko =1. Then
— N
Z Ko (ﬁ) 1’2(N).
N=0

This is counting lattice points. The right hand side is then

> n(MRo(M) = Ro(0) + Y ra(M)Ko(M)
M=0 M=1
=1+ ) ra(M)Ko(M).
M=1
Finally
£@) =Ko (5
SO ~ ~
(&) = R?Ko(¢R?).

So

(o]

w4+ Y ra(M)Ro(MR?)
M=1

- N
K(—)r(N)=R2
szo 0|3 )72

where the lead term is the area of the circle. Finally if M # 0 then f(MR?)
doesn’t increase fast as R — oo. i.e. it is smaller than R?. So as R — oo we find
#{lattice points in the circle} ~ TR>.

1.6 The hyperbolic plane H

What if we consider the same problem on the hyperbolic disk? Things are
extremely different.

Generalities.
Definition 1.15

H={x+iy:y>0}.

1
ds? = —2(dx2 +dy?), Riemannian metric
y

this gives
k=-1

i.e. this is negatively curved, this is the cause of huge differences between the
euclidean theory. ¢

There is a formula for the (hyperbolic) distance between two points

z—w|+ |z - w|
P ) =108 g el

Observation 1.16 As w — x € R we have p — 0. So R is the boundary.

Recall: the isoperimetric inequality

4mA — kA% < L2

10



where L is the length of the boundary of a region and A is the area. Note if
% =0 then 4A < L2. So A can be and would be as large as L?.
For ¥ = -1 we have
4nA+A* < L

so A can at most (and most often will) be as large as ~ L. The upshot is that
under the hyperbolic metric, the area and perimeter can be the same size.

|Boundary| ~ |Areal].

Things are a lot more subtle.

Another interesting setting is the tree of PGL,(Q,) for p = 2 this is a 3-
regular tree. How many points are there of distance less than R from a fixed
point

1+31+2+---+28)=1+302%1 —1)~ 3. 281 =g . 2R,

But how many points of distance exactly R are there? Roughly 2R again.

Ahyperbolic disk of radius R centred at i would be a euclidean disk, but not
centered at i. The area is 47(sinh(R/2))? and the circumference is 27 sinh(R)
these are roughly the same size as sinh(x) = (¢* — e™)/2. The euclidean area
is far larger (roughly the square) of the hyperbolic.

1.7 H as a homogeneous space
SLL,(R) OH
via linear fractional transformations, i.e.

_az+b
T cz+d

or g = (Z Z) € SLH(R)

this is the full group of holomorphic isometries of H, to get all of them take
z > —Z as well.

H = SL,(H)/SO(2)
because SO(2) = Stab;(SL,(R)).

1.7.1 Several decompositions

. . . . . dxd
Cartesian: x + iy then the invariant measure is xyz L,

Iwasawa: G = NAK
Vo[ )]

el eend

K= {( cos 0 sin@) 0 [O,Zn)}

—sin6 cos 6
1 X
x+iy<—>(\/y \/7_1)( \/1?)
R
A N

this is very general, an analogue of Gram-Schmidt.

11



Observation 1.17
H= NA = P

R

but be warned that NA # AN elementwise.
Cartan: KAK (useful when dealing with rotationally invariant functions).

Exercise 1.18 Prove these decompositions. Use the spectral theorem of sym-
metric matrices for the Cartan case.

Classification of Motions. We classify motions by the number of fixed points
in HUR, for R the extended real line.

¢ Identity, infinitely many fixed points.

e Parabolic, 1 fixed point in R (co) (1 711)

* Hyperbolic, 2 fixed points in R (0, o), (11 a‘l)'

* Elliptic, 1 fixed point in H but not in H, (i,—1) ( cos®  sin 9).

—sinf cosBH

Note 1.19 for the future. These notions are different when we consider
y € G(Q), something can be Q-elliptic but R-hyperbolic. This depends on the
Jordan decomposition essentially, we can have such y with no rational roots
of the characteristic polynomial but which splits over R.

So we have
e Parabolic |tr| =2
e (R-)Elliptic |tr| <2
* (R-)Hyperbolic |tr| > 2

1.8 An

Lecture 4 30/1/2018

For this section Ag = A.
Definition 1.20 We have the translation operators

g€ SLz(R)

Tef(z) = f(8 - 2)-
0

Definition 1.21 Invariant operators. A linear operator L will be called invari-
ant if it commutes with T for all g € SL>(R), i.e.

L(Tgf) = T4(Lf).

0

Remark 1.22 On any Riemannian manifold A can be characterised by: A
diffeomorphism is an isometry iff it commutes with A.

12



A in coordinates:
Cartesian

20 9

9? 9? _
):_(Z_Z 9z 0z

-2

et
2 12 ;9
dz  2\dx dy

9 _1(9 .9
0z~ 2\ax "oy

Exercise 1.23 Show that A is an invariant differential operator.

Polar:

2,1 o, 1 2
or2  tanh(r) dr  (2sinh(r))? d¢?

We will be interested in A O C®(T'\H).

A=

Eigenfunctions of A. This is a little subtle, lets take the definition of an
eigenfunction to be
feC?’H)st (A+A)f=0.

Remark 1.24 A is an “elliptic” operator with real analytic coefficients. This
implies any eigenfunction is real analytic.

Remark 1.25 A = 0 means f is harmonic.

Some basic eigenfunctions: Lets try f(z) = fo(y) independent of x
92
Af =y*—
f=vapf
if f satisfies

A+A)f=0

this implies f is a linear combination of (y*, y!~*) where s(1 —s) = A if A # 1.
If A = 1 this gives /2 and log(y)y'/?. Note the symmetry! s & 1 —s.
Let’s look at f(z) depending periodically on x (with period f). Separation

of variables: try

f(2) = e(x)F2my)

where the 27 is really in both factors. This gives

82 14
a_y2f = 4r%e(x)F”"(2my)
which gives
(A+AN)f =0 & y*ar’e(x) (-F(2my) + F’(2ny) + AF(2mty)) =0

which implies
F'(2ny)+ (A -1)F2ny) =0

this is a close relative of the Bessel differential equation.
77 /\
F'(u)+|— —1|F(u) =0.
u

13



This has two solutions

1
20\ 2
(?y) K, 1(y)~e?Vasy — oo

2

(2ym)* 1,y (y) ~ ™ as y — oo

intuition: as y — oo we have F” — F = 0so e or e™".

Remark 1.26 If we insist on some “moderate growth” (at most polynomial in y)
on the eigenfunction. The I;_; solution can not contribute. (when we come to

automorphic forms we will see that the definition is essentially eigenfunctions
with moderate growth).

So our periodic (in x) eigenfunction with (moderate growth) looks like

fs(z) = CZy%KS_%(Zny)e(x) .

=Ws(z)

Definition 1.27 Whittaker functions. W;(z) is called a Whittaker function. ¢

These exist for arbitrary lie groups, but we may not always be able to write
eigenfunctions in terms of them in general though. They are a replacement
for the exponential functions.

Theorem 1.28 Spectral decomposition.

f2) = 5 / [wanomnasar, s =3+

2mi

where

£r) = /H F2Wi(rz) dz

1 .
ys(r) = ] t sinh(7tt)

analogue of the Fourier inversion formula for H.

Theorem 1.29 2. If f is actually periodic in x and (A + s(1 —s)) f = 0 with growth
O(e*ny)

f@) = foly) + D faWs(nz)

n=1
where fo(y) is a combination of y°, y'=5.

Note 1.30 We will be considering automorphic forms

<(1 ’;)> C T CSLy(Z).

1.9 Integral operators

Recall the Cauchy integral formula for holomorphic functions

f(z):L,‘/ Liuldw:‘/B K(w, z) f(w) dw

B, W

14



i.e. using an integral kernel, f is an eigenfunction for this operator.
Recall: L is an integral operator if

Lf(z) = /HK(z,w)f(w)d ww), w=u+iv
—_——

K will often be smooth of compact support for us. L is invariant if it commutes
with T, for all g.

Observation 1.31 L is invariant iff

K(gz, gw) = K(z,w) Vg € SL2(R).
Exercise 1.32 Show this.
Definition 1.33 Point pair invariants. A function K: Hx H — C that satisfies

K(gz, gw) = K(z, w) is called a point pair invariant. This was first introduced
by Selberg. ¢

Invariant integral operators are convolution operators.

Remark 1.34 A point pair invariant K(z, w) depends only of the distance
between z, w i.e.

K(z, w) = Ko(p(z, w)) for Kg: R* - C

so an invariant operator is just a convolution operator.
Lecture 51/2/2018

Theorem 1.35 If (A + A)f = 0 and L is an invariant integral operator. (=) Then
there exists
A(A,K)

such that
L(f)(z) = A(A, K)f(z).

(&) Moreover if f is an eigenfunction of all invariant operators then f is an eigen-
function of A.
Proof. (&) Let Lk be

Le(F)) = [ flo)k(z, w) dutz)

then
Lk(f)(z) = Ak f(2)
(if Ax = 0 for all K then f = 0). So that

AF(z) = AALKLK f(z)

» /H F(0)AK(w, z) du(w)

Note f — /H f(z)A;K(w, z) dp(w) is another invariant integral operator
(exercise, show this).

We will prove an integral representation that looks like the Cauchy integral

formula ) f(w)
w
f(Z):TmLZEdw

15



Let forw € H,

Dy (f)(z) = /G f(32)du(g)

where Gy, is the stabiliser of w in SL,(R) and dy is normalized so that G, has
volume 1.
Facts:

1. If f is an eigenfunction of A with eigenvalue (A+ A)f =0, A =5(1 —5s)
then there exists a unique function W(z, w) s.t.

Oy (f)(z) = W(z, w)f(w)
W(w,w) =1
(A + V)W(z,w)=0

W is point pair invariant.

L(®.(f)(z) = L(f)(2)
as

L@.(f)(z) = /H . (F)()K(w, z) dp(w)
[ [ #swante, 2 dutw
H /B,

/ / fw) K(g™w,2) du(w)du(s)
B, /JH ~————
=K(w,gz)=K(w,z)

Now returning to the proof. Let (A + A)f = 0, L invariant.

Lf(z) = L(®-f)(z)
_ /H . (f)(w)K(z, w) dp(w)
_ /H W(w, 2) f(w)K(z, w) dpa(w)

= {/H W(w, z)K(z, w) dy(w)} f(z)

Claim: {---} depends only on K and A not z. Proof: Let z1,z; € H and
pick g € SLo(R) gz1 = 2.

/HW(w,ZZ)K(zz,ZU)d#(w)
=LW(w,g21)K(gzlrw)dy(w)
_ /H W(g\w, 21)K(z1, g ') dp(w)

=‘/HW(w,zl)K(zl,w)dy(w). u

Upshot so far: Poisson summation is a duality, but it can be seen as an
equality of the trace of an operator calculated in two different ways. In the
non-euclidean setting we can do something similar, but not so recognisable.

16



Digression: Ramanujan conjecture. A weight k cusp form, eigenfunction
of the Hecke operators implies

Al <2p'T,

“correct” normalisation is |/~\p| <2
This is about the components at p but there is also a component at infinity.
Selberg’s eigenvalue conjecture: ¢ is a cuspidal automorphic (Maass) form
with eigenvalue A = s(1 — s) implies s = % +it,t € Rie. [A] > }L.

Back to H. If we have (A + A) f = 0 can we say anything about A?

Proposition 1.36
AER, A >0

Proof. Introduce the Petersson inner product

(£,6) = [ FEIGE duC)

(-AF,G) = / VF-VGdxdy
H
(AF =V -VF)
exercise: check this. So (—AF, G) = (F, —AG) which gives A € R.
(-AF,F)>0 = A >0. [

For the }—1 bound one needs to work a little harder.
Proposition 1.37

A+A)=0 = A >

I

Proof. Let D C Hbe a (nice) domain. Consider the Dirichlet problem
(A+A)f =0inside D

f=0ondD.

Define

(£, G = [ FECEpG)

Then
(~AF,G)p = / VF-VGdxdy

(exercise, show this).

oF\* (9F\*| dxdy or\?
2 _ —_ = _— -_— —_— -
A|[F||® = (=AF, F) /D((ax) +(8y)) " Z./D(By) dedy (1.1)
For every fixed x:
d
[P [
y dy y

17



y? 3y y

1 1

F OF F2 2 oF \* :
2/'—— dxd SZ(/—dxd ) /(—) dxd
ydy Y 2 dy Y

1 [ P F2 2 OF\? :

E/D?dxdys(/?dxdy) (/ (@) dxdy) (1.2)
1/3Fdd /—dd</ap2dxd
ay] V=4 TV = ooy Y
i<1 = A >

_ /Fdedy 5 8Fdxdy
D
1
previous two imply
1
41 4

Remark 1.38 In Theorem 1.29 we restricted to the 1/2 line, this is a reincarnation
of A > 1. Only certain functions contributed, similar to the way only the
unitaries e2™*¢ contribute to a fourier expansion, not all characters of R.

The spectrum of A on Hhas A = s(1—5), s = % + it. If we consider

the quotient I'\H there is a possibility for ¢t = fr + itc where 0 < fc < %

Selberg’s conjecture is that these extra ones don’t appear for cusp forms. This
is very sensitive to the arithmetic, we need a congruence subgroup for this to
be true.

1.10 Automorphic forms

1.10.1 Modular forms

These are functions on H that are very symmetric. We already saw one in
the first lecture, 0(t) in the proof of Theorem 1.3. Its not quite, instead it is a
half-integral weight modular form as we involved square roots

1
Definition 1.39 Modular functions and forms. A modular function is some
ftH—>C

with

f (“Z i b) = (cz+d) f(2)V (’Z Z) € SLy(Z)

cz+d

where, f is meromorphic on H including co. It is called a modular form if it is
indeed holomorphic at infinity, this is equivalent to some growth condition. ¢

Definition 1.40 Cusp forms. f is a cusp form if

1
/ f(x+z)dx =0Vz.
0

Lecture 6 6/2/2018
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Remark 1.41 f has a fourier expansion (invariant under x — x+1) holomorphic
implies

f(z)= ) ane(nz) (e(a) = ™)
n=0
cusp form implies
f@) =) ane(nz)
n=1

as cuspidal implies f(z) = O(e™2™¥) as y — oo. f not cuspidal implies f(z) =
O(y*) as y — oo.

1.10.2 Examples

Example 1.42 Constant functions for k = 0. m]

Example 1.43 Eisenstein series (holomorphic).

1

Gelz) = (mz +

(m,n)eZ2\(0,0)

Is this cuspidal? Answer: No! Why?

[se]

N2k
Gile) =220) + gy D) (@) el

#0 =Xdja 4*
this is of weight 2k! O

Exercise 1.44 Prove this.
Example 1.45
A(z) = (60G(2))® - 27(140G5(2))?

is a cusp form of weight 12.

A(z) = Z ape(nz), ay = n""?1(n) = 1(n) = O(n*)ve
n=1
lz(p)l <2
the original Ramanujan conjecture. m]
Exercise 1.46 Show these.
Example 1.47 A non-example.
: 1728(60G1(z))?
() = 1728(E0Ga(2)
A(z)
not holomorphic at co. o

Example 1.48 We had also seen O-function but it does not fit in to this setting.
It is rather a modular form for a covering group. ]

Digression: bounds on fourier coefficients of cusp forms.
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Theorem 1.49 Hecke. If f(z) is a cusp form of weight k

fz) =) ane(nz)
n=1
then
a = O(nk/Z)

called the Hecke or trivial bound.
If A, = n0=0/2q,, then this says A, < Vn.

Proof.

(s}

f2)= ) ane(nz) = e(z) ) ane((n—1)2)

n=1 n=1
implies
|f(x)] < Ce™™
now consider
o(z) = Y.
Then
$(82) = 6(2) Yf € SLo(Z)

(exercise). Moreover ¢(z) — 0 as y — oo and ¢ is continuous so IM s.t.
lp(2)] < M.
Therefore f(z) < My~*/2.

[ee]

fz)= ) ane(nz)

n=1

aze(iy) = /Olf(x +iy)e(—nz)dx

1
M 1

< —dx=0|——=

| ymes=o (5]

for all y pick y = 1/n so O(n*/?). [

1.10.3 Maass forms

Definition 1.50 Maass forms. A function f: H — Cs.t.

f(gz) = f(z) Vg € SLa(2)
¢ f is an eigenfunction of A.
* fisof moderate growth, f(x +iy) = O(y") for some N.

is called a maass form. If

/1f(x+iy)dx=0
0

we call it a maass cusp form. 0

Example 1.51 Constant functions are Maass forms, this is because they are L2
because H/SL;(Z) has finite volume. O
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Example 1.52 Non-holomorphic Eisenstein series..

S(Z)s+1/2

E(z;s) = m,

(c,d)€Z2\(0,0),(c,d)=1,c>0
we choose this normalisation (for now) with s + % as it generalises better to
GLj3 which has more elements in its Weyl group. ]

Lecture 7 8/2/2018

Remark 1.53 In fact most things are non-holomorphic in the sense that many
spaces of interest do not have a complex structure.

Properties.

(A+A)E(z;5)=0
I o

A:Z_S

E(yz;s) = E(z,s) Vy € SLy(Z)

E(Z;S) = O(ymax{ReS(S‘F%),‘R(—s.;.%)})

hence E(z; s) is a Maass form. We have

I(2)

302 = e

SO

E(z;s) = Z v Z I(yz)**

2s+1
(c,d)ez2\(0,0),(c,d)=1,c20 |CZ + d| y€xle\ SLo(Z)
1 n .
where I's, = 1] € SL,(Z);. Exercise: check.

Ays+% — yZ(_ v 3

i i s+i
oxz 8y2)y

1

= (s + 5)(s - 5)y°"?
— (52 _ }I)ys+%
1 2 s+1
= A+ (g =)y =0

y is an isometry implies Ay = yA. So y y“% is also an eigenfunction with
eigenvalue § — s2.

Theorem 1.54 E(z;s) has analytic continuation to C (in s), it satisfies E(z;s) =
E(z;—s) and

E(z;s) = O(47), 0 = max{R(s), R(=s)} + %
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Proof. (Wrong way to prove this) Fourier expansion of Eisenstein series.
E(z;s) = ap(y) + Z anZy%Ks(annly)e(nx)
n#0
using Theorem 1.29.

1 _
/ E(x +iy;s)e(-nx)dx = aO(y)l n=0 )
0 2a,y2K;(2m|nly) n#0

Note:
S+2
Els) = Z lcz +d|25+l

1 1 ys+§
To0(2s+1) Tom 4 Al25+1

20(2s+1) D T00) lcz + d|>s+
We will work with

for archimidean factors of ((2s+1)

e N ——
1
n—(s+%)r(s + E) ys+%
Eq(z;s) = IPTIT
2 (c,d)#(0,0) |CZ + d|
1. )
—(s+75) 1
foo — [T v2s) ifn=0
0 ifn#0
2.
1 ys+%
c#0: / ——————e¢(—nx)dx
(c,d),c#0 0 lez +dv!
[se] [Se] 1
_, / e(-nn)
;d;wy 0 |z +d>t
————
=cx+d+icy

the right hand side is invariant under x = x + 1 we can absorb the shift
into the sum over d, in a general context this is known as unfolding.

) Zi 2 D, v /1 LI
) lez + d|2s+1
c=la (mod c)d=a (mod c) o lez+d|*

[e]

e(—nx)
ZZ Z Zy /lcx+ck+a+zcy|25+1dx

c=1a (mod c)keZ

[ee]

et / en)
4 Z Z oo leX +a +icy|>H *

c=la (mod c)

s 3 nafo) [t _eln)

C2s+1 0 |x + iy|25+l

c=1,a (mod c)
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note:

if
> mo=fo 4

a (mod ¢)

so we get
s+1 e( nx)
Zy ’ Z c2s / |x + 1y|25+1 dx
two cases
@ n=0
o 1 [ 1
2 s+%
Yy ; C2s |X + iy|25+l
X —yx
3 o
ys+7 1 /00 l
=2 il
y25+l ; CZs . (x2 T 1)25;1
°° 1
_Zy 5+2C(2S)/ —
oo (22 4+ 1)
(b) n#0
W1 ©  e(—nx)
2]/5 2(7_25(|Tl|) [00 de
fact:
_ 1_ .
Dy (s )/ el g, T ifn =0
o X+ l]/l25+l 2ln*\yKs@nlnly) ifn#0

Combining these we have shown
Ei(z;s) = mCTDT(s + %)C(Zs +1)ys+2 (1.3)

+1T(s)C(28)y 2 + ) a-as(InDInl YK (2mt|n]y)e(nx)

n#0
where we have K; = K_g and

oaslnl* = ) d|nf* = Z| 5 = Il oanh = EGis).

d|n d|n
So we have proved the functional equation and analytic continuation.
u

We can see that we have C appearing here in the constant term, we can
determine analytic information about it using what we know about Eisenstein
series, this idea in generality is known as the Langlands-Shahidi method.
Remark 1.55 This has poles at s = %, Res,_ 1 E(z;s) = % Note that this residue
is constant. We will use this in Rankin-Selberg.

Lecture 8 15/2/2018

Remark 1.56 If G is a reductive group and M C G a Levi subgroup, e.g. for
GL, a Leviis diagonal blocks of size 11 + 11 + - - - + ny = n. One can associate a
cusp form to these subgroups following Eisenstein. There are automorphic L-
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functions corresponding to these and by doing the same procedure as last time
we see these L-functions appearing in the constant terms of the Eisenstein se-
ries. So we can establish analytic properties of these automorphic L-functions
via those of the Eisenstein series. This is known as the Langlands-Shahidi
method, it only works in some cases but when it does it is very powerful.
Shahidi pushed the idea by looking at non-constant terms. In the example

above we have
oaim) =Y d = Ja+1/p* =[[¢@s)

dln pln

so there are L-functions even in the non-constant terms.

1.10.4 Hecke Operators

The natural setting to view these is over GL»(Qy). But as we haven’t done this
yet we will take the path that Hecke took and just write a formula. They act
on the space of modular forms.

Definition 1.57 Slash operators. Let k € Z, fixed, y € GL;(R) (positive
determinant).

_ k/2 _k az+b
fly(z) = det(y)”“(cz +d)™ f (cz |
There is a determinant twist so that the center acts trivially. 0

Definition 1.58 T,. Let y € GL;(Q) write

SLa(2)y SLa(Z) = | |SLa2)yi

i=1
then

T,(f) =D flu).
i=1

Exercise 1.59
_(p O
7=lo 1

SL,(2) (18 (1))SL2(Z)= SLy(Z) ((1) z)USLz(Z) (g ‘1))

b (mod p)

More classically.
- z+b
@ =Y (e,
b (mod p) P

This differs by a normalization of det won’t change too much but will shift the
spectrum. Or more generally we have

L=y, ARy (?) -
ad=n,b (mod d)

Fact 1.60 Hecke operators commpute with each other (follows from KAK decomposi-
tion).
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Fact 1.61 Hecke operators are self-adjoint with respect to the Petersson inner product
on My(1), the modular forms of weight k and level 1.

(f) &) pet /S Lo f@)g@)y* du(z).

Lemma 1.62 Let f(z) # 0 be a cusp form of weight k which is an eigenfunction for
all of the Hecke operators with eigenvalue n' %2\ (n) i.e.

Ta(f)(z)n' 2 A(n) f(z)Vn

let

[se]

fz) =) ane(nz)

n=1

be its fourier expansion and

(e a,
L(S,f) = F
n=1
Then

a1 #0
2. Ifay =1then a, = A(n)Vn.
3. Ifay = 1 then A(mn) = A(m)A(n) for all (m,n) = 1.

4. Ifay =1 then
Ls, f) = [a=-app™ +p72)7,
P

Proof. By the Fourier expansion

= (5 (5

ad=n,b (mod d)

Y () e () ()

ad=n,b (mod d) m=1
avk2 &
= Z (E) d Z apmge (maz).
ad=n,b (mod d) m=1
Which implies
1-k/2 a\k2 ¢
n An)f(z) = Z (3) d Z e(maz)
ad=n m=1
SO

k/2
= 3 (2)
ad=n,alm

exercise: check. Take m =1 so
nl—k/Z/\(n)al — n—k/2+1an

hence
A(n)ay = ay.
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1. Ifa; = O then f = 0.
2. If a1 = 1 then A(n) = a,,.
3. Follows from 4.

4. Note p 02
PG = 3 a5 (5)

a
ad=p’,alp
— A(pr+1)(pr)1—k/2+ A(pr—l)(pr)l—k/Zpk—l

> Alp") Ap)  p*!
1- =1.
(;0 prs )( ps + pZS ) u

This is very special to GL,, in general fourier coefficients have more infor-
mation than Hecke eigenvalues.

Remark 1.63 With the normalisation

Tu(f)(z) = An)n =2 (z)

the Ramanujan conjecture reads A(n) = O(nk=1/2+€),

Remark 1.64 Having a1 = 1 is known as being Hecke normalised.

1.11 Rankin-Selberg method

This is a protoype of the integral representation of automorphic L-functions.

1.11.1 Mellin transforms of automorphic forms and automorphic L-functions

Let
6(z) = ) an(y)e(nx)

nez

then .
)= [ o dx.
Notation:

o0 d
an(s) =/0 an(y)y*d'y, d'y = 7y

converges for R(s) > 0if a,(y) = O(y~™N) for all N.

Theorem 1.65 Let ¢(x + iy) = O(y™N) for all N > 0 and ¢(z) is invariant under
z - yz for y € SLy(Z). Then

/ ¢(z)E(z;s)dz
SL2(Z)\H

= °T(S)L(2s)do(s — 1).
Lecture 922/2/2018
Definition 1.66 Mellin transforms. Given

fy): Ry = C
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its Mellin transform is

R oo d
f(s) = /0 fw <L, s = o)

If
f(y) = g(Q(n)y)
1

f(s) Ay _ [y dy 1
f(s)—/g(Q(n)y)y y —/g(y)Qs(n) v = QW

What is
[ o duer
SLy(Z)\H

The Eisenstein series is essentially

> Sy

€T\ SLa(Z)

we can see the integrating over SL,(Z)\H a sum over I'x, \ SL»(Z) things should
cancel to give us an integral over I'.,\H, a rectangle! So this unfolding should
simplify things.

Proposition 1.67 Let ¢ : H — C be automorphic with respect to SLy(Z), with fourier
expansion

[ee]

1
¢(z) = Z ay(y)e(nx), wherea,(y) :/o ¢(x +iy)e(—nx)dx.

n=—oo

If(x +iy) = O(y~N) forall N > 0.
[ 0@k dut = w Tt -1 (14)
SL»(Z)\H

where ¢(z) = Xyez an(y)e(nx).

Proof. Follow your nose!

Recall
e

Es(z;8) = 2_5 T'(s)C(2s) Z I(yz)®.

€T\ SLa(2)

Step 1: The integral converges: Writing E for E3 we have
E(z;s) = O(y* + y'™).

Step 2: Unfold

n—S

r)cs) /SLZ(Z)\qu(z)( > S(yZ)s)dy(Z)

I'w\SL2(Z)

Tt

5 T()C(2s) SLZ(Z)\H( 2 <z>(yz)ii<yz>5)du<z>

T'w\SL2(Z)

= nsr(s)C(Zs)/r . O(z)y® du(z)
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L poo dxd
:n—sr(s)c(zs)'/o ‘/0 ¢(z)ys ny

y
_ ~ dy
=n°T 2 S—
T [ ay
=1 °T(s)L(2s)dp(s — 1). [
Corollary 1.68
A(s) = m°T(s)C(28)do(s — 1)
we showed

A(s) :/ ¢(s)E(z;s)du(z).
SL2(Z)\H

(So we can find a functional equation and analytic continuation for from the corre-
sponding properties of the Eisenstein series.)

A(s) has analytic continuation.

A(s) has functional equation s < s — 1.

A(s) has poles only at s = 0, 1.

Rese_1 A(s) = /S RRCLIC

Note that if we use a cusp form for ¢ we get 0 from the integral above, in
L? the cusp forms and Eisenstein series are orthogonal. Instead we will cook
up something interesting from two functions.

1.11.2 Rankin-Selberg L-functions
Let

[se]

f@) =) ane(nz)

n=0

g(z) = ) bue(nz)
n=0

be holomorphic modular forms of weight k.
Assume that at least one of f or g is cuspidal. Assume additionally that
f, g are normalised Hecke eigenforms so a(1) = b(1) = 1.
Definition 1.69
6(2) = f(2)3(2)y".
¢
Note 1.70 ¢(yz) = ¢(z) forany y € SLy(Z). ¢ also satisfies the decay condition.

Note 1.71If f = > ase(nz), g = X bye(nz) then

fEEE = ), Apme((n—m)z)+ > anb,

m—n#0 nez

so if we were to integrate this from 0 to 1 dx the first term would disappear
and we would be left with the second.

o= [ ser@aey = [0 5 Avett-maws [ 3 wbut

m—-n#0 nez
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=Yyt

i.e.

(PO(}/) / qb(x + ly) dx = Z an(y)b (y)y p—dminy

nez

Note 1.72
~ & - . dy
(PO(S) :/ Zanbne—4nzyyk+s_
0 3 y

i /oo —4niyyk+s d_y

y
k+
(477)5 Z nk+5 -
I'(k +s)
= (471)1”5 Z nk+s
\_.\,_.._/
L(s+k; fxg)

this is the Rankin-Selberg L-function. So by the corollary 1.68; L(s+k; f x g) has
analytic continuation and functional equation, and poles only ats = 1+k, s = k.

An application. We proved f cusp form f(z) = > aye(nz) implies a, =
O(n*/?), Ramanujan a, = O(n*~1/2). As cusp forms often appear as error
terms for counting arguments knowing it gives us many results, tells us we
can just count with Eisenstein series. The averaged version of the Ramanujan
conjecture is much easier

S

n<X
Lecture 10 27/2/2018
Recall Proposition 1.67 and moreover that
E(z;s) = nT(s)C(25) 2 D B =nTs) ) _v__
2 7€\ SLa(Z) (m,n)€Z2\(0,0) Iz + n

from this and Note 1.71 we conclude.

/ f(z)g(z)ykE(z;s)dy(z)
SL2(Z)\H

nSC2s)I'(s)I'(s +k —1)
- (47)2 k-1 Z ns+k = (1.5)

(1.5) has analytic continuation as a function of s to all s € C. It has at most
simple poles with residue at s = 1:

%(f’g>Pet'

If we let

L(s, f X ) = s —k +1) Y 220
n=1
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A(s, f x3) = 2n) ™ T(s)I(s —k + 1)L(s, f X g)
SO
A, fxg)=AR2k-1-5,fxg)

this follows from Theorem 1.54 E(z;s) = E(s; 1 —s). .
A(s, f X g) has analytic continuation to s € C with poles at most at s =
k,s=k-1.

1
Ress= A(s, f X g) = W <f’ g)Pet'

This is analogous to when we took the Mellin transform of the theta func-
tion. We have obtained some highly nontrivial information above:

Remark 1.73 Given an arbitrary series of the form

[o9]

L(s) = )\ 25, Jas] = O(n?)

n=1

will converge for R(s) > a + 1. As these coefficients often come from point
counts, they will in general be polynomial.

Recall the Hecke bound

[s+]

fz)= ) ane(nz)

n=1

a cuspidal (Hecke eigen)form of weight k has a, = O(n*/?). Ramanujan
(Deligne) gives us a, = O(n*"V/2), Hecke implies that a,b, = O(1n¥) implies
Yt % converges for R(s) > k + 1. Deligne implies that a,b, = O(n*™1)
© ﬂHEn

implies 3" ; 3t converges for R(s) > k. But the above already gives us this
convergence, highly nontrivial k!

Remark 1.74 If we take f, ¢ to be normalized Hecke eigenforms. Let

ap 1 a1 an
Py T

bp 1 ﬁl ,BZ
Lot = (- A =05)
then _
_ aif;
L, fxg=]] ][] a-=H"
p 1<i,j<2 p

Exercise 1.75 Prove this.

Applications. If one proves the prime number theorem using non-vanishing
of the C function in a certain region you use a weird identity using sines and
cosines being positive. This really comes from a Rankin-Selberg product.

Remark 1.76 Rankin-Selberg proves positivity.

zeZ, |z|>>0.

Ramanujan on average:

Z a, ~ Xk+D/2

n<X
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this is equivalent to

_N A
L(s) = 24 s
converges for R(s) > (k +1)/2. Let
$(z) = > aue(nz)
n=1
be a cusp form of weight k.
Consider
_ S |an|2
D(s) = Z{ e

Hecke implies this converges for R(s) > k + 1.
Note 1.77 _
D(s) = L(s, f X f)

converges for R(s) > k.

Now observe that for any A > 0

|ax |
|an|SmaX{ /\,nLA .

So

(o]
1 |
< max max ,
ns—A7 ps+A

n=1

i |,
B
n=1 n

choose A = (k—1)/2so

- 1 2|
< max Z max { o (—1)/2" sk-1))2

n=1
which converges for s > (k +1)/2.
Question 1.78 Fix du(z) = dxyfy on H. What is Vol(SL,(Z)\H)? (nt/3?) What
about other I'? O

Naive observation:
/ 1 du(z) = Vol
p GHEI =

1
5= Res;—1 E(z;s)

and

SO

VTOI = / Ress—1 E(z;s)du(z)” =" Ress=1/ E(z;s)du(z)
SL; \H SL2(Z)\H

but the right hand side does not converge (exercise, check).

Problem: naive idea doesn’t work /SLz @)\H E(z;s) du(z) converges only for
0 <1 < 1. but then we can’t unfold because the series defining E(z; s) does not
converge 0 < s < 1. We must target the source of this divergence, the constant

term of the Eisenstein series.

*1° + % 1-s =J
/1 ¥ Y 2

we will truncate the Eisenstein series.
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1.11.3 Applications

Lecture 11 1/3/2018
First aim of the day: Calculate

Vol(SLa(Z)\H, du(z) = dxy;iy)

Idea: Use the pole of E(z;s) at s = 1 and unfolding.

o= IR 51 g

y€lw\SLa(Z)
1
Res;—1 E(z;8) = 5

Idea:
Vol

Ress=1/ E(z;s) =du(z) = —
SLy(2)\H 2

Problem: Constant term of E(z;s) ~ y* + y'=.

5 4 1-s =7
/1 y+y 2

converges only if 0 < s < 1. This approach needs modification, we will look
at two such.

1. Sharp cut-off,

2. Smooth cut-off.

1 Sharp cut-off. For sharp cut off we will fix some T > 0 and only consider

y < T. Setting
<T
yr(z) = {y g

0 y=T
using this
7 °T(s)C(2s
Er(z;s) = % Z yr(yz).
7€lw\SLo(Z)
Observations:

Lemma 1.79 K C H compact, there exists Tx such that forall T > Tx

Er(z;s) = E(z;s)Vz € K.

Proof.
_ ¥ _ Y
02 = [ T (e a2 T g
y 1
< max{ds, c2y}
J(SLa(Z)K) < Ty
for some Tj. [ ]
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Lemma 1.80

Ts—l
Et(z;s)du(z) = n°T(s)C(2s)
SLo(Z)\H s—1

T = {(1 ’;) € SLz(Z)}

/ Etr(z;s)du(z) = n™°T(s)C(2s) Z yr(yz)® du(z)
SLy(Z)\H

SL2(Z)\H ) 1 V5L, (2)

Proof. (Unfold), recall

SO

= 71_51"(5)C(25)/r . yr dp(z)

1 T
= rereces) [ [ au)

Ts-1
— =S
= TT(E)s)s—

There is a huge generalization of this lemma by Langlands that allows him
to calculate a lot of volumes.
Lemma 1.81 Let T > 1 and x + iy in the standard fundamental domain ¥ for
SLy(Z)\H then

Er(z;s) = E(z;s) y<T
e E(z;s) - nT(s)C@2s)y® y>T'
Proof. Recall
_ y
Y00 = v ar s wm

Case 1: ¢ # 0 implies J(yz) < % <Tforally e F.
Case 2: ¢ = 0 implies J(yz) = d_yz

y = (g Z) € SLy(Z)

impliesad =1soa=d=1ora=d =-1.
~*T'(s)C(2s
Er(z;s) = # Z yr(yz)®

y€lw\SLo(Z)

_ T (s)C(2s) Z y(yz)s _ n_SF(Z)C(zs) Z yT(%)s

2
y€T\ SLa(Z) d=+1

_ JE(z;5) - n°T(s)C(2s)y* y<T -
- E(z;s) y=>T

Remark 1.82 E(z;s) — Et(z; s) for fixed z is holomorphic as a function of s at
s =1
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Theorem 1.83 -
Vol(SL,(Z)\H) = 3

Proof. E(z;s) — Er(z;s) is holomorphic at s = 1. So

/ Ress=1(E(z;s) — Er(z;8))dp(z) = 0
SL2(Z)\H
[ 5 RescalErteis)dutz) =0
SLy(Z)\H
[ Resca(Er(zio) dutz) = 3 Vol(SLZ)\H)
SL»(Z)\H

2

Ress=1/ Er(z;s)du(z) = 1Vol(‘SLz(Z)\H)
SLo(Z)\H 2

s—1
Res;—1 n_SF(s)C(Zs)Z_ 7= %VOI(SLZ(Z)\H)
_1r
6
hence -
Vol(SL,(Z)\H) = 3 ]

Volumes of such domains are known as Tamagawa number and many such
were computed via these methods by Langlands in the 60s.

2 Smooth cut-off. Let f € CX(Rxo) e.g. some nice bump. Consider
1
0/x)=5 D, f302)
e\ SL2(Z)
idea

fl) = 5 /( fonas

fora < ¢ < b such that f = /Ooo v f (y)d7y converges absolutely fora < s < b.
Observation: ¢ € R for this to hold. So

o)=Y (% /( e ds)

for R(s) < —s:
1 £ —-s
== (O)f(s)( > 302 )ds
V€l \SL2(Z)
1 .
= Z_MA)f(S)El(Z’_S) ds
where

AEDEEIED YR 15

y€le\ SL2(Z)
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Now integrate

1
0¢(z) du(z) = 1dsd
L;@Nif@)y&) L;amiﬁu @f@E& Dds dpz)

= f(~1) (Ress=1 E1(z;5)) Vol(SL2(Z)\H)

1 -
+ — (s) E(z;-s)du(z)ds
2mi (—%)f SLo(Z)\H 3

=(E(2;8),1)pet

(shifting contours to ¢ = %1 + it). The rightmost term is 0 as we have a

decomposition

L*(SLy(Z)\H) =1 & / E(z;s)ds @ cusp form.
()

2

We'll do this by hand here. i.e.

/ O¢(z)du(z) = f(—l) (Ress=1 E1(z; s)) Vol(SL,(Z)\H)
SLy(Z)\H

[ S —
=3/7

+/ E(z;—s)du(z)ds.
SL2(Z)\H

[ edu =iy
SL2(Z)\H

Lemma 1.84

Proof. Exercise.

The lemma implies V f € CZ°(Rso) we have the following

f( 1)(1—EV01) = 1/ f( s)/E(z —s)du(z)ds

Claim 1.85 (1.6) implies that

/ E(z;—s)du(z) =0,
SL2(Z)\H

whenever it converges.

Proof. By a change of variables we can rewrite (1.6) as

cf(-1) = /(O) f(—% +5)I(S)ds

for some constant c.

1. Take F(y) = y%f(y) which implies
F(s) = f(s + %).
(1.6) =

o o F(s)l(s)ds—cF(——)
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2. Trick: Let G(y) = (y%F + %F) S0

G(s) = sF(s) + gf(s)
) 3
G(—E) =0
implies
zim,/é(—s)l(z;s)ds =0
I(z;s)=0

whenever it converges.

2 The Eichler-Selberg trace formula

2.1 The OG approach

Lecture 12 15/3/2018

What does it do? It calculates the trace of the mth Hecke operator T () on
S the space of holomorphic modular forms of weight k level 1.

Input m € Z, k weight.
Remark 2.1 It is more general, there is an (Eichler-)Selberg trace formula for
general level N.
Even more generally there is a Selberg trace formula for Maass forms of arbi-
trary level.
Even more general Arthur-Selberg trace formula for automorphic representa-
tions on any group.

Recall
. kp(az+D
T(m)f(z) = m 2, T (7)
ad=m,b (mod d)

Sk cusp forms of weight k > 2 even level 1.

TrskT(m):—% Z Py(t, m)H(4m — )

teZ,t2—4m<0
1 k=1,,.k/2-1 c 72
-5 Z min(d,d’)k1+{02 " m )
dd’=m
Where -
Pe(t,m)= E=F
-p

for {p, p} solutions to X? — tX + m = 0. H(n) is the “Hurwitz class number”
= #{Q pos. def. integral quad. form : discQ = —N}/SL,(Z)

each one counted with multiplicity 1 unless it is equivalent to x* + y*> — 1,
x2 +xy + y*> — 1 We will prove this and examine some consequences.

How would we calculate terms in this? It can be hard, the Hurwitz class
number requires VD time for N = 2D, D a fundamental discriminant. To get
the trace we can integrate f K(x, x) for the kernel which gives us T(m).
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Towards the trace formula. We will follow Zagier: Modular forms whose
coefficients are Dirichlet series.

Normalization: Let {fi,..., f;} be a basis for Sx. We will assume that
they are all Hecke eigenfunctions and they are normalized by 4} = 1 (Hecke
normalized).

[e+]

fi(z) = Z a,ie(nx)

i=1
Note 2.2 f;s are pairwise orthogonal with respect to (=, —)pe;

dxdy
2

(o fna= [ B0
I'\H
why: say ai, # 0 for some m then

<fifff>1>et = ali <T(m)firfj>Pet

= ai" (fi, T(m)ff>Pet

]
= a_zm <fi’f]'>Pet

a

Kernel function.
Theorem 2.3 T'(m) is an integral operator with the kernel

1 1 1
hw(z,z') = E = .
k k k
it (czz’ +dz’ +az +b) (cz+d)k | N (?;:S)

Note 2.4 Let’s set ji(y, z) = (cz + d)7¥,
b
y= (f; d) €Sy (2)

Fi(z,z) = (z+2)7F

SO

haz2)= > iy, DFdyz,2).
y€Maty(Z), det y=m

Even more is true hy,(z,z") = h1(Tw(z), 7).

Proof.
’ c ’
f (@) = =S Tu((E)

cx = (=1)¥2m/2k3(k — 1). set m = 1 (this is enough because of our earlier
observation).

fem) = [ SORE D A

[ s {Z iy, 2=z + yz)k} v du(y)
I\H ”
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f is a modular form of weight k implies

fyz) = (cz +d)*f(2)

Y
302 = e
SO
(cz+d)*f(z)y* = f(y2)3(y2)~. (2.1)

this implies

dxdy

/ F2)3(g2) (—2' +72)*

— ki_r . 5\k Xdy
2 [ [ etz e yz

Cauchy integral formula implies

flx+1iy)
/. Gty

2mi/(k — 1) f*V(2miy)

47i/(k — 1)!/ f(k_1)(2iy +2/)yF2dy
0

inner part is

dk-
k-2
1/(2i) 2

= 2/ f'Qity +z')dyli=1

dk -2
e @l

= (i/2)"ami [ (k - Df(2') = e f(2). .

f (2ity + z')|i=1

4mi/(k — 1)11/(2i)* 24

= —4mi/(k - 1)1(2i)F!

Corollary 2.5

m (2, z’)—Z (f f> —— fi(2) fi(z)

Pet

spectral decomposition.

dx dy

-1
Tt = 5 [tz 9300

Proof. Expand hy,(z,z’) with respect to {f1,..., fr}. hm(z,z’) is a cusp form
in both variables, we will show this later!

hw(z,2") = Z @i fi(z)fj(z'), aij € C

1<i,j<r
By the theorem
-1
c
L fa(z) = Tu(F)(Z)
let’s apply this to f;, for any ig .. Next time. ]
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Lecture 13 20/3/2018

Summary:
Aim: to establish the Eichler-Selberg trace formula for the trace of T,,, O S,
for T, the mth Hecke operator

(Tuf)z) = m* Y jk(y, 2) f(y2)
j=1

where y; are coset representatives for
T\{x € Maty(Z) : det(x) = m}/T = |_| Ty;

and jr(yz) = (cz + d)k,
a b
Y= (C d) € SLz(Z).

hw(z,2') = Z (czz' +dz’ +az+b)*
ad—bc=m

(_1)k/27.[

Theorem 2.6 Petersson. Let ¢ = D)

1. Then c;lmk‘lhm(z, —2') is the kernel for Ty, O Sk. Le.
o tmk / F@)hm(z,—2)y* du(z)
I\H

= (f, e m (., ~Z')) et
= Tu(f)(2)
for all f cuspidal (so that the integral converges).

dim S
£ aj(m)
m e, (z,2') = a]—f-(z)fl(z’).
¢ ]Z—; <ﬁ’ﬁ>Pet ] j

When {f1,..., faim(s,)} is a (Hecke normalized) orthogonal basis for Sy

(]

filz) = Zaj(n)e(nz).

n=1
Proof. For the proof set gi(z,z") = (z + z’)7k. This implies that

hiz2)= Y j2gyz, )
yeMat;(Z),det(y)=m

~ {0 1\" (o 1) o 1\' (0 1\,
= D (1 o] Y1 o) @8 o] V1 o®)

y€Mat, (Z),det(y)=m

= > jk(yz;2")g(z; y12")

Y1€Maty(Z),det(y1)=m

which implies that the integral is well defined.
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1. Reduce part 1. to the case of T;.

Tl (z,2) = ) Tulji(y;2)8x(z2)

yel

.
Z m*1 Z (v vi2)gk(ryiz, )iy, z)

yel j=1

T
D Gy 2)ge(yyiz, 2)
yell j=1
mt! Z (i D)gk(yz, 2) = m (2, 2).
Y1€Maty(Z),det(y1)=m

For h1 our calculation last time established
c! / F@)hi(z, -2)y* du(z) = f(2).
I'\H

2. Fix z’. Implies

dim(S ,
im(Sx) ](Z )

c,:lmk_lhm(z,z Z <f]rf]>Pt (2.2)

by the first part

W (fe h 2 = Tu(f)E) = am)fu2) (23)
as fi is an eigenform. On the other hand by (2.2)

1, k-1 A\ _ -1 k-1 RSk 0‘1( Z)f
m <fk/ B (-, —2 )> =6 m § frs <f f>
177/ Pet [ Pet

dimSy —_ 7 =N 7.

- &2
DI AL

dim Sy <fk/fk>
— k 1 ( /) Pet
s ,Z T

combined with (2.3) this implies

k-1

ap(m) fi(2') = ¢ 'm* g (=2")

Note:

(]

fi@) = ) ax(m)e(nz)
n=1
= D ax(n)e(nz)
n=1
= Z ar(n)e(-nz’)
n=1
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implies
ax(m) fi(z') = ¢ 'm" ay (')

SO
dim Sj .
c;lmk‘lhm(z,z’): Z:‘ %fj(z)fj(z’). n
]: (54
Corollary 2.7
o tmk / hw(z, —2")y* dp(z) = Te(T(m)).
T\H
Proof. s
¢ aj(m) —
——— fi@)fi(z)y" du(z)
/r\H 2, (i fidees”

dim(Sk) £
- Z j(m)M:Tr(T(m)). n

a
j=1 <f]'r fj>Pet
Subtle point (in general): This integral converges, and gives a manageable
expression.

2.2 Zagier’s approach

I(s) = /F\H hn(z,—2')E(z;8)y* du(z)

for R(s) > 1. (This “goes around the convergence issues”). Implies
Reso1 1(s) = Te(T)—=E(z;s) = 2C@s)wT(s) > 3(y2)
mr= 2
y€le\I'
Theorem 2.8
1. I(s) is absolutely convergent for R(s) > 1.
2.

(=12 (s + k = 1)C(s)C(2s)

I(s) = Z C(s, A){archimidean}+C(s, 0){archimidean}+ @)y 1T

A#0

C(s,A) is a cousin of Ca(s) = Xy, mfm’ K = Q(V=A).
Lecture 14 22/3/2018

Calculation of I(s). First step:
Recall that there exists a one to one correspondence between (for fixed m, t)

{A € Matyxo(Z) : Tr(A) = t, det(A) = m}

I
{d(u,v) = au® + buv + cv? : Ay = |Pp| = b? —4ac = t* — 4m}
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(i Z) = ¢(u,v) = cu® + (d — a)uv — b*v?

1
= qu? 2 5(t =b) —c
¢(u,v) =au”+buv +cv v—>( . %(t+b) .
Using this
k
¢ z y
y h (Z/ _Z) = 4
" a,b,c,deZ, ad—bc=m (c|z|? +dz —az — b)k
- yk
7 — —_ h)k
teZ ad—bc=m,a+d=t (C|Z|2 +dz —az b)
- Z Z R¢(z,t)
teZ ¢, |p|=t2—4m
where k
Y

Ry(z,t) = .
#(z:1) (a]z|2 + bx + c —ity)k

Exercise: substitute a = %(t -b),b=—-c,c=a,d= %(t +b).
Proposition 2.9 Fors € Cs.t. 2—k < R(s) <k -1

3 / E(235) Ro(z, 1) du(z) < oo
teZ

Il= f2 4m
Remark 2.10 It will turn out that the t-sum is finite.
Recall that SL(Z) acts on binary quadratic forms ® by

yo(u,v) = plau + cv, bu +dv) = p(yT (z))

Theorem 2.11 Geometric side of the Eichler-Selberg trace formula. For ¢, m
fixed

/ ( Z R(p(z,t))E(z,s)dp(z):C(S,A){I(A,t,s)+I(A,—t,s)}
\H

p|=t2—4m

@r-1T(k)

N (_1)k/2r (s+k—1)C(s)C(2s) A=0
0 A+0

for A =t —4m.
Where
1

e o,y

¢ (mod I), [p|=A (m,n)eZ2\{(0,0}/Aut(¢}), p(m,n)>0

Aut(p) = {y € SLo(Z) : y¢ = ¢}

k+s 2
I(A,t,s) = dxd
(.88) = / / (x2 + y2 +zty— TA) i

_ T(k=3I(z) [ yk+s=2
(k) 0 (y2+ity - —A)k“

dy.
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Remark 2.12 If A = disc(K/Q) then
C(s, A) = Ck(9).
Then we have

Z Ress=1 Ck(s)
t
where K = Q(Vt2 — 4m).

Lecture 1527/3/2018
Proposition 2.13 Let ((s, A) be as above and R(s) > 1. Then

1.
s, = c2s) y,
a=1

wn(ae
a(n) =#{b (mod 2a):b*=A (mod 4a)}.

2. C(s, A) has meromorphic continuation and functional equation.

(s, A)C(s,A) =y(1—5s,A)C(1—5s,A)

where
2n)~S|AF2T(s) A <0
A) = .
y(s &) {n—SAS/Zr(S /2)  A>0
3.
0 A=2,3 (mod 4)
C(s,A) = 1C(s)C(2s - 1) A=0

C(5)Lp(s) Sayy p(d)2d~0124(5)
for D the fundamental discriminant, so that A = D f? and o,(n) = X4, d",
is the Mdbius function, and Lp(s) = L(s, (2)).

Res,_1 {(s, A) = ——H(|A]).

Vial

Proof.

1. A slick proof involves noting that
n(a) =#{¢p € ®, (m,n) € Z*: p(m,n) =0, || = A, ged(m,n) =1}
comes from the theory of quadratic forms.

Instead note that T O @ via y - ¢ = (u,0) = dp(yT (Z)) We also have

FUsziay-(m,n):y(:’:).

=[5

Note that
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(check!).

Define
(=,=): dx X

(¢, (m,n)) = Pp(n,—m)

(5 3)0)

Observe (—, —) is I'-invariant! i.e.

(¢, (m,m)) = (y$,y(m,n)
forall y € T. Then

(sn= 3 L R()>1

¢ (mod ), |¢p|=A (m,n)eX/Aut(p), ¢p(m,1)>0 ¢(m, n)

1

S
P, /T xeX/Aut(¢) ((P, x>
1

= s
(¢,%)€(@xxX)/T <‘75r x)
1
= Z Z — (2.4)

xeX/T pedy /Aut(x) <¢/ x>
we are using Fubini to swap the order of summation as the pairing is
invariant. Finally note that

x = x(m,n) ~r £(0,gcd(m, n)), r = ged(m,n) > 0

so (2.4)

N 1
=;¢ 2,  $(r, 05

€Dy /Aut((r,0)

what is Aut((r,0))? Itis
T_J{1 O 1 0)\(0)_(O
r”_{(*l Bleo1)\r) T s
continuing we have

(2s) i al Z 1
a=1

b (mod 2a),b2=A (mod 4a)

Exercise, show this is the sum from before. Hint, consider, explicitly, the
action of y € TL on ¢(u, v).

Back to the proof of the trace formula.

Lemma 214 [et k € Z-5, k =0 (mod 2), A€ Z, A=0,1 (mod 4), t € Rs.t.
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t2 > A. For each ¢ € @y let

]/k

(alz|> + bx + ¢ —ity)k

Rq*)(t, z) =

Thenfors € C,s #1,1 -k < R(s) < k.

/ (Z Rﬁb(tfz))E(Z,S)dy(z)
T\H

lpl=A

= C(S, A){Ik(A/ t/ S) + Ik(A/ _t/ S)}

k/2 D(s+k=1)C(s)C(2s) —
SOV A=0
0 A+0

Proof.

1. Note R, (t, z) = Rg(t, y"z) which means that the integral is well defined
(check this).

/ (Z R#D(tfz))E(Z;S)dy(z)
T\H

[pl=A
DYDY v
) Rolt, D) g s 4H(@)
TVH 612 (m,m)e225{(0,0)} |mz + n|?

unfold whenever you can!

3. RecallT' U @, X X fixing <q5, (m, n)> = ¢(m,n). We can break the sum
into ¢p(m,n) >0, ¢p(m,n) <O0.

4. Fact: The action of I on the above is free, (exercise: prove this fact, hint:
first take (m, n) — (0, r), and analyse the action of the stabiliser on (0, r)).

5. ,
/ Z Z R:p(t,Z)m du(z)
IH |S12A (m,m)eX, plm,m)>0
> [ y
Ro(t, z) 77— du(2).
(DAXX)/T H |mz+1’l| S
6. Check
nx —1bn +cm
Z
—-mz +an — %bm
finishes the proof.

7. To check other cases use
R_¢(z, t) = R¢(Z, —t)

and
(¢, (m,m)) =0

needs to be considered separately.
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We really need to check some convergence here, but lets instead use the
trace formula for something useful, to determine its value.

Application to spaces of modular forms.
Theorem 2.15

k ~ 13 o1
{—J ~1[k=2 (mod 12)] = — Z Pel(t, DH@A ~ 1) = 5

12
t=—2
where
H(n) = Hurwitz class number
Pk—l _ ~k-1
Pi(t, m) = T, {p, p} solutions to u> — tu +m =0
then

dim(Sk(1)) = {%J -1k =2 (mod 12)].

This is a weird looking formula but it generalises very well, works even without a
complex structure, Riemann-Roch, etc.

Proof. Recall that
Tr(Ts, (m))

is given by the Eichler-Selberg trace formula. In particular

Tr(Ts, (m)) = dim(S})

= —% Z Pk(t,l)H(4—t2)—%

+2-4<0
we have ,
H(0) = —
(0) B
1
H3) ==
®)=75
1
H(4) = 3
to find the Px(t,1)
t+Vi2 -4 : :
prpr= —o = T =ce
sotan O = —‘4;9 note then
Pt —pi Tt _ P -0 sin((k-1)0)
pt— Pt p-t = Pt sin(60)

so Py(t, 1) is as in the table

t 0 Pt 1)

0 m/2 k mod4-1

1 7n/3 (k mod6-4)/2)
2 0 (k-1

Table 2.16: Values of Pk(t,1).
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Now if k =0 (mod 12)
(21 k1) 1k (R -
4 3 12 27127 |12

Another application: Equidistribution of Hecke eigenvalues..
Lecture 16 29/3/2018

Following Serre '97, very readable article.
Equidistribution:
Definition 2.17 Let (Q, i) be a measure space

Q compact

u positive Radon measure

/dy:l
Q

0
Example 2.18
dx
[_1/ 1]/ 7 - d‘u
O
Note 2.19 u gives a linear functional.
£ [ 50 dute)
notated
(fru).

Definition 2.20 0 measures. Let L be a sequence of indices, going to oo (this
will be the indexing set for the weight k). For A € L let I} be a non-empty finite
set of cardinality

#I, =d,

(this will be the set of eigenvalues for each k). Let

Xy =(xi0), i €1).

1
6)(/\ = E Z 6}({,)\

iely

We define

note

(f 0x,) = ;7 Zf(xi,/\)-

iEI,\

The family X, for A € L is called u-equidistributed (or equidistributed with
respect to the measure u) if
Alim ox, = U

the limit is in the weak-* sense i.e.

Tim (£,6x,) = (f, ), V/ € CQ,R)
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So far these are all general statements. Let us put ourselves in the following
situation:
For each A € L we have a linear operator

H,, rank(H,) =d) < o0

whose eigenvalues are in Q. And Iy = {1,2,...,d:}, Xa = {x1,4,..., xq, 1}
the eigenvalues of H, suitably normalised counted with multiplicity.
Proposition 2.21 TFAE

1.
{xa1}aeL is u equidistributed on Q

2. For all polynomials P with R coefficients

Te(P(Hy))

i Ao (P, 1) (2.5)

3. Forall m € Zyq there exists a polynomial P of degree m s.t. (2.5) is satisfied.

Proof. Exercise. u

Now we will choose a special set of polynomials to work with.

Symmetric polynomials:

Let Q = [-2,2] & 2cos[-mt, m] = Tr(SU(2, C)), this is really Satake param-
eters. For x € [-2,2] we have a corresponding 2 cos(¢p). Let

X, (x) = e 4 o720 4.y o719 = Tr(Sym™ (U)), x = Tr(u).

Clebesh-Gordon: (Decomposition of tensor powers of irreducible repre-
sentations of SU(2, C)).

Xy Xm = Z Xp+m-2r = Xpam + Xpem—2 + -+ + X|n—m|-

0<r<min{n,m}

Exercise 2.22 Prove this.
Several measures:

1. Sato-Tate:
1 [ «x2
Heo = % 1- Z dx
_2 sin?(¢)d
= = sin’(¢)d¢
properties

/dymzl
Q

1 n=0,
<Xn/yoo>={

0 otw
<XnXm/ [Joo> = On,m-

Exercise: prove this, with orthogonality of characters.
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2. p-adic Plancherel measure: Let 4 € R and define

~ S B g+1
fq(x) = Zoq " Xon(x) = (q1/2 N q—1/2)2 —
=
Hq = fabteo
note:

li do

T

li = Hoo

S Hg =

tq is positive and has total mass 1. note:

(X, ) <Zq szum>

= 207" (XuXam, o)

m=0
g ? n=0 (mod 2)
0 otw .

Theorem 2.23 Serre '97. k = 0 (mod 2) let s(k) = dim(Sk(1))

’ Ty (n)
Ti(n) = k172

so that the eigenvalues are in [-2, 2] by Deligne. Letting X(k, p) be the eigenvalues of
T, (p). Then X(k, p) are equidistributed with respect to 1.

_ p+l 1,2
Hp = (p1/2 +p—1/2)z 27 1 4 dx.

' tr(T];(n))
lim _
k—00,k=0 (mod 2) S(k)

tr(Ty(n)) {n‘1/2 if n is a square
0

Proof. Claim:

= i _— =
k—>oo,kE%)m(m0d 2) (k - 1)/12 otw

Assume the claim for now: Note that
Ti(p™) = X (Ti(p))

as

Z Ty = T’(p)t e
Zm@wm
m=0

k—)oo,kE%)m(mod 2) S (k)

tr(T,’((n))_ p™? m=0 (mod?2)
o otw
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= <Xm/#p>

by the claim and previous calculation.
Proof of the claim: Recall that the Eichler-Selberg trace formula says that

tr(Tk(n)) = 21 k2=l (2.6)
- Z Py(t, n)H(4n — t2) (2.7)
z t2<4n
—% Z min(d, d’)* (2.8)
dd’=n,d,d’>0

Sublemma: (2.7) = O(n*/?)
Proof: (2.7) = On (X 2<an Pr(t, 1))

P VISR
p

Pk(tln)= _p ;P = )

|pk—1 _ pk—1| < 2|pk—1| — O((47’l _ t2)(k—1)/2)

— ﬁ - V}’l _ t2
Sublemma: (2.8) = O(n*~1/2) Proof: exercise.
The equations above combined with the fact n¥~1/2 — n=1/25,_p,. [ ]

3 Tate’s Thesis (GL; theory)

What'’s the aim?
Lecture 17 3/4/2018

Redo Hecke’s work, in an adelic setting, more canonically. Le. obtain
analytic continuation and functional equation of Hecke L-functions. This was
also seemingly a bit more general than the Hecke theory. The local theory will
give us terms like

x(p)

(1-
pr

)—1
and the global theory will give

l—l( X(P)

3.1 Local theory

For all of today, K is a number field and v a place of K so that

_JR,C if v is archimidean
’ [Ky : Qy] < 00 if v is non-archimidean -
If a € K, then
|a|fj if K, =C
|D(|v = IalR lsz;:R

N(@,)"%@  if v is non-archimidean

where |N(@,) = |0y /®O0s|.
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3.1.1 Additive theory (Theory of Fourier transform)
Let K} denote the additive group of K.

Characters of K} (continuous).
Lemma 3.1 Let x, be a non-trivial additive character of K, i.e.

Xo: Ki — C*
then all the characters of K3 are of the form

Xv(’?') = Xovg

forneK}ie.
Xv,r](g) = Xv(né)

which implies
Kr =K}

both topologically and algebraically.
Proof. Exercise. ]
This is not really canonical, but as far as number theorists are concerned
there is a right choice of additive character to fix.
A particular non-trivial additive character. If K, =R, Clet
Ao: R—R

& =& (mod 1)
then |
Xo(&) = e(A(&)) = e2™AE)
where

A(E) = Ao(trg, /r(E))

For K, non-archimidean let

A:Qy =R
E— & (mod 1)
ie. if
E=ano,N +-+aqjo,t +---
——
€0,
Ao(&) = a_NcD;N +---+ a_1®;1
Xo(&) = e(A(E))
where

A(&) = Aoltrk, 0, (&)
Lemma 3.2 Let v be non-archimidean

XU,?]IOU =1 & ne D;1
where D, is the different ideal of K,
D' = {x € K, : tr(xy) € Zy, Yy € Oy }.
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Haar measures.
* C, uy is 2 times the Lebesgue measure.
* R, iy is the Lebesgue measure.
* Ku, 15(05) = N(Dy) 2.
Lemma 3.3 a # 0 implies
po(aM) = |alou(M)
for all measurable sets M.

Proof. Exercise

Le.
[ serauto = lal, [ @) duto

Definition 3.4 Fourier Transform.

fn) = / F©)e(Ao(n€) duo(E).

Theorem 3.5 Fourier inversion. Let f € L'(K}) such that f € LY(K3), then

£(8) = / Fe(=Ao(nE) dun) = f(=).

3.1.2 Multiplicative theory

Definition 3.6 Unit group.
U, = ker(x — |x|p)
it is compact, open if v is non-archimidean, e.g.
St ifK,=C

U,={s' ifK,=R

O  if v non-archimidean

Definition 3.7 A quasicharacter is
Ky — C*

A (unitary) character is
KX — S

Such a map is unramified if it is trivial on U,. E.g.

& |El;

is unramified s € C.
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Lemma 3.8 All unramified characters are of this form
Kii = €/@niflog(N(@.))

if v is non-archimidean.

Choose a uniformiser @, s.t.

o] & |ov®
| sT [ R,
R* | {1} | R,
K| ox | oz

Theorem 3.9 All quasicharacters of K5 are of the form

a - c(a) =&@lal®

where
¢: U, —» C*
Proof. Exercise. |
Example 3.10 Dirichlet characters mod p. m]
E.g. over C* then
m
a
é(a) = (—) ,meZ

||

over R* then "
(@) = (i) ,m e {0,1)
|a|

over O then
(@)oo, =1
because c is a continuous map from a p-adic field to the complex numbers.
Let ~
k =min{k € N: &(a)lj, 10, =1}
and caf, = fy is the conductor of ¢.
Note 3.11 Sometimes this k is called the ramification degree of c.

Note 3.12 If ¢ = ¢| - |° then R(s) = o is uniquely determined by c. It is called
the exponent of c. In modern lingo this is measuring how non-tempered c is.

Multiplicative Haar measures. Let

doa if v archimidean
an _ lalo
T =t —) &2 if » non-archimidean
1_1/N((Dv) |a|U

where dya is the additive Haar measure. these extra factors are really Tama-
gawa numbers. They make the product in the next lemma converge.

Lemma 3.13 For v non-archimidean

/ dXa = N(D,)™ /2.
OX

v
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Proof.

[ axa= [ Sa-neo
05 ox lal

- / doa(l - N(@y) ™)™
oy

= Z / dva(l —_ N(@U)_l)—l
ﬁe(ov/@yov)x ﬂ‘*’(DUO,

= |@oo Z / dya(l - I\](cD?,)71)71
Be(O0 /@0, ¥ O
= N(Dy) @, [(N(@,) - 1)(1 = N(@,) ™)™ = N(D,) V2. -
Lecture 18 5/4/2018

We are trying to set up a general machinery that will take a quasicharacter
and associate a zeta function. In fact we want have

c: NS - C~ L(f,0)

a family of C-functions. We will then look at the gcd over all possible f, this
will be the L-factor.

3.1.3 Local C-functions

Let
f: Ky —C
& f(E)
restrict to
f: Ky —>C
a > f(a)

and such that
1. f(&), f(&) € LY(K*) are continuous.
2. f(a)|al’ and f(a)|a| € LY(K*) for all & > 0.

Call the class of such f S.

Definition 3.14 Let f € S and c s.t. exponentof cisc > 0,i.e. ¢ =cp-|-|° with
co unitary and R(s) = ¢ > 0 then we may define

0= [ farc@de

0

In fact we have seen examples of this, for K, = R, the I' function, in Tate’s
language this is a local zeta function.

11 = [ e = 2re)
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Remark 3.15 ¢ = ¢g| - |° for fixed f and cg

= ((f,c)= / f(a)eo(a)|als d*a.
K3
Aim:
1. Prove that {(f, s) extends to a meromorphic function of s.

2. Calculate this for “nice” choices of f.

3.1.4 Analytic properties of C(f,¢)

Lemma 3.16 C(f, c) is a regular function for quasicharacters ¢ with ¢ > 0.

Proof.
0= [ fae@da

check, absolutely convergent around 0, has derivatives around 0, other points
are fine. u

Lemma 3.17 fundamental lemma. Let ¢ be a quasicharacter that satisfies 0 < 0 <
1 and define
é(a) = c5H(@)] - '8

then for f, g € S we have
Cf, )T, 8) = C(f, 6)C(8, )

Proof. All of the integrals are absolutely convergent.
Fubini implies the LHS is

,/[;Vﬂﬂﬂ@dwﬁmek%ﬂm%m

= U(f,8)(g,c)

change variable f — af. ]
Theorem 3.18 Local functional equation. A C-function will satisfy

U(f.c) = ple)(f, &)

where p is meromorphic, and is defined initially for 0 < o < 1 then extended by
analytic continuation.

Proof. Take f = g so

C(f,c)
p(C) = f—
(£, ¢)
we will show p(c) is independent of f and that we can choose f s.t. {(f, ¢) is
non-zero. TBC. u
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Proposition 3.19 Several properties:

o c(=1)
p(c) = o

p(@) = c(-1)p(c)
POl =1ifo =5
Proof. ) )
C(f,0) = p(O)T(f, 8) = p(c)p(@)C(f, &)
as ¢ and f(x) = f(~x) we get p(c)p(&)c(~1)C(f, c).
T(f,0) = C(f,0) = p@)C(f, &)
= p(@)c(=1)(f, ).

Remark:

(f, 8 = / f(@)é(a) d*a
= / Fl@)e(a)|a] d*a
- [ Ao @laldta

- =) [ e @lalda

= C(_l)C(jE/ é)
Ifo = % then c(a)c(a) = |a| = c(a)é(a) = c(a) = é(a). Together the
previous parts give p(c)p(c) = 1. ]

3.1.5 Explicit C functions

First let K, = R then we will use the following notation: Additively & with
A(&) = =&, d& the Lebesgue measure. Multiplicatively a with |a|, = |a|r
and d*a = da/|algr. We will use characters | - |° or sgn| - |°, fi.s = ¢~ and
frissgn(&) = & e~"¢* . These have fourier transforms

fir(&) = £(&)
and X
fl'lssgn(é) = ifsgn(5)~
So that
Wil = [ f@lalda= [ e ap ata
RX RX
— 2/ e—naz
0
_ —s/2 i
=T (2)
Lecture 19 10/4/2018
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s —(s+ s+1
Cfisgns |- Psgn) = 1>/2r( ‘ )
now
p(]-1°) = 21757 cos(ms /2)I(s)
p(| - °sgn) = —i2! 75 717° sin(7s /2)[(s).

Normalizing by s = 1/2 we get 1 and —i respectively.
Over C

K K3

E=x+iy a=re

A =-2x la| = r?

dé¢ =2|dxdy| d*a =da/|a|=2|drdb|/r

i0

characters
c~>cy,neL
cnla) = rem?
equivalence class
{ch(a)]|a)’® : s € C}.

Functions

FulE) = {(x —iy)1e 2 if > 0

(x +iy) e 2" ifp <0

; 2
{r'”'emeez’" ifn>0

. 2
rlnlein® p=2mr ifn<0

fourier transforms
Claim 3.20

fa(&) =" fL (&) ¥n

Proof. Induction on n:
n=0

fol&) = e

A((u+iv)(x+iy))

ﬁ)(é) = 2/Cf0(u +iv)e2(ux —vy))dudo

Z/E—Zn(uz—Zixu) du/e—Zn(v2+2ivy) do
R R

which by completing the square and Cauchy gives

€—2n(x2+y2) - fO(é)

Assume f;,(é) =i" f_,(&) for n > 0. Then the induction step is to use d/d&

in the integral defining fn (&) (exercise). [ |

foreal 1) = [ Fa@es(alal ¢

- 22 _
22/|r|ne znee 2mr ezn@,,Zs 2
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(o)
_ _ 2
:4n/ plnl+2s=2,=2mr%, 4,
0

- ey 12)

now

C(fons €onl - ) = il @m)IV2D (1 ~s+ “;_l)

(—i)M@m)k=s  T(s + ';—')
@ T -+l

For K non-archimidean with |o|, = %

pleal - 7)) =

K+ KX
& a=ap’@
A(&) = Altrgsg, (€)) la| = ;"™

dé = fO d& =N(D,)'? d*a=(1-g;")da/la] = /OX d*a = N(D,) 12

For D, the different ideal.
Quasicharacters
cp: O — C*

of conductor f(@")O0,. c,(@) = 1. Equivalence class of ¢,

{cu|-I° : s € C}.
Functions
e(A(&)) = eZniA(tr(é)) if e D_l(D_"
fn(é)={(()) Sl
0
The fourier transforms
Lemma 3.21
R Dy 2|0, ifE=1 (mod @")
) {| o Py
0
Proof.

ful©) = /K Fu(e(=AmE) dn

- / e(A(n(1 - &) dn
D;'o"0,

o if£E#1 (mod @)
Dol f, dn
_Jo ifE#1 (mod @) -
Do |12 @| ™"
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Unramified calculation:

Aol P = [ f@al @

= / e(Aa))|al® d*a
D;!

=/ la)® d*a
D;!
=Y 0u [ ek ata
kZO (D”OX
(ozzijnog)
n=0

- Z D, |—s+1/2q;ns
k=0

1
1-1/q3

C(fo - 1'7%) = CUDo 10, |- 179)

=N@Jﬂ/|W*&a
0,

_ 1
1-1/45
Let’s recap a little, we have K* < K* and moreover K* U K* with two
orbits {0} and the rest. Looking at function spaces we have

— |Dv|—s+1/2

C&(KX) = S(KY),
Schwartz functions on the right. Taking duals to get spaces of distributions
1 5?2 - D(K*). - CX(K¥)Y — 0.
Corollary 3.22 There is p(c) s.t.
C(fre) = p(eX(f, €)
with
m@=§42
c(f,¢)

Lecture 20 12/4/2018
We have done the case of unramified characters.
Casell: n >0

el )= [ frl@en(@lal da

- / e(A@)(c(@)]al; d¥a.
(Do fo)7!
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Let
(Dy) = (@)

f=(@y)
= / iy e(Ala))cp(a)lal® d*a

S [ c@Des@lal

j=—n-d
let o = caf,ac which implies
- / (M@ a)ea(@)lal d¥a
]——n d

Lemma 3.23 If j > —d then
/ (A@)a))cq(a)d*a = 0.
o5
Proof. j = —d implies .
@,0% C D!
= A@,0¥cz
= e(A@,0) =1

= /OX cn(a)d™*a

v

so the integral in question

asc, # 1. [ |

So finitely many are non-zero.
Lemma 3.24 —n —d < j < —d then

/ e(A(@)a))cn(a)d*a = 0.
OX

v

Proof. (Note-n-d<j<-d & 0<—-j—d<n)Leta=a(l +m;d_ja1).
So we may write

Z /e(A(cD a1+ @, ar)))en(a(l + @, ar)) d*a.

a mod Xo

(Note (Dv(a(1+(D wh a1)) = a(Dj +a@;% aq, thelast termisin D! soe(A(ch',a(1+
LDU “ay))) = e(A(@) a)) ) So the integral is

Z cn(a)e(A(cD{,a))/O cn(1+ cD;d_joq)dxa =0

d+j
a mod %@,

as we are integrating over a multiplicative group. u
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Therefore: In the ramified case we have

C(fo, |- Fen) = ™" / e(AM@, " a))cy(ar) d*a

v

=g T e(M@, " a))ea(a) d*a.
a mod *a! 1+@; 0

N(vav)sAnG(Cn)

where
Glew)= D, e(M@aa " ")cy(a)

a mod *ol

is a Gauss-sum for c,,, with |G(c,)| = N(f)"/2.
Corollary 3.25
C(f, 'l 17%) = N(Do) 2N (fo) A

Proof. Exercise. ]

This finishes the proof of the local functional equation.

C(f,c)= /KX f(a@)c(a)d*a.

A little bit of a more modern approach that may be helpful if you want to
read things since Tate.
Y, additive character

u additive measure, self-dual w.r.t ¢,

Definition 3.26 A family of C-integrals for each | - |° x
Xo: K — CX.
205, torfor ) = [ fl@ml@lal da
K
Z: S8(Ky) — C.

Remark 3.27 The interesting part of this integral is when « is close to 0.

To study this around 0
f(@) = agi(a) + Ppa(a)

where ¢ is the characteristic function of a very small (depending on f) neigh-
bourhood of 0. ¢ is 0 around a sufficiently small neighbourhood of 0.

265,10 62,90) = [ or(apmofalals da

N»
- Y g /}. re(@lal da
@,0F

j==N1

This converges for all s € C and lands in C[g5, ;'] -

266, 00,9099 = Y, [ xo(wlal da
=M @},0%
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= Y lolt [ xtoladta
/':M v

this is a multiple of

1 . :
=—yrs if x, unram.

{0 if xp is ram.

Usually these observations are packed into saying
Z(s, Xo, f)
is
1. Rational function of ¢j and in C[g3, 45°].
2. Xv is unramified if its entire.

3. There exists f € S(K) s.t.

Z(s, x, f) = L(s, x)-

4. For all f

Z(s, x, f)

L(s, x, f)
is entire.

It is then said that L(s, x) is the GCD of the C integrals Z(s, x, f).

Field Xo Ly(s, xv)
C |- lexn | 2@r) CTAT(s + |n|/2)
R | IR (1)=/2T(s/2)
R |- |gsgn n=6+*D/2AT((s 4+ 1)/2)
Ky | : |SXv ur (1 - Xv(@v)/q?;)_l
Ky | |-]°xo ram 1

3.1.6 e-factors

Lecture 21 17/4/2018

Last time we looked at L-factors,

Z(s, f, x)

for x a multiplicative character and f € S(Ky).
Let ¢, : K, — C be an additive character.
Definition 3.28 e-factors. The e-factor is defined to be

Z(l—Sler_l) Z(S/f/X)
-1 = €(S, X/ l#?}) .
L(l_S/X ) L(S/X)
Note 3.29 This is related to p(c)™! in Tate’s notation.

Tate’s normalization of the additive character ¢, is such that ¢, (---) = A(- -
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Definition 3.30 The root number is

(s, x, ¥)
le(s, x, P)I
It is a complex number of norm 1. 0
Field Xo e-factor Root number | Modern normalisation
C |- 5 xn HEl HEl i=Inl
R I Ix 1 1 1
R | [-[gsgn i i —i
Ko | I-F N(Dy)2~¢ 1 1
1 1 1 1
Ko | [Fxo | N(D2)27¢/(G(x)/N(f)2) | 1/(G(x)/N(f)?) (G(X)/N(f)?)

3.2 Global theory
3.2.1 Adeles, Ideles

First, some notation (restricted direct product)

H(FU,HZ,) = {(xv) € l_[ F, : xy € Hy for all but finitely many U} .
(% (%

Then ,
AK = l—[(KU/ O'I})
v
ax =]« 0.
4
Topologies:
f&K5 = I_I‘KQ X I_I(Dv
veS vEsS
Ags = [Kix]]ox
vES v¢S

for S any finite set of places containing v|co.

Characters.
Lemma 3.31 Let
Y: Ax - C*

be a continuous homomorphism. Then
Y =&y

Where almost all {,’s are unramified (i.e. Yolo, = 1) and (a) = 1, Yo(a) (this is
a finite product).

Proof. Let U C C* be a neighbourhood of 1 that does not contain any
subgroups except for {1}, Let N € Ak s.t. Y(N) C U. Let S be a the set of
places for which N, # O,. Consider

Ai:ﬂlxﬂngN

veS vES
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so that
P(AR) =1
since the image is a subgroup C U. [ ]

From now on we will simply write A = Ak.
Lemma 3.32 _
A=A

Proof. Completely analogous to K, ~ K, via 1 — A(1-), for any non-trivial
A. Fix one nontrivial A: A — C*. Rest is just A(n-) for n € A. [ ]

Measures: d& = [], d&, where for almost all v we have /0 dé, =1.
Dual measures: Normalise so that Fourier inversion holds, i.e.

fo = [ Aewend
f = -0
so we get u*(Oy) = 1 where

OzJ;_ = {Ebv : ¢v|0v = 1}~
Lemma 3.33 Let a € A then we get a map

a:A— A

X = ax.

This is an automorphism iff « € A*.

u(as) = lalap(S)

[ aut =1ai [ auco.

Proposition 3.34 We have K — Ag.

where |a|a =[] |a|o, i-e.

1. K is discrete in Ag.

N

. K'is cocompact in Ak (i.e. K\Ag is compact).

KN Ageo=Kn[ Ko =0k

v]oo
4, K+ AK,oo = Ag.
5. w(K\Ag) = 1 (with our earlier conventions).
6. Kt =Ki.e.

{a € Ax:e(Alan)) =1Vn e K} =K.
Proof.
1. Ok is a full rank lattice in [],j K» = V (Note for [K : Q] = N then
V ~R"1XxC?=~RN).
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Obvious

Partial fractions.

AR

U(K\A) = u(K\V)u(n0,) = 1.

6. Since Ak /K is compact, m is discrete. Further K C K*. In fact K+ /K
is a finite vector space since

K/K < Ax/K ~ A/K

which is compact, hence K+ = K.

Poisson summation. Let f, f € L'(A), then Vo € A%,

|61¥_|;Kf 5)- > fiac).

Tate refers to this as “Riemann-Roch”. This is due to the case where K = F,(T)
and K(PY), f = xo. There is some Serre duality involved.

Ideles. Our goal is now to understand K* < A¥.
Theorem 3.35 Product formula.

|0(|A =1Va € K*.

Proof. Exercise. ]

Unfortunately K*\ A% is not compact.
A non-canonical decomposition is as follows:
Fix vg € S and let
1: Ryg — Ag
via
(a,1,...,1) Ky =R
Ve, 1,...,1) Ky =C
Note
|e(x)lag = lx| = x.
If « € A* then

(04
a=— lala
|a|A ~——
\,—/ t

b
with b € A¥!,t € Rog. Where AX! = ker(| - [s). Then

d*a = d*td*b

/Axf(a)dxazfowfw f(tb)%db.

Multiplicative world.

so that

65



Lecture 22 19/4/2018

Let
A = ker(] - [a: AX — C¥)

1. K*\A*! is compact, which leads to Dirichlet’s units theorem.
2. u(K\A*1).
3. Analytic continuation and functional equation.

4. Examples

1. Recall for a fixed archimidean place vg
Seo = {v|eo}, S, = Seo \ {00}

for v complex we take pairs as 1, so that #5. = 71 + 2.
Letr=r +r—1=#S/.
Recall the log embedding for A*1

1(b) = (log [blo,, - - -, - .-, 10g |blo, )oest, -

Fact 3.36 [ is onto and a homomorphism. It vanishes on the global roots of unity, i.e.
I(b) = 0 for such.

I: WA » R

let {€;} be a basis for the global units, {/(€;)} € R" span a full rank sublattice.
So KX\A*! is compact.

2.
21 (27)"2 Rhy

VIDx|Wk

Where rq is the number of real embeddings, r; is half the number of complex
embeddings, R is the regulator of K, D is the discriminant of K, i the class
number, W the number of roots of unity of K.

1 and 2 give us a fundamental domain.

Lemma 3.37
Al = |_| aF
aeK*

where F is defined as follows: Let {bi}? £, e a set of representatives for the cl(K) i.e.
{¢(b;)} = cl(K). Let

u(K\A*) =

P= val(ev):Ova<l

veSl,

i.e. P is a fundamental parallelepiped for the lattice {I(€y)}yes:,. Finally let

Fo = {b e I7(P) : 0 < arg(b),, < ZWT[}

S0

F = U b:Fo.
b;
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Definition 3.38 Hecke characters. A Hecke character is a continuous map

KX\AX — C*.

Note 3.39 | - |} is a Hecke character any Hecke character x = xol - |3
Xo: K\A™! — ¢~

where R(s) is the exponent.

3.2.2 Main theorem
Global C-functions C(f, x)

SA) = {f A—C:f fell, Zf(a(x + é)),Zf(a(x + &) both L'Vx € A%, x € A, f(a)|al°, f(a)la|® €I

&eK ek

0= [ feon@da =[x

Theorem 3.40 C converges for x with exponent > 1 and extends to a meromorphic

function of all s € C. Cis analytic, unless xo = 1 (i.e. x =|-|}) in which case it has

poles at s = 0 and 1 with residues K £(0), =K £ (0) respectively for x = pu(K*\A*1).
C(f. x) = C(f, X) where = x 71| - |.

Proof.

1.
C(f/X)Z/ fla)x(a)d*a

//f(tb) (tb)dxb—
- [ a0

where Ci(f, x) = [y, f(tb)x(tb) d*b.

2. Functional equation
ZX(fb)
G0 = / 3 Fltab) xitab) b

aeK*

_ / {Z F(tab) - f(O)} x(tb) db
KX\AX,l

aeK
- [ |3 uan)| xemas - 5o / ) &
KX A><1 wek
the rightmost term is « iff y = | - |° and 0 otherwise.

1 R
;(f(tab) = W‘;f (%)
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Remark: b € A*! implies |b|a = 1 and |tb|a = |t|a = t via Ryp < AX.
This implies

AX\Ax,l (;(f(tab)) X(tb) d*b = %‘/KX\AXJ (;(f*(%)) X(tb) b
ab - X
/Kx Al (Z f(—)) x(tb71) d*b

1 - ab - ; .
[ Y AE @ o) [ e
Kx\Ax,l e Kx\Ax,l
implies

CplF )+ FO) /K o T

:QqJﬁ+ﬂngMJﬂmywb

take this and put it back in 1.

[Tasnd= [+

the rightmost term is cool, so use

/ e 0 / Glf, 3

b X dt ! X ﬁ
o[ semarSe [ro [ e

N Uoqdt bodt
- [ ah 0% for [ oS- ron [ o

the rightmost terms are present only if o = 1 they come to f 0)x/(s —
1) = f(0)x/s. This is invariant under f +— f, x +— . All together

(o= [ aofs [ o (foms - - foms).

Lecture 23 24/4/2018
Example 3.41 Concrete examples.
1. Let K be a number field and x = |- [}, f = ® f, where
e v=R
fo={emewd  yoc
char. fn. of O, v non-arch.

then C(f, x) is a multiple of Ck(s) the Dedekind zeta function (check
this!). We have thus proved the analytic continuation of Ck.

2. For K = Q(V2). We have disc(K) = 8, i.e. K is ramified at 2 only. hx =1

68



also and Ok = Z[V2].
co1:a+bV2—>a+bV2eR

ooz:a+b\/§‘—>a—b\/§eR,
the units are (-1,1 + V2). The Hecke characters are then as follows: Let
iteor |y iteo j
=] Jxe =112 [ |10
vfoo

then for y to be a Hecke character we need x(a) = 1 for all 4« € K.
Let’s check this condition on units. x(-1) = 1 does not give us an extra

condition. x(1+ V2) = |1 + V2|"1|1 — V2|**2 so that

2km
(V241 =1 & to —too, = ———
©T log(V2-1)
let’s fix
A S
' log(V2-1)
Tt

foop = log(V2 - 1)

once we fix this we can complete uniquely to a Hecke character y. Let’s
consider the (-functions now.

[Toteo (=X (@0)/q%)
S + ite, s —ite, | 1 “ N
r —  L(s,
2 ) ( 2 ) % v

N (1—s+i C(—si 1-s+ite 1-s5—iteo,\ 1 B
C(fr)() =7 (1 5+'t°°1)/271 (1-s zth)/zr( 5 1)F( > 2) 8_5L(1_S’X 1)

C(fox) = n—(s+itm1)/2n—(s—itm2)/2r(

then Tates’s implies

=T (s - in/lozg(\/i— 1)) r (s + in/lozg(\/i— 1)

) §L65, 1)

_ nlsr(l s —in/log(V2 - 1>)r(1 s +in/log(V2 - 1)

1 -1
2 2 ) 8_SL(1_S’X )

O

4 GL; (and up)

This will be an overview.

4.1 Change of perspective: Representation theory

Definition 4.1 A unitary representation of a topological group G is a pair
(7, V) with V a Hilbert space and

n:GXV -V
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g, 0 m(g)v
continuous, where 7 acts unitarily. O

Fact4.2 A useful fact. If H C G is a closed subgroup and both are unimodular then
there exists a G invariant measure on H\G and so G O L*(H\G).

Example 4.3 If G(K) = H and G(A) = G then we can take
LA(G(K)\G(A))
8f(x) = f(xg).

Now if 7, V is finite dimensional with
V=Vi®e.---oV,

TG, X1reo-0 70, X
then
R O L%(R) =§1§ e™ dt.

iR

4.1.1 Automorphic forms/representations

We are concerned with

L*(G(Q)\G(A))
for G a reductive algebraic group /Q.
Heads up
G =GL(1)

LW = §
instead we would like to look at a piece of
LX(G(Q\G(A))

where the center
Z(A) = G(A)

acts by a fixed character w. For G = GL(1) this is called the Nebentypus.
(P, LAG(Q)\G(A), w)).

| —
[G(A)]
Definition 4.4 Constant term (along a parabolic).
f e LA([G(A)], w)
then

fn(g) = / f(ng)dn
N(Q)\N(A)

for example



for G = GL(2)
1 n
N_(O 1).
o

Definition 4.5 Cusp form. If fx(g) =0V'g € G(A). o

Pw is the right regular representation on L*([G], w). Let L% denote the
space of cusp forms.
Properties:

Proposition 4.6
L% < L? is closed.

Theorem 4.7 Gelfand-Graev-Piatetski-Shapiro.

@ MnpTl = Pw,0 = Pw|L§
b

with all m, < oo countable.
Theorem 4.8 Jacquet-Langlands. For all 7w we have my =1 for G = GL(2) i.e.

L3(GLa(A), @) = (P

4.1.2 Modular forms correspond to automorphic forms
We will make a bunch of groups by letting
I'(N) = ker(SLa(Z) — SLy(Z/NZ))

then we say I' is a congruence subgroup if there exists N such that I' 2 T'(N).
For example

To(N) = {(‘C’ Z) €SLy(Z):c=0 (mod N)}

I1(N) = {(‘z Z) €SLy(Z):c=0 (modN),a=d=1 (mod N)} aTH(N)

we have an action
T1(N)\To(N) O L*(T1(N)\ SL2(R)) = L*(N).

Remark 4.9
T1(N)\T'o(N) = (Z/NZ)*

X:Z/NZ* — C* ~s x: T1(N)\I'o(N) — C*

(i Z) — x(d).

Then L3 (N) is the x-eigenspace of L?(N). Now as in Tate

via

X ~ x (adelic)

can view this as
Q*\A* =~ Z(Q)\Z(A) — C*

for Z < GL(2).

SL>(R) O L*(x)
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where yx is adelic now, via

g—(g,1,1,...)

SO .
K: G(Z) » GLy(Z/NZ).

Fact 4.10 Strong approximation for GL(2).
G(A) = G(Q)(G& x Ko(N))
forall N, O. Where
Ko(N) = {g € K : g, upper triangular for p|N'}
GL ={g € GL2(R) : det(g) > 0}
7% SLa(R).

Now embed
L2(N) = L*(N)
via
f~ ¢
with
Pf(y(zeogoo X k) = x (k) f(go0)-

From modular forms to automorphic forms
f €Sk(N, x) ~ ¢r
O (200geo X k) = X(K)](ge0, 1) f(goo(i))-
Fact 4.11

1.
Sk(N, x) = Lg, (N).

K. = cos sin0
® \-sin6 cosO

) = Stab(i)
j(yr(0),i) = ey, ).

4.1.3 Brief overview of local representation theory
Why?
L(G@\GA) = Pre ¢
=& n,

for 7, local representations.
We will consider non-archimidean admissible representations, i.e. (1, V)
such that X’ is finite dimensional for all K’ compact.
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Representations of GL>(Q,). Assume smooth, note that smooth implies ad-
missible, possibly true for all G.

1. 1-dimensional representations y(det).

2. Principal series, let x; = | - |*w, s; € C w: Q; — C. Let

X( t(; tbl ) = x1(t1)xa(t2)
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