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Chapter 1

Abelian Varieties

These are notes for BUNTES Fall 2017, the topic is Abelian varieties, they were
last updated November 4, 2020. We are using Milne’s abelian varieties notes
primarily, for more details see the webpage. These notes are by Alex, feel free
to email me at alex.j.best@gmail.com to report typos/suggest improvements,
I’ll be forever grateful.

1.1 Introduction (Angus)

1.1.1 Definitions
Definition1.1.1 Abelianvarieties. An abelianvariety is a complete connected
algebraic group. ♦

Definition 1.1.2 Algebraic groups. An algebraic group is an algebraic variety
� along with regular maps < : � × � → �, 4 : ∗ → �, inv: � → � such that
the following diagrams commute.

Identity

∗ × �

∼
$$

4×id // � × �
<

��

� × ∗
id×4
oo

∼
zz

�

Inverse
�

��

inv,id// � × �
<

��

�
id,inv
oo

��∗
4
// � ∗4oo

Associativity

� × � × �
<×id

��

id×< // � × �
<

��
� × �

<
// �

♦

Definition 1.1.3 Complete varieties. A variety - is complete if every projec-

1
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CHAPTER 1. ABELIAN VARIETIES 2

tion map
- × . → .

is closed. ♦

Example 1.1.4 Abelian varieties.
• Elliptic curves.

• Weil restriction Res /Q � of an elliptic curve �.

• Jacobian varieties of curves.

�
Plan:

• Some motivation via elliptic curves.

• Gathering some material about “completeness”.

• Prove that abelian varieties are abelian.

1.1.2 Elliptic curves (char(:) ≠ 2, 3)
Theorem 1.1.5 TFAE for a projective curve � over :.

1. � is given by .2/ = -3 + 0-/2 + 1/3, 403 + 2712 ≠ 0.

2. � is nonsingular of genus 1 with a distinguished point %0.

3. � is nonsingular with an algebraic group structure.

4. (if : ⊆ C) such that �(C) = C/Λ for some lattice Λ ⊆ C.

Proof. Strategy: Item 1 ⇐⇒ Item 2 ⇐⇒ Item 3 and Item 2 =⇒ Item 4 =⇒
Item 1.

Item 1 =⇒ Item 2 is done.
Item2 =⇒ Item1: Riemann-Roch states that ;(�) = ;( −�)+deg(�)+1−6

so here ;(�) = ;( − �) + deg(�) further is � > 0 then ;( − �) = 0 in which
case ;(�) = deg(�). Consider !(=%0) for = > 0 Riemann-Roch implies that
;(=%0) = = then it always contains the constants.

!(%0) = :

!(2%0) = : ⊕ :G
!(3%0) = : ⊕ :G ⊕ :H

...

!(6%0) = : ⊕ :G ⊕ :H ⊕ :G2 ⊕ :H2 ⊕ :GH ⊕ :G3/∼
so we must have a relation which after manipulation is of the desired form.
We get an embedding

� ↩→ P2

% ↦→ (G(%) : H(%) : 1) (% ≠ %0)
%0 ↦→ (0 : 1 : 0)

and thus � is of the desired form. �

Definition 1.1.6 Elliptic curves. An elliptic curveover : is any/all of that 1.1.5.
♦

Which of the above characterisations generalise to abelian varieties?
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1. No, in general we don’t know that the equations look like.

2. One could possibly replace “genus” with a condition on the dimension
of cohomology groups.

3. Yes, this is essentially the definition.

4. Yes, stay tuned!

1.1.3 Complete varieties
Idea: if - × . had product topology (instead of its Zariski topology) then
complete is equivalent to compact.

We’d like to gather a few results about complete varieties we can use to
access properties of abelian varieties (like abelianness).

Proposition 1.1.7 Let + be a complete variety. Given any morphism ) : + → ,
)(+) is closed.

Proof. Let Γ) = {(E, )(E))} ⊆ + ×, be the graph of ). Its a closed subvariety
of+ ×, . Under the projection+ ×, →, , the image of Γ) is )(+) and thus
closed. �

Corollary 1.1.8 If+ is complete and connected, any regular function on+ is constant.

Proof. A regular function is a morphism 5 : + → A1. By the above 5 (+) ⊆ A1

is closed, and this is a finite set of points. But connected implies we just have
one point. �

Corollary 1.1.9 Let + be a complete connected variety. Let , be an affine variety.
Given ) : + →, , then )(+) is a point.

Proof. We have an embedding , ↩→ A= . On A= we have the coordinate
functions A= G8−→ A1. The composition

+
)
−→, ↩→ A= → A1

be the above is constant. Thus the coordinates of )(+) are constant, so )(+) =
{pt}. �

A final result of interest that I won’t prove today:

Theorem 1.1.10 Projective varieties are complete.
The main goal of this section is to prove the following theorem:

Theorem 1.1.11 Rigidity. Let +,, be varieties such that + is complete and
+ ×, is geometrically irreducible. Let 
 : + ×, → * be a morphism such that
∃D0 ∈ *(:), E0 ∈ +(:), F0 ∈ ,(:) with 
(+ × {F0}) = 
({E0} ×,) = {D0}.
Then 
(+ ×,) = {D0}.
Proof. Since + ×, is geometrically irreducible, + must be connected. Denote
the projection @ : + ×, → , . Let *0 3 D0 be an open neighborhood. We
consider the set

/ = {F ∈, : 
((E, F)) ∉ *0 for some E ∈ +} = @(
−1(* r*0))

Since @ is closed, / ⊆ , is closed. Since F0 ∈ , r /, , r / is a nonempty
open subset of, .

Consider F ∈ , r /. Since + × {F} � + it is complete and connected.
Thus


(+ × {F}) = {pt} = 
((E0 , F)) = {D0}
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which implies that

(+ × (, r /)) = {D0}

Since + × (, r /) ⊆ + ×, is open and + ×, is irreducible, it is dense. So

(+ ×,) = {D0}. �

Proposition 1.1.12 Let �, � be abelian varieties. Every morphism 
 : �→ � is the
composition of a homomorphism and a translation.

Proof. First compose by a translation on � such that 
(0) = 0. Consider the
map

) : � × �→ �

(0, 0′) ↦→ 
(0 + 0′) − 
(�) − 
(0′)

Then

)(� × {0}) = 
(0 + 0) − 
(0) − 
(0) = 0
)({0} × �) = 
(0 + 0) − 
(0) − 
(0) = 0.

By the rigidity theorem 1.1.11 )(� × �) = {0} hence 
(0 + 0′) = 
(0) + 
(0′).
�

Corollary 1.1.13 Abelian varieties are abelian.

Proof. The inversion map 0 ↦→ −0 sends 0 to 0, thus is a homomorphism.
Therefore

0 + 1 − 0 − 1 = 0 + 1 − (0 + 1) = 0

and so
0 + 1 = 1 + 0.

�

1.2 Abelian varieties over C (Alex)
The goal of this talk is to understand what abelian varieties look like over C.
The goal for me is to understand what a (principal) polarisation is and why it
is important.

First immediate question: why study complex theory at all? The most
classical field, algebraically closed, archimidean, characteristic 0.

Recall/rapidly learn the picture for elliptic curves, given � an elliptic curve
we have for some Λ a rank 2 lattice in C

C/Λ ∼−→ �(C) ⊆ P2(C)
I ↦→ (℘(I) : ℘′(I) : 1)
0 ↦→ (0 : 1 : 0)

where
℘(I) = 1

I2 +
∑

�∈Λr{0}

1
(I − �)2 −

1
�2 .

This is a meromorphic function whose image lands in

H2 = 4G3 − 62G − 63.

So the C points of an elliptic curve are topologically a torus.
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1.2.1 Abelian varieties
Naturally one asks: does this generalise? Let � be an abelian variety over C,
what does �(C) look like? Another torus?

Proposition 1.2.1 �(C) is a compact, connected, complex lie group.

Proposition 1.2.2 Let � be an abelian variety of dimension 6 over C. Then we have

�(C) � +/Λ

where + is a 6 dimensional complex vector space and Λ is a full rank lattice of + (i.e
Λ is a discrete subgroup of + s.t. R ⊗ Λ = +).

Proof. Differential geometry gives us a map of complex manifolds, the expo-
nential map

exp: Tgt0(�(C)) → �(C)
this is holomorphic. And since �(C) is abelian, this is a homomorphism also.
In general this is locally an isomorphism around 0.

Claim: exp is injective. There exists a neighborhood* ⊇ 0 s.t. exp(*) � * .
Consider the image exp(Tgt0 �(C)). For G ∈ exp(Tgt0 �(C)), {* + G} are all
open and give a cover. Thus exp(Tgt0 �(C)) is open. Since �(C) is connected
we are thus reduced to showing exp(Tgt0 �(C)) is closed also. Since exp is a
homomorphism, the image is a subgroup. So its complement is the union of
its non-trivial cosets, which is open. Thus exp(Tgt0 �(C)) is closed. Giving
exp(Tgt0 �(C)) = �(C), which proves the claim.

exp is a local isomorphism, which gives that ker(exp) is discrete, i.e. a
lattice. We now have

�(C) � Tgt0 �(C)/ker(exp)

so as �(C) is compact we cannot have a kernel which is not full rank, as
otherwise the quotient could not be compact. �

Definition 1.2.3 We call any such +/Λ a complex torus. ♦

From the above isomorphism we can now read off properties of �(C) as a
group.

Proposition 1.2.4 �(C) is divisible, and �(C)[=] � (Z/=Z)26 .

Proof.
�(C) � +/Λ � (R/Z)26

isomorphisms as groups, thus �(C) is divisible. Further, (R/Z)[=] = ( 1=Z)/Z.
�

Question: Given a complex torus +/Λ, does there exist an abelian variety
� such that �(C) � +/Λ?
Example 1.2.5

•
C/Λ � �(C) always in dim 1

•
C2/Λ2 � (� × �)(C) sometimes yes in higher dimension

•
C2/〈(8 , 0), (8√?, 8), (1, 0), (0, 1)〉Z

for ? prime??? (I guess not, see Mumford)
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�

Theorem 1.2.6 Chow. If - is an analytic submanifold of P=(C) then - is an
algebraic subvariety.

By this theorem it is enough to analytically imbed +/Λ ↩→ P< . We can
try and do this by mimicing the elliptic curve strategy, find enough functions
� : +/Λ→ C.

1.2.2 Cohomology
Proposition 1.2.7 Let - = +/Λ. Then

�A(-,Z) � {alternating A-forms Λ × · · · ×Λ→ Z}.

Proof. � : + → +/Λ is a universal covering map, so

Λ = �−1(0) � �1(-, 0).

Because all these spaces are nice

�1(-,Z) � Hom(�1(-),Z) � Hom(Λ,Z).

To extend to A ≠ 1 use the Künneth formula:∧A(�1(-1 × -2 ,Z))

Künneth

�A(-1 × -2 ,Z)

Künneth
∧A(�1(-1 ,Z) ⊗ �1(-2 ,Z))

⊕
?+@=A(

∧?(�1(-1 ,Z)) ⊗
∧@(�1(-2 ,Z)))

⊕
?+@=A(�?(-1 ,Z) ⊗ �@(-2 ,Z))

Since we know the proposition for (1 = R/Z by taking products and applying
the above we get it for all complex tori +/Λ. �

Proposition 1.2.8 There is a correspondence

{Hermitian forms � on +} ↔ {Alternating forms � : + ×+ → R, �(8D, 8E) = �(D, E)}
� ↦→ im�

�(8D, E) + 8�(D, E) ←� �.

1.2.3 Line bundles
Now we will consider line bundles on - = +/Λ, that is

!
�−→ -

such that for any G ∈ - there exists* 3 G with �−1(*) � C×* . We can obtain
these from hermitian forms and some auxiliary data as follows.

Definition 1.2.9 If � is a hermitian form on + such that �(Λ × Λ) ⊆ Z there
exists a map


 : Λ→ C∗1 = {I ∈ C∗ : |I | = 1}
such that


(D + E) = 4 8��(D,E)
(D)
(E).
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Further, there is a line bundle !(�, 
) on - which is defined by quotienting
C ×+ by Λwhich acts via

)D(�, E) = (
(D)4��(E,D)+
1
2��(D,D)�, E + D) for D ∈ Λ,

we’ll denote by 4D the factor 
(D)4��(E,D)+
1
2��(D,D) for brevity. ♦

Theorem 1.2.10 Appell-Humbert. Any line bundle on - is of the form !(�, 
)
for some �, 
 as above. Further

!(�1 , 
1) ⊗ !(�2 , 
2) = !(�1 + �2 , 
1
2).

In fact we have the following diagram

0 // Hom(Λ,C∗1) //

��

{data (�, 
)} //

��

{gp. of Herm. � w/ �(Λ ×Λ) ⊆ Z} //

��

0

0 // Pic0(-) // Pic(-)
2
// ker(�2(-,Z) → �2(-,O-)) // 0

where Pic(-) is the group of all line bundles on - and Pic0 is the subgroup of those
which are topologically trivial.

We wanted functions - → C. Now we can instead consider sections B of
!(�, 
) �−→ - i.e. maps B : - → !(�, 
) with � ◦ B = id. Denote the space of
such sections �0(-, !(�, 
)).
Definition 1.2.11 Theta functions. The sections of !(�, 
) correspond to
holomorphic functions

� : + → C

such that �(I + D) = 4D�(I), we will call such a � a theta function for (�, 
).
♦

If � is not positive definite the space of such functions is 0!

Proposition 1.2.12 If � is positive definite, then the dimension of �0(-, !(�, 
))
is
√

det� where we really mean the determinant of a matrix for � with respect to an
integral basis.

Theorem 1.2.13 Lefschetz. Given a positive definite �, there exists an imbedding
- ↩→ P< .

Proof. Sketch: Let ! = !(�, 
), consider !(�, 
)⊗3 = !(3�, 
3), take a basis of
�0 , . . . , �3 of �0(-, !⊗3).

Claim: Θ : I ↦→ (�0(I) : · · · : �3(I)) ⊆ P3 is an embedding.
To see that this is well defined, we must give a section of !⊗3 not vanishing

at I for all I ∈ -. Let � ∈ �0(-, !) r {0}. Then pick 0, 1 such that the section
of !⊗3 given by

�(I − 0)�(I − 1)�(I + 0 + 1)
does not vanish. This is possible and thus we have a nonvanishing section of
!⊗3.

For injectivity, show that if the above section has the same values on I1 , I2
then it is a theta function for some sublattice. Almost all sections aren’t theta
functions for a sublattice (this uses Proposition 1.2.12).

Something similar must be done for tangent vectors. �

Definition 1.2.14 Riemann forms. A Riemann form is � : Λ × Λ → Z alter-
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nating such that
�R : + ×+ → R

has the property that �(8D, 8E) = �(D, E) and the corresponding Hermitian
form is positive definite. ♦

Definition 1.2.15 Polarizable tori. A complex torus - = +/Λ is polarizable
if there exists a Riemann form � on Λ. ♦

Example 1.2.16 Proposition. Every C/Λwhere Λ = 〈1, �〉Z is polarizable.
To see this take

�(D, E) = DĒ

im �

as a Riemann form. �
Putting everything together we have obtained an equivalence of categories

{abelian varieties over C} ↔ {polarizable complex tori}.

1.2.4 Isogenies
Definition 1.2.17 Isogenies of complex tori. An isogeny of complex tori is a
homomorphism +/Λ→ +′/Λ′ with finite kernel. ♦

Definition 1.2.18 Dual vector spaces. Given + a complex vector space, let

+∗ = { 5 : + → C : 5 (D + E) = 5 (D) + 5 (E), 5 (
E) = 
̄ 5 (E)}

and given Λ ⊂ + a lattice, let

Λ∗ = { 5 ∈ +∗ : 5 (�) ∈ Z∀� ∈ Λ}.

♦

Definition 1.2.19 Dual tori. If - = +/Λ, -∨ = +∗/Λ∗ is the dual torus. ♦

Proposition 1.2.20 Existence of Weil pairing.

- × -∨ → C

so
-[=] × -∨[=] →

(
1
=2 Z/ 1

=
Z
)
� Z/=Z

this is called the Weil pairing.
Can a complex torus be isogenous to its own dual? If - is polarizable then

- → -∨

E ↦→ �(E,−)

is an isogeny.

Definition 1.2.21 A polarization is an isogeny - → -∨. ♦

1.3 Rational Maps into Abelian Varieties (Maria)
Note all varieties are irreducible today.
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1.3.1 Rational maps
+,, varieties / . Consider pairs (*, )* ), where ∅ ≠ * ⊂ + an open subset
so* is dense, and )* : * →, is a regular map.

Definition 1.3.1 Rational maps. (*, )* ), (*′, )*′) are equivalent if )* and
)*′ agree on * ∩*′. An equivalence class ) of {(*, )* )} is a rational map
) : + d , If ) : + d , is defined at E ∈ + if E ∈ * for some (*, )* ) ∈ ). ♦

Note 1.3.2 The set *1 =
⋃
* where ) is defined is open and (*1 , )1) ∈ )

where )1 : *1 →, restricts to )* on* .

Example 1.3.3
1. Let ∅ ≠ , ⊆ + be open. Then the rational map + d , induced by

id: , → , will not extend to + . To avoid this, assume, is complete
(so, = +).

2. � : H2 = G3, then 
 : A1 → �, 0 ↦→ (02 , 03) is a regular map, restricting to
an isomorphism A1 r{0} → � r {0}. The inverse of 
 |A1 r{0} represents
� : � d A1 which does not extend to �. This corresponds on function
fields to

 (C) →  (G, H)
C ↦→ H/G

which does not send  [H](C) to  [G, H](G,H).

3. Given a nonsingular surface +, % ∈ + then ∃
 : , → + regular that
induces an isomorphism 
 : ,r
−1(%) → +r%, but 
−1(%) is aprojective
line. The rational map represented by 
−1 is not regular on + (where to
send %?).

�

Theorem 1.3.4 Milne 3.1. A rational map ) : + d , from a nonsingular variety
+ to a complete variety, is defined on an open subset* ⊆ + whose complement has
codimension ≥ 2.
Proof. (+ a curve)+ nonsingular curve, ∅ ≠ * ⊆ + open, ) : * →, a regular
map.

+

*

66

((

// *′ ⊆ / ⊆ + ×, 3 (E, F)
@

��

?

OO

, 3 F

*′ is the image of * , / = *′. , is complete, / closed implies ?(/) ⊆ + is
closed. Also,* ⊆ ?(/) =⇒ ?(/) = + .

*
∼−→ *′→ *

so
*′

∼−→ *

/ � +

this implies /
∼−→ + . Then @ |/ : /→, is the extension of ) to + . �
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Theorem 1.3.5 Milne 3.2. A rational map ) : + d � from a nonsingular variety
+ to an abelian variety, , extends to all of + .

Proof. Theorem 1.3.4 Lemma 1.3.6 �

Lemma 1.3.6 Let ) : + d � be a map from a nonsingular variety to a group variety.
Then either ) is defined on all of + or the set where ) is not defined is closed of pure
codimension 1.
Proof. Fix (*, )* ) ∈ ) and consider

Φ : + ×+ d �

represented by

* ×*
)*×)*−−−−−→ � × � id×inv−−−−→ � × � <−→ �

(G, H) ↦→ )* (G))* (H)−1

Check ) is defined at G iff Φ is defined at (G, G) (and in this case Φ(G, G) = 4).
This is equivalent to the map Φ∗ : O�,4 →  (+ × +) induced by Φ satisfying
im(O�,4) ⊆ O+×+,(G,G) For a nonzero function 5 on + × + , write div( 5 ) =
div( 5 )0 − div( 5 )∞ which are effective divisors. Then

O+×+,(G,G) = {0} ∪ { 5 ∈  (+ ×+) : div( 5 )∞ does not contain (G, G)}.

Suppose ) is not defined at G, then there exists 5 ∈ im(O�,4) s.t. (G, G) ∈
div( 5 )∞. Then Φ is not defined at any (H, H) ∈ Δ∩ div( 5 )∞ = div( 5 −1)0, which
is a pure codimension 1 subset ofΔ byMilne’s AG thm 9.2. The corresponding
subset in + is of pure codimension 1, and ) is not defined there. �

Theorem 1.3.7 Milne 3.4. Let 
 : + ×, → � be a morphism from a product of
nonsingular varieties into an abelian variety. If 
(+ × {F0}) = {00} = 
({E0} ×,)
for some 00 ∈ �, E0 ∈ + , F0 ∈, , then 
(+ ×,) = {00}.
Corollary 1.3.8 Milne 3.7. Every rational map 
 : � d � from a group variety
into an abelian variety is the composition of a homomorphism and a translation in �.

Proof. Since group varieties are nonsingular, 
 : � → � is a regular map by
Theorem 1.3.5. The rest is as proof of Corollary 1.2. �

1.3.2 Dominating and birational maps
Definition 1.3.9 Dominating maps. ) : + d , is dominating if im()* ) is
dense in, for a representative (*, )* ) ∈ ). ♦

Exercise: A dominating ) : + d , defines a homomorphism  (,) →
 (+) and any such homomorphism arises from a unique dominating rational
map.

Definition 1.3.10 ) : + d , is birational if the corresponding  (,) →  (+)
is an isomorphism or, equivalently if there exists # : , d + s.t. ) ◦ # and
# ◦ ) are the identity wherever they are defined. In this case we say + and,
are birationally equivalent. ♦

Note 1.3.11 In general birational equivalence does not imply isomorphic. E.g.
+ a variety ∅ ≠, ( + an open subset, or + = A1 ,, : H2 = G3.

Theorem 1.3.12 Milne 3.8. If two abelian varieties are birationally equivalent then
they are isomorphic as abelian varieties.
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Proof. �, � abelian varieties with ) : � d � a birational map with inverse #.
Then by Theorem 1.3.5 ),# extend to regular maps ) : �→ �, # : �→ � and
)◦#,#◦) are the identity everywhere. This implies that ) is an isomorphism
of algebraic varieties and after compositionwith a translation, ) is also a group
isomorphism. �

Proposition 1.3.13 Milne 3.9. Any rational map A1 d � or P1 d �, for � an
abelian variety is constant.

Proof. Theorem 1.3.5 implies 
 : A1 d � extends to 
 : A1 → � and we may
assume 
(0) = 4. (A1 ,+): 
(G + H) = 
(G) + 
(H) for all G, H ∈ A1( ) =  .
(A1 r{0}, ·): 
(GH) = 
(G) + 
(H) + 2 for all G, H ∈  ×. These can only hold at
the same time if 
 is constant. P1 d � is constant, since its constant on affine
patches. �

Definition 1.3.14 +/ is unirational if there is a dominating map A= d + ,
where = = dim

 
+ . +/ is unirational if +/ is. ♦

Proposition 1.3.15 Milne 3.10. Every rational map + d � from + unirational to
� abelian is constant.

Proof. Wlog  =  . Since + is unirational we get � : P1 × · · · × P1 d + d �,
which extends to � : P1 × · · ·×P1 → �. Then byMilne corollary 1.5, there exist
regularmaps �8 : P1 → � s.t. �(G1 , . . . , G=) =

∑
�8(G8) andbyProposition1.3.13

each �8 map is constant. �

1.4 Theorem of the Cube (Ricky)

1.4.1 Crash Course in Line Bundles

Consider R2, 5 : R → R , 5 (G, H) = G2 + H2 − 1, now ( = { 5 = 0} ⊆ R2 is a
closed submanifold (in fact a circle). Question: Do all closed submanifolds
arise in this way? Lets switch to C better analogies with AG.

Example 1.4.1 Let - ∈ P=(C), the answer here is no! (Because 5 : - → C1 is
constant!) Want to define functions locally that give us level sets, but gluing
such will give us a global section. Instead glue in a different way (i.e. into
different “copies” of C) so that this doesn’t happen. �

Example 1.4.2 - ∈ P1
C, O- the structure sheaf.

- = *0 ∪*1 = (A1 , C) ∪ (A1 , B)

on *0 ∩ *1, C = B−1. What is a global section of O- , a section of *0 and a
section of*1 that glue. O-(*0) = :[C],O-(*1) = :[B] so given 5 (C), 6(B) these
glue to a global section iff 5 (C) = 6(1/C) so 5 , 6 must be constant. �

Definition 1.4.3 Line bundles. A line bundle on- is a locally freeO- -module
of rank 1, i.e. ∃{*8} open cover along with isomorphisms )8 : ℒ |*8

∼−→ O- |*8 .
♦

Exercise 1.4.4 Alternative definition: A line bundle on - is equivalent to the
following data:

• An open cover of -.

• Transition maps �8 9 ∈ GL1(O-(*8 ∩* 9)) satisfying �8 9�9: = �8: and �88 =
id.
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Example 1.4.5On - = P=
:
, we have line bundles O(3) for all 3 ∈ Z. Just have to

give cover and transition functions, use usual open cover {*8} with *8 � A= .
Then �98 is given by multiplication by (G8/G 9)3. �

Exercise 1.4.6
�0(-,O(3))(= Γ(-,O(3)))

= :vector space spanned bydeg. 3 homogeneous polynomials in :[G0 , . . . , G=].

Exercise 1.4.7 All line bundles on P= are isomorphic to some O(3).
We say a line bundle ℒ on - is trivial if ℒ � O- . Given ℒ1 and ℒ2 on -

(line bundles) we can create a new line bundle ℒ = ℒ1 ⊗ℒ2. So isomorphism
classes of line bundles on- with ⊗ form a group, denoted Pic(-)with identity
O- and inverses ℒ−1

= Hom(ℒ ,O-).
Example 1.4.8 By previous exercise Pic(P=

:
) � Z since O-(31) ⊗ O-(32) �

O-(31 + 32). �

Fact 1.4.9 If 5 : - → ., then given ℒ on . we can pullback to a line bundle 5 ∗ ℒ
on -, definition is complicated. We also know that 5 ∗ commutes with ⊗ so in fact (as
5 ∗ O. = O- ) we get a homomorphism 5 ∗ : Pic(.) → Pic(-).

1.4.2 Relation to (Weil) divisors
Let - be a normal variety, call / ⊆ -, a closed subvariety of codimension 1, a
prime divisor. Then a divisor on - is a formal sum

� =

∑
/⊆-

=/ · /

of prime divisors.
Let  =  (-) be the function field of -. Given 5 ∈  × we can define

div( 5 ) =
∑

E/( 5 ) · /.

Given � ∈ Div(-), we can define a line bundle ℒ(�) on - via

ℒ(�)(*) = { 5 ∈  × : (� + div( 5 ))|* ≥ 0} ∪ {0}

where � |* =
∑
/∩*≠∅ =/ · (/ ∩*).

Proposition 1.4.10 The map

Cl(-) = Div(-)/Princ(-)
ℒ(·)
−−−→ Pic(-)

is an isomorphism.

1.4.3 Onto cubes
Theorem 1.4.11 Theorem of the cube. Let *,+,, be complete varieties. If ℒ
is a line bundle on * × + ×, s.t. ℒ |{D0}×+×, ,ℒ |*×{E0}×, ,ℒ |*×+×{F0} are all
trivial then ℒ is trivial.
Corollary 1.4.12 Milne 5.2. Let � be an abelian variety. Let ?8 : � × � × �→ �
be the projection onto the 8th coordinate. ?8 9 = ?8 + ? 9 , ?123 = ?1 + ?2 + ?3. Then for
any ℒ on �, the line bundle

ℳ = ?∗123 ℒ ⊗?∗12 ℒ
−1 ⊗?∗23 ℒ

−1 ⊗?∗13 ℒ
−1 ⊗?∗1 ℒ ⊗?∗2 ℒ ⊗?∗3 ℒ
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is trivial.
Proof. Let< : �×�→ � bemultiplication (addition?) and ?, @ the projections
�×�→ �. Then the composites of the maps ) : �×�→ �×�×�, )(G, H) =
(G, H, 0)with ?123 , ?12 , ?23 , ?13 , ?1 , ?2 , ?3 are respectively<, <, @, ?, ?, @, 0. Hence
the restriction ofℳ to � × � × {0} is

<∗ ℒ ⊗<∗ ℒ−1 ⊗@∗ ℒ−1 ⊗?∗ ℒ−1 ⊗?∗ ℒ ⊗@∗ ℒ ⊗ O�×�

this is trivial by tensor commuting with pullback. Similarlyℳ restricts to a
trivial bundle on �× {0} ×� and {0} ×�×�. So by theorem of the cube 1.4.11
ℳ is trivial. �

Corollary 1.4.13 Milne 5.3. Let 5 , 6, ℎ : + → � (� abelian). Then for any ℒ on
� the bundle

ℳ = ( 5 +6+ℎ)∗ ℒ ⊗( 5 +6)∗ ℒ−1 ⊗( 5 +ℎ)∗ ℒ−1 ⊗(6+ℎ)∗ ℒ−1 ⊗ 5 ∗ ℒ ⊗6∗ ℒ ⊗ℎ∗ ℒ

is trivial.
Proof. ℳ is the pullback of the line bundle of Corollary 1.4.12 via the map
( 5 , 6, ℎ) : + → � × � × �. �

On � we have =� : �→ � be =�(0) = 0 + · · · + 0 (= times) for = ∈ Z.

Corollary 1.4.14 Milne 5.4. For ℒ on � we have

=∗� ℒ � ℒ(=2+=)/2 ⊗(−1)∗� ℒ
(=2−=)/2

In particular if (−1)∗ ℒ = ℒ (symmetric) then =∗
�
ℒ = ℒ=2

. And if (−1)∗ ℒ = ℒ−1

(antisymmetric) then =∗
�
ℒ = ℒ= .

Proof. Use Corollary 1.4.13 with 5 = =� , 6 = 1� , ℎ = (−1)�. So the line bundle

(=)∗ ℒ ⊗(= + 1)∗ ℒ−1 ⊗(= − 1)∗ ℒ−1 ⊗(1 − 1)∗ ℒ−1 ⊗=∗ ℒ ⊗1∗ ℒ ⊗(−1)∗ ℒ

is trivial i.e.

(= + 1)∗ ℒ = (= − 1)∗ ℒ−1 ⊗=∗ ℒ2 ⊗ℒ ⊗(−1)∗ ℒ

in statement = = 1 is clear, so use = = 1 in the above to get

2∗� ℒ � ℒ2 ⊗ℒ ⊗(−1)∗� ℒ � ℒ3 ⊗(−1)∗� ℒ .

Then induct on = in above. �

Theorem 1.4.15 Theorem of the square (Milne 5.5). Letℒ be an invertible sheaf
(line bundle) on �. Let C0 : �→ � be translation by 0 ∈ �(:). Then

C∗0+1 ℒ ⊗ℒ � C∗0 ℒ ⊗C∗1 ℒ .

Proof. Use Corollary 1.4.13 with 5 = id, 6(G) = 0, ℎ(G) = 1 to get

C∗0+1 ℒ ⊗C
∗
0 ℒ−1 ⊗C∗1 ℒ

−1 ⊗ℒ

is trivial. �

Remark 1.4.16 Tensor by ℒ−2 in the above equation to get

C∗0+1 ℒ ⊗ℒ
−1 � (C∗0 ℒ ⊗ℒ−1) ⊗ (C∗1 ℒ ⊗ℒ

−1).
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This gives a group homomorphism

�(:) → Pic(�)

via
0 ↦→ C∗0 ℒ ⊗ℒ−1

for any ℒ ∈ Pic(�).

1.5 The Adventures of BUNTES (Sachi)

1.5.1 In which we are introduced to an important homomor-
phism, review some concepts and our story begins

Abelian variety-, we know this is a complete group variety, our goal is to give
an embedding - → P# for some # . This motivates the study of line bundles.

Last time Ricky proved theorem of cube 1.4.11 and square 1.4.15. For any
line bundle ! on -, there is a group homomorphism Φ! : - → Pic(-) via
G ↦→ )∗G! ⊗ !−1. Be careful )∗G is −G, convention, who knows why.

Example 1.5.1 Let - = � an elliptic curve, ! = !((0)), G ↦→ (G) − (0), in this case
this is in Pic0(�) � � � �̂, �

Proposition 1.5.2 This is translation invariant.

Proof. Translate by @ ∈ �. (G + @) − (@) take ? to be the third point on the line
with G, @, (G) + (@) + (?) � 3(0) and (G + @) + (?) � 2(0) subtracting these gives
(G) − (G + @) + (@) � (0) or (G) − (0) � (G + @) − (@). �

What about the converse of this,what canwe sayabout translation invariant
line bundles

 (!) = {G ∈ - : )∗G! � !}?
Proposition 1.5.3  (!) is Zariski closed in -.

Proof. Consider <∗! ⊗ ?∗2!−1 on - × -, then

{G : this is trivial on {G} × -}

is closed. See-saw 1.6.6 implies restriction is pullback

)∗G! ⊗ !−1

so this is  (!). �

1.5.2 In which Pooh discovers our main theorem
Proposition 1.5.4 Let - be an abelian variety and ! a line bundle, ! = !(�) then
TFAE:

1. �(�) = {G ∈ - : )∗G� = �} is finite.

2.  (!) = {G ∈ - : )∗G! � !} is finite.

3. |2� | is basepoint free and defines a finite morphism - → P# .

4. ! is ample.

Proof.
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3. to 4.. Is algebraic geometry.

2. to 1.. Follows as being equal is stronger than being linearly equivalent.

4. to 2.. Section 1.5.3

3. to 4.. Section 1.5.4 �

1.5.3 InwhichOwlproves the ampleness of ! implies finiteness
of  (!)

4. to 2. Assume ! ample and (!) is infinite. Let. be the connected component
at 0 of  (!), dim. > 0. Show trivial bundle is ample on . implies . is affine,
But . is closed and therefore complete so this is a contradiction. !|. ample
[−1]∗!|. is ample. !|. ⊗ [−1]∗!|. is ample, consider

3 : . → . × .
H ↦→ (H,−H)

< ◦ 3 = constant, 3∗<∗(!) = O. , LHS is !|. ⊗ [−1]∗!|. .

1.5.4 In which Rabbbit sets out on a long journey to prove
finiteness of�(�) implies |2� | is basepoint free and gives
a finite map - → P#

Note 1.5.5 |2� | is always basepoint free.
Apply the theoremof the square 1.4.15: )∗G+H�+� � )∗G�+)∗H�, let H = −G,

2� � )∗G�+)∗−G�. (� effective) For any H ∈ -, choose some G s.t. RHS doesn’t
contain H. � = 2�

#� : - → P#

can we make this finite? If #� is not finite then #(�) = pt for some irreducible
curve � (Zariski’s main theorem). For each divisor in |� | either it contains �
or fails to intersect � by changing � if necessary, assume � ∩ � = ∅.

Claim 1.5.6 )∗G� ∩ � = ∅ or all of � for all G ∈ -.

Proof. Intersection numbers are constant. �

Proof. O()∗G�)|�̃ , when G = 0 this is trivial so deg = 0. So deg = 0 for all line
bundles. � effective implies � ∩ )∗G� = ∅ for all G s.t. ∩ is not in �. �

Claim 1.5.7 � is invariant by translation by G − H for G, H ∈ �.

Proof. If 4 ∈ �, )∗G−4(�) ∩ � ≠ ∅. This is as G is in it, G − (G − 4) = 4, because it is
nonempty it’s all of �. So H is in it. So H−(G− 4) ∈ �. This is also 4−(G− H) ∈ �,
so � is invariant under )∗G−H �

Now assume �(�) = {G ∈ - : )∗G� = �} is finite. But if #�(�) = pt then
)∗G−H(�) = � for all G, H ∈ �. So � is not finite, a contradiction. So #� can’t
collapse a curve so #� is finite.

1.5.5 In which Piglet discovers a corollary
Corollary 1.5.8 Abelian varieties are projective.

Proof. Let - be an abelian variety, * ⊆ - be an open affine set, 0 ∈ * ,
- r* = �1 ∪ · · · ∪�C irreducible divisors. Let � =

∑
�8 , then claim: �(�) =

{G ∈ - : )∗G� = �} is finite. If � ⊆ * ,* affine, then � closed subvariety of an
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abelian variety, hence complete, so its finite. If G ∈ � then −G ∈ �. Now claim
that if G ∈ � then )∗G preserves* , if not let D ∈ * . Suppose D − G = 3 for some
3 ∈ � then D = 3 + G which is 3 translated by −G so 3 + G ∈ � so D ∈ �. But
contradiction, oh no! So )∗G preserves * , for all G ∈ �, as 0 ∈ * , for all G ∈ �
we have 0 − G ∈ * and 0 + G ∈ * so � ⊆ * . �

Corollary 1.5.9 Abelian varieties are divisible. -[=] is finite for = ≥ 1.

Proof. [=] : - → - and -[=] is the kernel of this. Note that for G ∈ -[=]

[=] ◦ )G = [=]

H ∈ -, then =(H − G) = =H − =G = =H so for all ! ∈ Pic-

)∗G ([=]∗!) � ([=]∗!)

which implies
 ([=]∗!) ⊇ -[=]

and we just need to find ! s.t. this is finite. - projective implies there exists
an ample !. The theorem of the cube 1.4.11 implies

[=]∗! � ! =2+=
2 ⊗ ! =2−=

2

where both terms on the right are ample, hence the left is also. �

1.5.6 Epilogue: In which we might discuss isogenies
Definition 1.5.10 5 : - → . a morphism of varieties, get a field extension
:(-)/ 5 ∗:(.), if dim- = dim. and 5 is surjective. Then this is a finite field
extension and deg 5 is 3 = [:(-) : 5 ∗:(.)] and 3 = # 5 −1(H) for almost all H. ♦

Definition 1.5.11 A homomorphism of abelian varieties 5 : - → . is an
isogeny if 5 is surjective with finite kernel. ♦

Corollary 1.5.12 Degree of [=] is =26 , if = is prime to the characteristic of :, : = :,
6 = dim-.

Proof. Let � be an ample symmetric divisor, e.g.

� = �′ + [−1]∗�′

know [=]∗� ∼ =2�

deg([=]∗(� · . . . ·�)) = ([=]∗� · . . . · [=]∗�) = (=2� · . . . · =2�) = =26(� · . . . ·�).

�

1.6 Line Bundles and the Dual Abelian Variety (An-
gus)

1.6.1 Introduction
Meta-goal. Understand line bundles on abelian varieties.

Setup. � an abelian variety /:.
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Last time. For ! a line bundle on � we get a map

)! : �( ) → Pic(�)
0 ↦→ C∗0! ⊗ !−1

where
Pic(�) = {line bundles on �}/∼ .

This a is a group homomorphism (by the theorem of the square 1.4.15). We
define

 (!)(:) = ker()!) = {0 ∈ �(:) : C∗0! ' !}.

Today. We are going to package these into a big map

) : Pic(�) → Hom(�(:), Pic(�))
! ↦→ )!.

Proposition 1.6.1
1. ) is a group homomorphism

2.
)C∗0! = )!

Proof.

1.

)!⊗"(0) = C∗0(! ⊗ ") ⊗ (! ⊗ ")−1

= C∗0! ⊗ !−1C∗0" ⊗ "−1

= )! ⊗ )"

2.

)C∗
1
!(0) = C∗0(C∗1!) ⊗ (C

∗
1!)
−1

= C∗0+1! ⊗ (C
∗
1!)
−1

= C∗0! ⊗ C∗1! ⊗ !
−1 ⊗ (C∗1!)

−1

= )!(0)

by the theorem of the square 1.4.15 �

Definition 1.6.2

Pic0(�) = ker())
= {! ∈ Pic(�) : )! = 0}
= {! ∈ Pic(�) : C∗0! ' ! ∀0 ∈ �(:)}
= {translation invariant line bundles}/∼

♦

Goals. Study Pic0(�), give it an abelian variety structure, solve a moduli
problem, demonstrate some duality.



CHAPTER 1. ABELIAN VARIETIES 18

1.6.2 Aside: alternate description of Pic0(�)
Definition 1.6.3 Algebraic Equivalence. Two line bundles !1 , !2 on an abelian
variety are algebraically equivalent if there exists a variety. with line bundle
! on � × . and points H1H2 ∈ . s.t. !|�×{H1} ' !1 , !|�×{H2} ' !2. ♦

Remark 1.6.4 This looks like homotopy.

Proposition 1.6.5

Pic0(�) = {line bundles which are alg. equiv to O�}

Proof. [81]. �

1.6.3 See-Saws
Theorem 1.6.6 See-saw theorem. Let -, ) be varieties - complete, let ! be a line
bundle on - × ), let )1 = {C ∈ ) : !|-×{C} is trivial} then )1 is closed in ). Further
let ?2 : - × )1 → )1, then !|-×)1 � ?∗2" for some line bundle " on )1.

Remark 1.6.7 In fact " = ?2∗!.

Corollary 1.6.8 that no one states/only Milne. Let X, T be as above and let !, "
be line bundles on - × ) s.t.

!|-×{C} � " |-×{C}∀C ∈ )

!|{C}×- � " |{C}×- for some G ∈ -
then ! � ".

1.6.4 Properties of Pic0 �

Lemma 1.6.9 ! ∈ Pic0(�) and <, ?1 , ?2 : � × �→ �

1.
<∗! � ?∗1! ⊗ ?∗2!

2. Given 5 , 6 : - → �
( 5 + 6)∗! � 5 ∗! ⊗ 6∗!

3.
[=]∗! � !⊗=

4.
)!(�(:)) ⊆ Pic0(�)

for ! ∈ Pic(�).

Proof.

1.
(<∗! ⊗ (?∗1;)−1 ⊗ (?∗2;)−1)|�×{0} = C∗0! ⊗ !−1 = O�
(<∗! ⊗ (?∗1;)−1 ⊗ (?∗2;)−1)|{0}×� = C∗0! ⊗ !−1 = O�

by see-saw 1.6.6 whole thing is trivial on � × �.
2.

( 5 + 6)∗! � ( 5 × 6)∗<∗! � ( 5 × 6)∗(?∗1! ⊗ ?∗2!) � 5 ∗! ⊗ 6∗!
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3. Induction of 3.

4.
))!(0) = )C∗0! ⊗ !−1 = )C∗0! ⊗ !−1 = )! ⊗ )!−1 = 0

�

Proposition 1.6.10 If ! is nontrivial in Pic0(�) then � 8(�, !) = 0 ∀8.

Proof. If �0(�, !) ≠ 0, we would have a nontrivial section B of ! then [−1]∗B
is a nontrivial section of [−1]∗! = !−1. But if both ! and !−1 have a nontrivial
section then ! � O�. So since ! is nontrivial �0(�, !) = 0. Now assume
� 8(�, !) = 0 for all 8 < 9. Consider

�
id×0−−−→ � × � <−→ �

0 ↦→ (0, 0) ↦→ 0

this gives
� 9(�, !) → � 9(� × �, <∗!) → � 9(�, !)

which composes to the identity.

� 9(� × �, <∗!) = � 9(� × �, ?∗1! ⊗ ?∗2!) =
9⊕
8=0

� 8(�, !) ⊗ � 9−8(�, !)

by Künneth. The RHS is 0 by the inductive hypothesis. So the identity on
� 9(�, !) factors through 0, hence the group is 0. �

We now think of )! as a map )! : �(:) → Pic0(�)with kernel  (!)(:).

Theorem 1.6.11 If  (!)(:) is finite then )! is surjective.

Proof. Idea is to study

Λ(!) = <∗! ⊗ (?∗1!)−1 ⊗ (?∗2!)−1.

�
Given an ample line bundle ! on �we now have an isomophism of groups

�(:)/ (!)(:) � Pic0(�)
the LHS allows us to put an abelian variety structure on Pic0(�).

1.6.5 The Dual Abelian Variety
Theorem 1.6.12 Let � be an abelian variety and ! an ample line bundle on �, then
the quotient scheme �/ (!) exists and is an abelian variety of the same dimension as
�.
Proof. (Sketch) (characteristic 0) Cover � by affine opens *8 = Spec'8 such
that for all 0 ∈ � the orbit  (!)0 ⊆ *8 for some 8. We can do this because
abelian varieties are projective. Then we say*8/ (!) = Spec(' (!)

8
) then glue.

(details in Mumford, II sec, 6 appendix). Since we are in characteristic 0, the
quotient scheme is in fact a variety. �

Definition 1.6.13 Dual abelian varieties. The dual abelian variety is

�̂ = �/ (!).

♦
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Remark 1.6.14
•

�̂( ) = Pic0(�)

• We have an isogeny
)! : �→ �̂.

Theorem 1.6.15 There is a unique line bundle P on � × �̂ called the Poincaré
bundle such that

1.
P |�×{G} ∈ Pic0(�) for all G ∈ �̂

2.
P |0×�̂ = 0

3. If / is a scheme with a line bundle ' on � × / satisfying 1., 2., there exists a
unique

5 : /→ �̂

s.t.
(id × 5 )∗ P = '.

That is (�̂,P) represents the functor

/ ↦→
{
! ∈ Pic(� × /) : !|�×{I}∈Pic0(�)∀I∈/

!|0×/=0

}
/∼ .

1.6.6 Dual morphisms
Let 5 : � → � be a homomorphism of abelian varieties. Let P� ,P� be the
Poincaré bundles on � and �. Consider " = (� × id

�̂
)∗ P� on � × �̂, then

1.
" |�×{G} ∈ Pic0(�)

2.
" |{0}×�̂ = 0

thus by the universal property we get a unique morphism

5̂ : �̂→ �̂

satisfying
(id� × 5̂ )∗ P� = ( 5 × id

�̂
)∗ P� .

Definition 1.6.16 Dual morphisms. 5̂ as above is called the dual morphism.
♦

Remark 1.6.17
•

5̂ : �̂ = Pic0(�) → �̂(:) = Pic0(�)
! ↦→ 5 ∗!

•
ˆ[=�] = [=�̂]
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Consider the Poincaré bundle P
�̂
on �̂ × ˆ̂�, now think of P� as living on

�̂ × �. By the universal property of P
�̂
get a unique morphism

can� : �→ ˆ̂
�.

Theorem 1.6.18 can� is an isomorphism.

Lemma 1.6.19
) 5 ∗! = 5̂ ◦ )! ◦ 5 .

Proposition 1.6.20 If 5 : �→ � is an isogeny, then 5̂ : �̂→ �̂ is an isogeny. Further
if # = ker 5 , then #̂ = ker 5̂ is the Cartier dual of # .

Definition 1.6.21 Symmetric morphisms, (principal) polarizations. A mor-
phism 5 : �→ �̂ is symmetric if 5 = 5̂ ◦ can�

A polarization is a symmetric isogeny 5 : � → �̂ s.t. 5 = )! for some
ample line bundle ! on �.

A principal polarization is a polarization of degree 1, i.e. an isomorphism.
♦

Remark 1.6.22 Elliptic curves always admit principal polarization.
If one wishes to mimic the theory of elliptic curves, one should study

principally polarized abelian varieties.

1.7 Endomorphisms and the Tate module (Berke)
Motivation.

5 : P= ⊆ +1 → +2 ⊆ P< , +8 = +(�8)
% ↦→ · · ·

5 = [ 51 : · · · : 5<], 58 ∈  (+1)
this feels quite restrictive, an isogeny is even more so, rational, regular, homo-
morphism, surjective, finite kernel. It feels like there won’t be too many but
we have multiplication by = etc. so we should ask how many are there that
will surprise us? I.e. what is

rankZ Hom(�, �) =?

Notation: �, �, �, �8 , �8 are all abelian varieties. ; ≠ char :, ∼ is isogeny.

1.7.1 Poincaré’s complete reducibility theorem
Theorem 1.7.1 Poincaré’s complete reducibility theorem. Let � ⊆ � then there
is � ⊆ � s.t. � ∩ � is finite and � + � = �. I.e. � × � → �, (1, 2) ↦→ 1 + 2 is an
isogeny.

Proof. Choose ℒ ample on �

�
8 //

)8∗ℒ
��

�

∼ )ℒ
��

�̂ �̂
8̂oo
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� is defined to be the connected component of )−1
ℒ (ker 8̂) in �

dim� = dim ker 8̂ ≥ dim �̂ − dim �̂ = dim� − dim �.

� ∩ � finite, I ∈ �, I ∈ � ∩ )ℒ−1(ker 8̂) = )∗I ℒ ⊗ℒ−1 |� is trivial if and only
if I ∈  (ℒ |�). So ℒ |� ample implies  (ℒ |�) finite and so � ∩ � is finite. So
� × � → � has finite kernel and

dim(� × �) = dim � + dim� ≥ dim�

and surjective implies its an isogeny. �

Definition 1.7.2 Simple abelian varieties. � is called simple if there does not
exists � ⊆ � other than � = 0, �. ♦

Corollary 1.7.3
� ∼ �=1

1 × · · · × �
=:
:

�8 / � 9 for 8 ≠ 9 and �8 simple.

Corollary 1.7.4 
 ∈ Hom(�, �) for �, � simple then 
 is an isogeny or 0.

Proof. 
(�) ⊆ � which implies 
(�) = � or 0. The connected component of 0
of ker 
 will be an abelian subvariety of �, denote it � If � = 0 then ker 
 is
finite, if � = � then 
 = 0. So 
 is an isogeny or 0. �

Corollary 1.7.5 If �, � are simple and � / � then Hom(�, �) = 0.

Definition 1.7.6
End0(�) = End(�) ⊗ Q.

♦

Lemma 1.7.7 If 
 : �→ � is an isogeny, then there exists � : �→ � s.t. � ◦ 
 = =�
for some = ≥ 1.

Proof. 
 an isogeny implies ker 
 is finite. So there exists = with = ker 
 = 0.
ker 
 ⊆ ker =�

�




{{ ��

=� // �

� ∼
//

∃|�

JJ

�/ker 


��

◦

;;

�/=�
so � ◦ 
 = =�, also 
 ◦ � = =�. �

Corollary 1.7.8 � is simple then End0(�) is a division ring, 
−1 = � ⊗ 1
= .

Corollary 1.7.9 to Poincaré reducibility theorem. If

� ∼ �=1
1 × · · · × �

=:
:

then
End0(�) '

∏
End0(�8)=

2
8 .
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Proof.

End(�) ⊗ Q '
∏
8 , 9

Hom(�=8
8
, �

= 9

9
) ⊗ Q

'
∏
8

End(�8)=
2
8 ⊗ Q

'
∏
8

End0(�8)=
2
8

�

Theorem 1.7.10 7.2. If dim� = 6 then deg =� = =26 .

Corollary 1.7.11 char : - = implies ker(=�) ' (Z/=Z)26 .

Proof. If < |= then | ker(<�)| = <26 , then use structure theorem. �

In particular if we let �[;=] = �(:sep)[;=], then �[;=] ' (Z/;=)26 Define

);(�) = lim←−−
=

�[;=], �[;=+1] ;−→ �[;]

Proposition 1.7.12
); ' (Z;)26


 : �→ � induces
);
 : );(�) → );(�)

(01 , 02 , . . .) ↦→ (
(01), 
(02), . . .)
Lemma 1.7.13

Hom(�, �) ↩→ Hom();(�), );(�))

Proof. Let 
 ∈ Hom(�, �) and assume );
 = 0 then

ker(
 |�8 ) ⊇ �8[;=]∀=

for any simple component �8 of � so 
 = 0 on each �8 and hence 
 = 0 on �.
�

Corollary 1.7.14 Hom(�, �) is torsion free.
Recall we are interested in knowing about rankZ Hom(�, �) =?, can we

bound this? If we could show that

Hom(�, �) ⊗ Z; ↩→ Hom();(�), );(�))

we could conclude, so:

Hom(�, �) ⊗ Z;

∼
��

� � // Hom();�, );�)

∼
��∏

8 , 9(Hom(�8 , �9) ⊗ Z;) �
� // ∏

8 , 9 Hom();�8 , );� 9)

�8 + � 9 = 0, �8 ∼ � 9 Hom(�8 , �9) ↩→ End(�8). Assume � = � and � simple,
then End(�) ⊗ Z; ↩→ End();(�)).
Definition 1.7.15 +/: then 5 : + → : is called a (homogenous) polynomial
function of degree 3 if ∀{E1 , · · · , E<} ⊆ + linearly independent.

5 (�1E1 + �2E2 + · · · + �<E<)
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is given by a homogenous polynomial of degree 3 in �8 i.e.

5 (�1E1 + �2E2 + · · · + �<E<) = %(�1 , . . . ,�<)

for some % ∈ :[-<] homogenous of degree 3. ♦

deg: End(�) → Z


 an isogeny iff deg 
, 
 not an isogeny iff 0.

Theorem 1.7.16 deg uniquely extends to a polynomial function of degree 26 on
End0(�) → Q.

Proof. (of above continued)

End(�) ⊗ Z; ↩→ End();(�))
for � simple iff for any finitely generated " ⊆ End(�)

" ⊗ Z; ↩→ End();(�))

Claim:
"div = { 5 ∈ End(�) : = 5 ∈ " for some = ≥ 1}

is finitely generated.
Proof: "div = (" ⊗Q) ∩ End(�) deg: " ⊗Q→ Q is a polynomial so it is

continuous.
* = {) ∈ " ⊗ Q : deg) < 1}

is open in" ⊗Q but* ∩"div = 0 so"div is a discrete subgroup of the finite
dimensional Q-vector space " ⊗ Q so "div is finitely generated. " ↩→ "div

so " ⊗ Z; ↩→ "div ⊗ Z; so we may assume " = "div.
Let 51 , . . . , 5A be a Z-basis for " and suppose that

∑
08);( 58) = 0 for some

08 ∈ Z; not all 0. We can assume not all 08 are divisible by ;. Choose 0′8 ∈ Z s.t.
0′
8
= 08 (mod ;)

5 =
∑

0′8 58 ∈ End(�)

we then have
5 =

∑
0′8); 58

is 0 on the first coordinate of ); . So �[;] ⊆ ker 5 so there exists 6 with 5 = ; 6
5 ∈ " implies 6 ∈ "div = " so 6 =

∑
18 58 and 5 =

∑
;18 5 =

∑
08 58 hence ; | 08

for all 8 a contradiction. So End(�) ⊗ Z; ↩→ End();(�)).
Therefore

Hom(�, �) ⊗ Z; ↩→ Hom();(�), );(�))
rankZ Hom(�, �) ≤ 4 dim�dim �.

�

1.8 Polarizations and Étale cohomology (Alex)
Plan: polarizations, a little cohomological warmup and a cool finiteness result.
Étale cohomology.
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1.8.1 Polarizations
Definition 1.8.1 Polarizations. A polarization of an abelian variety �/: is an
isogeny

� : �→ �̂

such that
� '

:
�ℒ : 0 ↦→ C∗0 ℒ ⊗ℒ−1

for an ample invertible sheaf ℒ on �
:
.

We then have a notion of degree, polarizations of degree 1 (i.e. isomor-
phisms �→ �̂) are called principal polarizations. ♦

Remark 1.8.2 This is in fact equivalent to the previous definition 1.6.21, see
[47, cor. 11.5].

Natural questions: what does the line bundle ℒ tell us about the polariza-
tion? Can we tell principality?

To answer this we must (rapidly) recall (Zariski) sheaf cohomology. But
this will help us in the next section too.

A line bundle (or indeed any sheaf) defines for us for any open subset
* ↩→ - an abelian group of sections ℒ(*).

However taking (global) sections doesn’t play well with exact sequences!

Example 1.8.3 Classic example. Let - = C∗ and consider

0→ Z ↩→ O-
42�8−
−−−→ O∗- → 0

but
0→ Z→ O-(-) → O∗-(-)

is not surjective on the right, for example 5 (I) = I is a nowhere vanishing
meromorphic function on - but its not exp of anything. Upshot: maps of
sheaves can be surjective (by being so locally) but not globally. �

To understand/control this phenomenon we introduce �1(-, ℱ ) fitting
into the above and so on.

Explicitly: for a sheaf ℱ we fix an injective resolution

0→ ℱ → ℐ0 → ℐ1 → · · ·

which we then take global sections of to get a chain complex

0→ Γ(-, ℱ ) → Γ(-,ℐ0) → Γ(-,ℐ1) → · · ·

andwe truncate and take cohomology of this tomeasure “failure of exactness”

�0(-, ℱ ), �1(-, ℱ ), �2(-, ℱ ), . . . .
Definition 1.8.4 Euler-Poincaré characteristic. Define the Euler-Poincaré
characteristic of a line bundle ℒ to be

"(ℒ) =
∑
(−1)8 dim: �

8(�,ℒ).

♦

Theorem 1.8.5 Riemann-Roch. Let � be an abelian variety of dimension 6 then
1. The degree of �ℒ is "(ℒ)2.

2. If ℒ = ℒ(�) then "(ℒ) = (�6)/6!, this is the 6-fold self intersection number
of �.
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Theorem 1.8.6 Vanishing. If # (ℒ) < ∞ then there is a unique integer 0 ≤ 8(ℒ) ≤
6 with � 8(�,ℒ) ≠ 0 and �?(�,ℒ) = 0 for all ? ≠ 8. Moreover 8(ℒ−1) = 6 − 8(ℒ).

Recall Subsection 1.5.3: So for ample ℒ we have  (ℒ) finite, so the vanish-
ing theorem applies. Additionally for very ample ℒ we know �0(�,ℒ) ≠ 0
so in this case we get vanishing of higher cohomology.

Theorem 1.8.7 Finiteness. Let : be a finite field, and 6, 3 ≥ 1 integers. Up to
isomorphism there are only finitely many abelian varieties �/: of dimension 6 and
with a polarization of degree 32.

Proof. (Super sketch)
Over a finite field implies there is an ample ℒ with �ℒ a polarization

of degree 32, then using above "(ℒ3) = 363 and ℒ3 is very ample hence
dim�0(�,ℒ3) = 363 so we get an embedding into P363−1.

The degree of � in P363−1 is ((3�)6) = 363(6!) . It is determined by its
Chow form, which by these formulae has some (large) bounded degree, as we
are over a finite field however there are only finitely many such. �

1.8.2 Étale Cohomology of Abelian Varieties
See [77] or [96].

Recall for abelian varieties over �/C we considered singular cohomology
of the complex points �(C). Indeed this theory was strongly connected to the
lattice Λ defining �(C).

We saw that in fact �1(�, 0) = �−1(0) = Λ ⊆ + which was the universal
covering space of �(C). We want to emulate this over a general field.

We want to allowmultiplication by = to define finite covers for our abelian
varieties as they did before.

Problem: Zariski topology is too coarse: we can’t find an open* set around
0 ∈ � such that [2] : * → � is an isomorphism onto its image. Isogenies are
not local isomorphisms for the Zariski topology.

How on earth do we “allow” maps which are clearly not local isomor-
phisms to become such? First what do we mean by local isomorphism?

5 −1(*)

��

∼ // *� _

8

��
-

5
// .

.

There exists an open subset* such that the base change - ×.* is isomorphic
with

∐
* of several copies of* in a compatible way with the map to* .

So let’s cheat, the best isomorphism is the identity map

-

��

∼ // -

5

��
-

5
// .

if we define an “open set”* to be a morphism - → . with the properties we
want, then all such become local isomorphisms.

By taking our topology to be given by some maps we decide are decent
covering maps we can circumvent these difficulties.



CHAPTER 1. ABELIAN VARIETIES 27

What is the correct class of morphisms to take here, we feel like our [=]
maps should count. Taking inspiration from differential geometry perhaps,
we are led to the notion of a local diffeomorphism, an étale map.

Definition 1.8.8 Let -,. be nonsingular varieties over : = :. Then 5 : - → .
is étale at a point % ∈ - if

d 5 : Tgt%(-) → Tgt 5 (%)(.)

is an isomorphism. ♦

Proposition 1.8.9 Let 5 : A< → A< then 5 is étale at (01 , · · · , 0<) iff(
%(-8 ◦ 5 )

%.9
|(0: )

)
is nonsingular.

Example 1.8.10 A non-étale map. Consider the map

A2 → A2

(G, H) ↦→ (G3 , G2 + H)

we can see that the image of H = 0 is the nodal cubic (.3 = -2), which is
messed up (singular) at (0, 0). The jacobian is(

3G2 0
2G 1

)
so this matrix is singular exactly when G = 0 (unless characteristic 3). So the
map is not étale at these points. �

Proposition 1.8.11Themaps [=] are étale on an abelian variety�/: for all char : - =

Proof. Key point d(
 + �)0 = (d
)0 + (d�)0. So the map on tangent spaces is
simply multiplication by =. �

Definition 1.8.12 Étale morphisms. A morphism 5 : - → . of schemes is
étale if it is flat and unramified.

Flatness for finite morphisms of varieties is equivalent to each fibre 5 −1(C)
being of equal cardinality, counting multiplicities. ♦

All isogenies are finite and flat.

Definition 1.8.13 Let FEt/- be the category of finite étale maps � : . → - (i.e.
finite étale coverings of -).

Then after picking a basepoint G ∈ - we can map

� : FEt/- → Set

� ↦→ Hom-(G, .) ≈ �−1(G).
This is in fact pro-representable, i.e. there exists a system

-̃ = (-8)8∈�

with
�(.) = Hom(-̃ , .) = lim−−→

8

Hom(-8 , .).
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We then define

�1(-, G) = Aut-(-̃) = lim←−−
8

Aut-(-8).

♦
So we need to understand étale covers of abelian varieties. Following [47]:

Proposition 1.8.14 surprising proposition. Let - be a complete variety over a
field : with 4 ∈ -(:) and < : - × - → - s.t. <(4 , G) = <(G, 4) = G for all G ∈ -.
Then (-, <, 4) is an abelian variety.

Proof. (Sketch)
Let

� : - × - → - × -
�(G, H) = (GH, H)

so �−1(4 , 4) = (4 , 4). Some exercise in Hartshorne implies im � has dimension
2 dim-.

Reduce to algebraically closed case.
Let

�−1({4} × -) = {(G, H) : GH = 4} = Γ ⊆ - × -
as � is surjective we get ?2 : Γ → - is also so pick an irreducible Γ1 ⊆ Γ with
?2(Γ1) = -. This also implies ?1(Γ1) = -.

Let
5 : Γ1 × - × - → -

5 ((G, H), I, F) = G((HI)F)
then

5 (Γ1 × {4} × {4}) = {444} = {4}
so a version of rigidity 1.1.11 gives

G((HI)F) = IF ∀(G, H) ∈ Γ1 , I, F ∈ -

So letting F = 4 we get
G(HI) = I.

Fix H ∈ -(:), and then by surjectivity we can find G, I ∈ -(:) with (G, H) ∈
Γ1 3 (H, I). So we get

G = G(HI) = I4 = I
and so H has both a left and right inverse. We then multiply above by H to get

H(IF) = H(G((HI)F)) = (HI)F

so -(:) is associative. �

Theorem 1.8.15 Lang-Serre. Let -/: be an abelian variety and ./: a variety with
4. ∈ .(:) s.t. 5 : . → - is an étale covering where 5 (4.) = 4- . Then . can be
given the structure of an abelian variety so that 5 is a separable isogeny.

Proof. Must construct a group law on .:
Take the graph of < : - × - → -

Γ- ⊆ - × - × -
and pullback along 5 × 5 × 5 to

Γ′. ⊆ . × . × .
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fix the connected component Γ. containing (4. , 4. , 4.).
Call the projections from Γ. @� . Now we must show that @12 : Γ. → . × .

is an isomorphism, then <. : . × . → . can be defined as @3 ◦ @−1
12 . @12 has

sections B1 , B2 over {4.}×.,.×{4.} respectively given by B1(4. , H) = (4. , H, H)
and B2(H, 4H , H) = (H, 4H , H). So <. satisfies the conditions of the surprising
proposition.

Γ. //

@12

��

Γ-

?12

��
. × .

5× 5
// - × -

the horizontal maps are étale coverings and the rightmost an isomorphism
so @12 is an étale covering. The projection ?2 ◦ @12 = @2 : Γ. → . is smooth
proper. Fact: all fibres of @2 are irreducible. So / = @−1

2 (4.) = @−1
12 (. × {4.}) is

irreducible. Moreover @12 restricts to an étale covering /→ . = .×{4.} of the
same degree, but B2 is a section of this covering, hence it is an isomorphism.
Hence @12 has degree 1 and is therefore an isomorphism as required. �

So we have some control over the finite étale maps, what does the covering
space look like? Last weekwe saw that for an isogeny 
 : �→ �we could find
� : � → � with � ◦ 
 = [=] : � → �. This means we can take our universal
covering space to be

(�)8∈�
with multiplication by = maps.

So we find

�et
1 (�, 0) = lim←−−

=

Aut�(�
[=]
−−→ �) = lim←−−

=

�[=].

Theorem 1.8.16

�1
et(�,Z;) = Hom(�1(�, 0),Z;) = Hom(); ,Z;)

Theorem 1.8.17

�A(�et ,Z;) =
A∧
�1(�et ,Z;)

Note that Milne gives a combined proof of the above two statements, this
relies on some theorems on Hopf algebras such as [25, Theoreme 6.1].

1.9 Weil pairings (Maria)

1.9.1 Weil pairings on elliptic curves
Startwith elliptic curves, later repeat for abelianvarieties. �/: an elliptic curve,
< ≥ 2, if char(:) = ? > 0 (<, ?) = 1. The Weil 4<-pairing 4< : �[<] × �[<] →
�< is defined as follows: Fix ) ∈ �[<] then 5 ∈ :(�) s.t. div( 5 ) = <()) −<(0).
Fix )′ ∈ � with <)′ = ) and 6 ∈ :(�) s.t. div(6) = [<]∗()) = [<]∗(0) =∑
'∈�[<]() + ') − ('). Check div( 5 ◦ [<]) = div(6<), hence

5 ◦ [<] = 26<

so can assume 5 ◦ [<] = 6< . For B ∈ �[<], G ∈ �:

6(G + B) = 5 ([<]G + [<]B) = 5 ([<]G) = 6(G)<
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6(· + B)<
6(·) : �→ P1

is then a constant function, since not surjective. So we define

4< : �[<] × �[<] → �<

(B, C) ↦→
6C(G + B)
6C(G)

will state many properties later, but for now. 4< is compatible:

4<<′(0, 0′)<
′
= 4<(<′0, <′0′) ∀0, 0′ ∈ �[<<′]

so for any ; ≠ char(:) prime we can combine 4;= -pairings into an ;-adic Weil
pairing on );�

4 : );� × );�→ );� = Z;(1)

1.9.2 Weil pairings on abelian varieties
Storywill be broadly similar to before but wemust use the dual, which doesn’t
appear in the presentation for elliptic curves.

Let �/: be an abelian variety : = :. We construct a Weil 4<-pairing

4< : �[<] × �∨[<] → �<

(0, 0′) ↦→
6 ◦ C0(G)
6(G) =

6(G + 0)
6(G)

Fix 0 ∈ �[<], 0′ ∈ �∨[<] say 0′ corresponds to ℒ and a divisor � then ℒ<
and <∗

�
ℒ are trivial so ∃ 5 , 6 ∈ :(�) s.t.

div( 5 ) = <�

div(6) = <∗��
again we have

div( 5 ◦ <�) = div(6<)
6(G + 0)< = 6(G)<

Proposition 1.9.1 The Weil 4<-pairing has the following properties
1. 4< is bilinear

4<(01 + 02 , 0
′) = 4<(01 , 0

′)4<(02 , 0
′)

4<(0, 0′1 + 0′2) = 4<(0, 0′1)4<(0, 0′2)

2. 4< is non-degenerate: if 4<(0, 0′) = 1∀0 ∈ �[<] then 0′ = 0 (and likewise for
the reverse).

3. 4< is Galois-invariant... but we assume : = : so we ignore this.

4. 4< is compatible

4<<′(0, 0′)<
′
= 4<(<′0, <′0′) ∀0 ∈ �[<<′], 0′ ∈ �∨[<<′]

(<<′, char :) = 1
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Corollary 1.9.2 There exists a bilinear non-degenerate (Galois invariant) pairing

4; = 4 : );� × );�∨ → );�

((0=), (0′=)) ↦→ (4;= (0,0′=))
For a homomorphism � : �→ �∨ we define

4�< : �[<] × �[<] → �<

(0, 0′) ↦→ 4<(0,�(0′))
4< : );� × );�→ );�

(0, 0′) ↦→ 4<(0,�(0′)).

Notation. If � = �ℒ 4ℒ = 4�ℒ .

Proposition 1.9.3 For a homomorphism 
 : �→ �

1.
4(0, 
∨(1)) = 4(
(0), 1)∀0 ∈ );�, 1 ∈ );�

2.
4

∨�
(0, 0′) = 4�(
(0), 
(0′))

for 0, 0′ ∈ );(�), � ∈ Hom(�, �∨).

3.
4

∗ ℒ(0, 0′) = 4ℒ(
(0), 
(0′))

0, 0′ ∈ );� ℒ ∈ Pic(�).

4.

Pic�→ Hom(
2∧
);�, );�)

ℒ ↦→ 4ℒ

is a homomorphism (in particular 4ℒ is skew-symmetric).

Proof.
1. 0 = (0=) ∈ );� 1 ∈ (1=) ∈ );�∨ fix a divisor � on � representing 1= and
6 ∈ :(�) s.t. div(ℎ) = (;=

�
)∗�. Then 
∗� represents 
∨(1=) so:

div(6 ◦ 
) = 
∗ div(6) = 
∗(;=�)
∗� = (;=�)

∗
∗�.

So

2.

4

∨�
(0, 0′) = 4(0, 
∨�
(0′)) = 4(
(0),�(
(0′))) = 4�(
(0), 
(0′)).

3.
�
∗ ℒ = 
∨�ℒ


4. Follows from �ℒ ⊗ℒ′ = �ℒ + �ℒ′ .

�

Example 1.9.4 Computation over C. �/C be an abelian variety

0→ Z→ O�
42�8(·)
−−−−→ O× → 0
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induces

�1(�(C),Z) → �1(�(C),O) → �1(�(C),O×) ' Pic�→ �2(�(C),Z)

and
�1(�(C),O)/�1(�(C),Z) ' �∨(C) = Pic0(�)

so we get an exact sequence

0→ NS(�) → �2(�(C),Z) → �2(�(C),O�)

� ↦→ ��

then we can regard �� as a skew-symmetric 2-form on �1(�(C),Z). Mumford
pg. 237 proves

�1(�(C),Z) × �1(�(C),Z) //

��

Z 3 <

��
); × ); // );� 3 �<

commutes with - sign so 4�(0, 0′) = �−�(0,0
′) �

1.9.3 Results about polarizations

: = : ? = char(:) ≥ 0.

Theorem 1.9.5 13.4. Let 
 : � → � be an isogeny of degree prime to char : and
� ∈ NS(�) then � = 
∗�′ for �′ ∈ NS(�) ⇐⇒ ∀; | deg(
) ; prime there exists
a skew-symmetric form 5 : );� × );� → );� s.t. 4�(0, 0′) = 5 (
(0), 
(0′)) for all
0, 0′ ∈ );(�).
Proof. Milne 1986 16.4 �

Corollary 1.9.6 13.5. ; ≠ char(:) � ∈ NS(�) is divisible by ;= ⇐⇒ 4� is divisible
by ;= in Hom(∧2 );�, );�).

Proof. Apply theorem 13.4 with 
 = ;= . �

Lemma 1.9.7 13.7. Let P be the Poincaré sheaf on � × �∨ then

4P((0, 1), (0′, 1′)) = 4(0, 1′)
4(0′, 1)

for all 0, 0′ ∈ );�, 1, 1′ ∈ );�∨.

Proof. Milne 1986 16.7. Use:

(1 + �ℒ)∗ P � <∗ ℒ ⊗?∗ ℒ−1 ⊗@∗ ℒ−1

�

Proposition 1.9.8 13.6. Assume char : ≠ ; , 2 then a homomorphism � : � → �∨

is � = �ℒ for some ℒ ∈ Pic� iff 4� is skew-symmetric.

Proof.

Case. Clear.
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Case. 4� is skew-symmetric, define ℒ = (1 × �)∗ P then ∀0, 0′ ∈ );�

4(0,�ℒ(0′)) = 4ℒ(0, 0′) = 4(1×�)
∗ P(0, 0′) = 4P((0,�(0)), (0′,�(0′))) = 4(0,�(0′))

4(0′,�(0))

=
4�(0, 0′)
4�(0′, 0) = (4

�(0, 0′))2 = 4(0, 2�(0′))

so 2� = �ℒ . So by corollary 13.5 �ℒ = 2�ℒ′ for some ℒ′ ∈ Pic� so � = �ℒ′ . �

Definition 1.9.9 For a polarization � : �→ �∨ define

4� : ker(�) × ker(�) → �<

(0, 0′) ↦→ 4<(0,�(1))
where < kills ker(�) and 1 ∈ � s.t.<1 = 0′. ♦

Check: this is well defined.

Note 1.9.10 4� is skew-symmetric.

Proposition 1.9.11 13.8. 
 : �→ � is an isogeny of degree prime to ?, � : �→ �∨

polarization then � = 
∗�′, �′ : �→ �∨ polarization iff

ker(
) ⊂ ker�

4� is trivial on ker(
) × ker(
)
Note 1.9.12 If � = 
∗�′ then

deg(�) = deg(�′)deg(
)2.

Corollary 1.9.13 13.10. � an abelian variety, � : � → �∨ is a polarization with
(deg(�), ?) = 1 then � is isogenous to a principally polarized abelian variety.

Proof. Fix ; | deg(�) prime. Choose a subgroup # ⊆ ker� of order ; let

 : � → �/# = � # is cyclic and 4� is skew-symmetric so 4� is trivial on
# × # so � has a polarization of degree deg(�)/;2 by 13.8. �

Corollary 1.9.14 13.11. Let � be a polarization of � s.t. ker(�) ⊆ �[<] for some
(<, ?) = 1. If ∃
 : �→ � s.t. 
(ker(�)) ⊆ ker(�) and 
∨�
 = −� on �[<2] then
� × �∨ is principally polarized.

Theorem 1.9.15 13.12 (Zarhin’s trick). For any abelian variety � (� × �∨)4 is
principally polarized.

Proof. Fix � : � → �∨ polarization, assume ker(�) ⊆ �[<] (<, ?) = 1 there
exists 0, 1, 2, 3 ∈ Z s.t. 02 + 12 + 22 + 32 = <2 − 1 = −1 (mod <2) then

©­­­«
0 −1 −2 −3
1 0 3 −2
2 −3 0 1

3 2 −1 0

ª®®®¬
works. �

Corollary 1.9.16 13.13. Let : be a finite field, then for each 6 ∈ Z there exist only
finitely many isomorphism classes of abelian varieties of dimension 6 over :.
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Proof. �/: an abelian variety of dimension 6, so (�×�∨)4 is an abelian variety
of dimension 86 with a principal polarization so using theorem 11.2 there are
finitely many (up to ') of those. Also (�×�∨)4 has finitely many direct factors
(theorem 15.3). �

1.10 The Rosati involution (Alex)

Let�/: be an abelian variety and 5 ∈ End(�). Via pullbackwe get 5̂ ∈ End(�̂),
in the case where � is polarized i.e. we have an isogeny ) : �→ �̂ we might
wonder what the relation is between 5̂ and 5 . E.g. ˆid = id but here we have
)̂id) = [deg)], this is a little ugly, depends on the degree of our polarization.
If weworkwith Hom0(�, �) = Hom(�, �)⊗Q rather than Hom(�, �)we have
a bona fide inverse )−1 of an isogeny ). So now we can ask precisely, what is
the relationship of the endomorphism 5 † = )−1 ◦ 5̂ ◦ ) ∈ End0(�)with 5 ?

What sort of properties does this map 5 ↦→ 5 † have?

Definition 1.10.1 The Rosati involution. The map )−1−̂) = −† : End0(�) →
End0(�) is called the Rosati involution. ♦

Proposition 1.10.2 −† is Q-linear

Proposition 1.10.3 −† is an anti-homomorphism i.e.

( 5 6)† = 6† 5 †

Proposition 1.10.4 Recall the ;-adic Weil pairing for ; ≠ char(:), fix 0, 0′ ∈ +;� =
);� ⊗ Q, then

4
)
;
( 5 0, 0′) = 4)

;
(0, 5 †0′).

Proof.

4
)
;
( 5 0, 0′) = 4;( 5 0, )0′) = 4;(0, 5̂ )0′) = 4;(0, ))−1 5̂ )0′) = 4)

;
(0, 5 †0′)

�

Proposition 1.10.5 −† is an involution, i.e.


†
†
= 
.

Proof. Weapply thepreviousproposition and skew-symmetry of apolarization
(over some extension)

4�
;
(
0, 0′) = 4�

;
(0, 
†0′) = 4�

;
(
††0, 0′)

for all 0, 0′ ∈ +;�. �
So we have a weird algebra with a weird operation, what can we do?

Perhaps inspired by the killing form of a lie algebra:
We can form a bilinear form using the trace

End0(�) × End0(�) → Q

( 5 , 6) ↦→ tr( 5 6†).
Proposition 1.10.6 This is positive definite. In fact

tr( 5 5 †) = 26
(�6−1 · 5 ∗(�))
(�6)
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for ) = )ℒ(�).
So given a simple abelian variety we have a division algebra /Q equipped

with a positive definite involution.

Definition 1.10.7 Albert algebras? A division algebra � finite over Q with an
involution ′ such that tr�/Q(GG′) > 0 ∀G ∈ �× is called an Albert algebra. ♦

Such algebras were studied by Albert who proved an important classifica-
tion theorem.
Theorem 1.10.8 Albert (1934/5). Let (�,′ ) be an Albert algebra, let  be the center
of � and  0 the subfield fixed by ′. Then we have the following classification

1. Type I: � =  =  0 a totally real number field and ′ is the identity.

2. Type II: � is a quaternion algebra over  =  0 a totally real field, that is split at
all infinite places and ′ is defined by letting startingwith the standard quaternion
algebra conjugation for which G + G∗ = tr(G) and then letting G′ = 0G∗0−1 for
some 0 ∈ � for which 02 ∈  and is totally negative.

3. Type III:� is a quaternion algebra over =  0 a totally real field, that is ramified
at all infinite places and ′ is the standard quaternion algebra conjugation as above.

4. Type IV: � is a division algebra over a CM field  and  0 is the maximal totally
real subfield. Additionally if E is a finite place with E = Ē we have InvE(�) = 0
and InvE(�) + InvĒ(�) = 0 for all places E.

There is a fascinating table in Mumford, page 200 or something.
As one might hope, changing the polarization does not change the type of

the algebra + involution pair.
One might wonder which endomorphisms are invariant under this pro-

cess? I.e. what is
{ 5 ∈ End0(�) : 5 † = 5 }.

Equivalently, for which 5 is the dual given by conjugating by our polarization.
We can map

Q ⊗Z NS(-) = Q ⊗Z Pic-/Pic0 - → Hom(�, �̂)

ℳ ↦→ )ℳ ,
however we also have an isomorphism

Hom0(�, �̂) ∼−→ End0(�)

) ↦→ �−1)

for some fixed polarization �, hence we can view NS(�) ⊗ Q inside End0(�).

Proposition 1.10.9 Assume : algebraically closed. The image of

Q ⊗Z NS(-) → End0(�)

is the fixed subspace
{ 5 ∈ End0(�) : 5 † = 5 }.

Proof. Fix 
 ∈ End0(�) and ; ≠ char(:) odd. Applying Proposition 1.9.8 we
see that �
 = )ℒ for some ℒ iff 4�


;
is skew-symmetric, but we also have

4�

;
(0, 0′) = 4�

;
(0, 
0′) = −4�

;
(
0′, 0) = −4;(0′, 
̂�0)

for all 0, 0′ ∈ +;� this is the same as requiring �
 = 
̂� i.e. 
 = 
†. . �



CHAPTER 1. ABELIAN VARIETIES 36

Another cool result we can now prove (in fact this was the reason Weil
introduced the notion of a polarization).

Theorem 1.10.10 The automorphism group of a polarized abelian variety is finite.

Proof. Let 
 be an automorphism of (�,�) i.e. � = 
̂�
, then 
†
 = 1 and so


 ∈ End(�) ∩ {� ∈ End(�) ⊗ R : Tr(
†
) = 26}

but End(�) is discrete inside the compact RHS. �

1.11 Abelian Varieties over finite fields (Ricky)
Set @ = ?< , ? prime. Given -/F@ have geometric Frobenius �- : - → - which
acts as id on |- | and sends 5 → 5 @ for 5 ∈ O-(*).

Example 1.11.1 - ↩→ P= then �-(00 : · · · : 0=) = (0@0 : · · · : 0@=). �

We also have absolute Frobenius

� : - → -(?).
Example 1.11.2

- : H2 = G3 + 8/F@

-(?) : H2 = G3 + 83 = G3 − 8/F@
�

We see that -(?< ) = - and �< = �- .

-

((
!!

��

-(?)

��

// -

��
F@ ?

// F@

If 5 : - → . of F@-schemes then �. ◦ 5 = 5 ◦ �- . Now let - be an
abelian variety over F@ . From above, we have �- commutes with all ele-
ments of End0(-) = End0(-) ⊗ Q. Let 5- be the characteristic polynomial of
);(�-) : +;(-) → +;(-) for ; ≠ ?.

An alternative definition is to take 5- ∈ Z[-] monic of degree 26, 6 =
dim- s.t.

5-(=) = deg([=] − �-),
see 12.8.
Proposition 1.11.3 16.3. Assume - is elementary, (i.e. its isogenous to �= for
some � simple). Then Q[�-] ⊆ End0(-) is a field and 5- is a power of the minimal
polynomial of �- over Q.

Proof. Since - is elementary /(End0(-)) is a field containing Q[�-]. Let 6 be
the minimal polynomial of �- over Q. Let 
 be a root of 5 . Then 6(
) is an
eigenvalue of 6(+;(�-)) = +;(6(�-)) = +;(0) = 0. Hence 6(
) = 0. �

Theorem 1.11.4 16.4. Let 6 = dim(-).
1. Every root of 5- 
 ∈ C satisfies |
 | = @1/2.
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2. If 
 is a root of 5- , then 
̄ with the same multiplicity. In particular if 
 = ±√@
then it occurs with even multiplicity.

We need some facts before proving this: Ref 5.20, 5.21

• There exists
+ : -(?) → -

such that
+ ◦ � = [?]-

and
� ◦+ = [?]-(?) .

Using deg � = ?6 get deg+ = ?6

• By induction [?<] = +< ◦ �< .

We also need some facts about � and + relative to -∨.

�∨- = +-∨ : (-∨)(?) → -∨

identifying (-∨)(?) = (-(?))∨, Ref 7.33, 7.34.
Proof. Reduce to the case where - is simple, we have

ℎ : - → -1 × -2 × · · · × -B

an isogeny with -8 simple, then ℎ induces an isomorphism

ℎ : +;(-)
∼−→

⊕
8

+;(-8)

so 5- = 5-1 · · · 5-B . Hence we can assume - is simple.
Let � : - → -∨ be a polarization of - and † be the corresponding Rosati

involution on End0(-)we will show that �-�†- = @.

�-�
†
- = �-�

−1�∨-� = �−1�-∨�
∨
-� = �−1[@]� = [@]

To see �-∨ = �∨
-
= @ we use �- = �< and �∨

-
= +< . So �-∨�∨- = �"+" =

?< = @. As - is simple Q[�-] is a field. Thus 5- is a power of 6, the minimal
polynomial of�-/Q. So the complex roots of 5- are �(�-) for every embedding
Q[�-] ↩→ C. since �†

-
= @/�- , we see that

Q[�-] ⊆ End0(-)

is stable under †. We have two cases for such a  = Q[�-]

1.  is totally real and † = id.

2.  is a CM field and † = ·.

hence we get
�(�-�†-) = �(�-)�(�-) = @

for any � :  → C.
If ±√@ is a root of 5- then we are in the case of  totally real. If √@ has

multiplicity =. Then −√@ has multiplicity 26 − =. Thus 5-(0) = (−1)=@6 . But
also 5-(0) = deg(0 − �-) = @6 . Hence = is even. �
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Honda-Tate. The correspondence between isogeny classes of -/F@ and con-
jugacy classes of @-Weil numbers is a bĳection. (i.e. algebraic integers 
 s.t.
|�
 | = √@ for all � : Q(
) ↩→ C).

Using relations between a curve �/F@ and its Jacobian �(�), one can show:

Theorem 1.11.5 Hasse-Weil-Serre bound.

@ + 1 − 6b2√@c ≤ #�(F@) ≤ @ + 1 + 6b2√@c

where 6 = 6(�).

Proof. Hint: Use Lefschetz trace and �1(�,Q;) ' �1(�(�),Q;). �

Application: Let � = �0(103) = �(-0(103)). � ∼ �+ × �−.

�± = im(F ± id)

F Atkin-Lehner. dim � = 8 and dim(�−) = 6. In fact ∃ 5 ∈ (2(Γ0(103)) an
eigenform s.t. if

5 =
∑
=≥1

0=@
=

then [Q(0=)=≥1 : Q] = 6 and tr(��− ,? ;);(�−)) = tr /Q(0?) for ; ≠ ?, ? ≠ 103 We
can compute tr /Q(02) = 4. This implies that �− × F2 is not the Jacobian of a
curve /F2, if it were, then if �− × F2 = �(�) then via Lefschetz trace formula

#�(F2) = 2 + 1 − 4 = −1

similar thing at 17.

1.12 Tate’s Isogeny Theorem (Sachi)

1.12.1 The Theorem
Theorem 1.12.1 Tate. Let �, �/F@ = :, @ = ?= , ; ≠ ? be abelian varieties and
� = Gal(:B/:), then

Hom:(�, �) ⊗ Z; → Hom�();�, );�) = HomZ; ();�, );�)�

(where the � action on HomZ; ();�, );�) is (6 5 )(G) = 6 5 (6−1G)) is an isomorphism.

Remark 1.12.2 Tate’s theorem is also true for function fields over finite fields
(Zarhin) and fields that are finitely generated over their prime field (Faltings),
e.g. number fields. Not true over algebraically closed fields though.

1.12.2 Motivation
Let �� and �� be the (relative) Frobenii on +;(�), +;(�)

Hom:(�, �) ⊗ Q; → Hom�(+;�,+;�)

%� , %� characteristic polynomials of �� ,��.
ToyWeil conjectures: %� , %� haveZ-coefficients, don’t dependon the choice

of ;. Provided that induced action of Frobenii are semisimple, we can find a
number A(%� , %�) then Tate implies

A(%� , %�) = dimQ;
Hom�(+;(�), +;(�)) = rank Hom:(�, �)
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Corollary 1.12.3 Let �, � be abelian varieties over F@ and %� , %� as above
1.

rank Hom:(�, �) = A(%� , %�)

2. TFAE

(a) � is :-isogenous to an abelian subvariety of �
(b) +;� is �-isomorphic to a �-subrepresentation of +;� for ; ≠ char :
(c)

%� |%�
we also have similar statements for equivalence, but get a nice statement about counting
points over all extensions determining an abelian variety.

Proof.

 : +;(�) ↩→ +;(�)

the surjectivity in Tate’s theorem means we can choose D ∈ Hom:(�, �) ⊗
Q; . +;(D) = 
. Choose D ∈ Hom:(�, �) ⊗ Q arbitrarily close to 
. Lower
semicontinuity implies if+;(D) is close enough to 
, can ensure+;(D) is injective
(ker(+;(D)) = 0) take multiple to get D ∈ Hom:(�, �). Since );(D) is injective D
is an isogeny to an abelian subvariety. �

1.12.3 Isogeny category
Recall: The isogeny category, Theorem 1.7.1, Corollary 1.7.3. So we have a
category ℐ∫o} of abelian varieties with

Homℐ∫o}(�, �) = HomAV(�, �) ⊗ Q.

Now if 5 : �→ � there exists 6 : �→ � an isogeny and = ∈ Z≥1 s.t. 6 5 = [=].
So 1

= 6 is an inverse for 5 ∈ ℐ∫o} so isogenies are isomorphisms in ℐ∫o}.
ℐ∫o} is a semisimple abelian category. The simples are simple abelian

varieties.

1. Decomposition up to isogeny into a product of simple abelian varieties
is unique.

2. If � is simple End� ⊗ Q is a division algebra over Q. Reason: If � is
simple in an abelian category, if End� ⊇ : a field implies it’s a division
algebra.

1.12.4 Reductions
Lemma 1.12.4

1.
Z; ⊗ HomAV(�, �) → Hom�(); , );�)

is an isomorphism if and only if

Q; ⊗ HomAV(�, �) → Hom�(+;�,+;�)

is an iso

2. If for every �,
Q; ⊗ EndAV(�) → End�(+;�)

is an isomorphism then the above is an isomorphism for every pair �, �.
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Proof.
1. The first map is always injective, the cokernel is torsion free, hence free.

It’s an isomorphism if and only if Q; ⊗ coker = 0 As Q; is flat over Z;

the second map injective and its cokernel is Q;⊗ the cokernel of the first
map.

2.
� = � × �

then

End0(�) = End0(�) ⊕ Hom0(�, �) ⊕ Hom0(�, �) ⊕ End0(�)

and

End�(+;�) = End�(+;�)⊕Hom�(+;�,+;�)⊕Hom�(+;�,+;�)⊕End�(+;�)

which the injection above preserves, in particular if the last map is an
isomorphism, so are the rest.

�
One more reduction!

�; = End:(�) ⊗ Q; ⊆ EndQ;
(+;�)

�; = Q;[�] ⊆ EndQ;
(+;�)

automorphisms of +;(�) coming from �.

Note 1.12.5 �; coming from :-rational endomorphisms commute with the
Galois action

�; ⊆ �EndQ; (+; (�))(�;)

want equality.

Lemma 1.12.6
1. The last map of the reduction lemma is an isomorphism if and only if

�(�(�;)) = End�(+;(�))

2. If �; is semisimple the map is an isomorphism if and only if

�(�;) = �;
Proof.

1. Double centralizer theorem, if �; is semisimple then �(�(�;)) = �; .
Poincaré reducibility implies

� ∼
∏

�
<8

8

End0(�) = End0(
∏

�
<8

8
) =

∏
Mat<8 (End0(�8))

a finite dimensional division algebra /Q. A matrix algebra over a finite
dimensional division algebra is semisimple.

2. If �; is semisimple

�(�;) = �; ⇐⇒ �; = �(�(�;))

so
�; = �(�;) = End�(+;(�)).
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�

1.12.5 Proof of Tate using finiteness
We introduce a hypothesis: Hyp(:, �, ;) there exist only finitely many (up to
:-isomorphism) abelian varieties � s.t. there is a :-isogeny of ;-power degree
from �→ �.

� = �(�;) want that �(�) = End�(+;(�)) know �(�) ⊆ �; ⊆ End�(+;(�))
want �(�) ⊇ End�(+;(�)). Let 
 ∈ End�(+;(�)) show that it commutes with
everything in �. Equivalently let, be the graph of 


, = {(G, 
G) ∈ +;(�) ×+;(�)} ⊆ +;(�) ×+;(�)

note 6 ∈ � then 6 � (G, 
G) = (6G, 6
G) = (6G, 
(6G)).


 ∈ �(�) ⇐⇒ ∀G ∈ +;(�), 3 ∈ �


3G = 3
G ⇐⇒ (3 ⊕ 3), ⊆ ,∀3 ∈ �
, 3 (3G, 3
G) = (3G, 
3G)

Lemma 1.12.7 Technical lemma. If , ⊆ +;(�) is �-stable subspace then there
exists D ∈ �; s.t. D+;(�) =, .

Proof. For = ∈ Z≥0 let *= = (, ∩ );(�)) + ;=)� which is a �-stable lattice in
+;�,

;=);� ⊆ *= ⊆ );�
letK= ⊆ �[;=](:B) = );�/;=);� be the image of*= . K= is stable under�-action
on�[;=](:B)which impliesK= =  =(:B). Let�= : �→ �= = �/ = , �= : �= → �
unique isogeny s.t.

�= ◦ �= = [[;=]�
then );� � *= as Z;-modules with �-action. As );(�=) : *= = );�→ );� is the
inclusion map. Assuming Hyp(:, �, ;) we can find = = =1 < =2 < · · · s.t. we
have


8 : �=
∼−→ �=8

�=

8 // �=8

�=8
��

�

�=

OO

D8
// �

D8 = �=8 ◦ 
8 ◦ �= is an endomorphism of � on Tate modules );(D8) is induced
map

);�
[;= ]
−−→ *=

);
8−−−→ *=8 ↩→ );�

becauseZ;⊗End� is a freeZ;-module of finite rank compact in ;-adic topology
subsequence of D8 → D in Z; ⊗ End�

*=1 ⊇ *=2 ⊇ · · ·

the endomorphism of );D maps );� to
⋂∞
8=1*=8 = , ∩ );� passing to Q;-

coefficients, note Q;(, ∩ );�) = Q;(;=(, ∩ );�)) = , so im(+;(D)) = , .
�

Why does the hypothesis hold.

Fact 1.12.8 There exists a moduli space of 3-polarised abelian varieties of dim = 6
�6,3 which is a stack of finite type /:.
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�6,3(:) = {(�,�) : �,� : �→ �∨ , deg 3}

Zahrin’s trick: � abelian variety (� × �∨)4 is principally polarized. Finiteness
of direct factors � ⊆ � � ' � × �.
Corollary 1.12.9 If : = F@ exists only finitelymany isogeny classes of abelian varieties
of dim 6.

Proof. � is a direct factor (� × �∨)4 ∈ �86,1. �

Proof. of Tate.
Apply technical lemma to +;(� × �) and, so

(3 ⊕ 3), = (3 ⊕ 3)D+;(� × �) = D(3 ⊕ 3)+;(� × �) ⊆ D+;(� × �) =,

=⇒ �(�) ⊇ End�(+;(�)).
�

1.13 The Honda Tate Theorem (Angus)

@ = ?= , � a simple abelian variety over F@ , �� the frobenius on �, End0(�) =
Q ⊗ End(�), 5� is the charpoly of � (i.e. of ��).

Fact 1.13.1
• End0(�) is a division ring.

• Q[�] is a field.

• /(End0(�)) = Q[��]
Lemma 1.13.2 The Weil Conjectures. The roots of 5� all have absolute value √@.
Alternatively, under all embeddings

� : Q[��] ↩→ C, |�(��)| =
√
@.

Definition 1.13.3 @-Weil numbers. A @-Weil number is an algebraic integer
� s.t.

∀� : Q[�] ↩→ C, |�(�)| = √@
we say that two @-Weil numbers are conjugate if they have the same minimal
polynomial over Q, and write � ∼ �′. ♦

From the facts so far we have a map

{simple AVs/F@} → {@-Weil numbers}

� ↦→ ��
Theorem 1.13.4 We have a bĳection

{isogeny classes of simple AVs/F@}
∼−→ {conjugacy classes of @-Weil numbers}

� ↦→ ��.
We need to show this is well-defined, injectivity and surjectivity.

1.13.1 Honda-Tate map
Recall:
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Corollary 1.13.5 Let �, � be abelian varieties over F@ with rational Tate modules
+;�,+;� then

� ∼isog � ⇐⇒ +;� ' +;�∀; ≠ ?.

Corollary 1.13.6
� ∼isog � ⇐⇒ 5� = 5�

Proof. By above +;� ' +;� for all ; ≠ ? but 5� (resp. 5�) is the charpoly of �0
(��) on +;� (+;(�)).

The Galois modules +;� and +;� are semisimple. The Brauer-Nesbitt
theorem says 5� = 5� =⇒ +;� ' +;� for ; ≠ ?. �

Recalling that 5� is a power of the minimal polynomial of ��,
� ∼isog � =⇒ 5� = 5� =⇒ �� ∼ ��.

So the Honda-Tate map is well defined.
This doesn’t quite give injectivity because a priori 5� and 5� could be

powers of the minpolys of �� ,��.

1.13.2 Injectivity and Brauer groups
From last time:
Proposition 1.13.7 There exists a certain quantity A( 5� , 5�) such that

A( 5� , 5�) = rank Hom(�, �).

Corollary 1.13.8 Let 3 = [End0(�) : Q(��)]1/2, let ℎ� = minpolyQ(��) then
5� = ℎ

3
�
.

Proof. Study the formula for A( 5� , 5�) Edixhoven-van der Geer-Moonen 16.22.
�

So the next step is to try and recover End0(�) from �.

Definition 1.13.9 Central simple algebras. A central simple algebra �/: is a
:-algebra � with no two-sided ideals and /(�) = :. ♦

Theorem 1.13.10 Artin-Wedderburn. Any such algebra is isomorphic to "=(�)
for � a division ring over :.

Definition 1.13.11 Brauer groups. The Brauer group of : Br(:) is the set of
central simple algebras under ⊗ modulo the algebras "=(:). ♦

Fact 1.13.12
• If : = :, Br(:) = 0.

• : complete nonarchimidean Br(:) = Q/Z
• Br(R) = Z/2Z

Given a place E of : we get a map

Br(:) → Br(:E)
� ↦→ � ⊗ :E

in fact we get an injection

Br(:) ↩→
∏
E

Br(:E) '
∏

E nonarch
Q/Z ×

∏
E real

Z/2Z

� ↦→ (invE(�))E
these invE(�) are called the local invariants.
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Proposition 1.13.13 Let �/F@ be an elementary abelian variety. Let  = Q(��)
then

invE(End0(�)) =


E(��)
E(@) [:E : Q?], E |?

1
2 , E real
0, else

Proof. Edixhoven-van der Geer-Moonen 16.30. �

Proposition 1.13.14 Let 3 = [End0(�) : Q(��)]1/2 then 3 is the least common
denominator of all the invE(End0(�)).
Corollary 1.13.15

�� ∼ �� ⇐⇒ 5� = 5�.

Proof. ⇐ done.
⇒ Let ��� , ��� be the division rings with invariants specified as in Propo-

sition 1.13.13. �� ∼ �� =⇒ ��� ' ��� =⇒ 5� = minpoly(��)3 = 5�.
�

1.13.3 Surjectivity and CM theory
We need to show that for � a @-Weil number there exists an abelian variety
�/F@ such that �� ∼ �.

Definition 1.13.16 Such a @-Weil number � is called effective. ♦

Proposition 1.13.17 A @-Weil number � is effective if and only if �# is effective for
some # ∈ Z≥1.

Proof. ⇒ clear.
⇐ By assumption we have �′/: a simple abelian variety s.t. ��′ ∼ �# for

: a degree # extension of F@ . Let

� = Res:/F@ (�′)

on the rational Tate modules we have

+;� = Ind
�F@
�:
(+;�′)

where
�: = Gal(F@/:)

�F@ = Gal(F@/F@)
since �: , �F@ are abelian, by studying the induced action, one can see

Ind
�F@
�:
(��′) = �#�

in particular 5�()) = 5�′()# ). Choosing a simple factor �8 one gets ��8 ∼ �.
�

So it is sufficient to show �# is effective.
Strategy for proving surjectivity

1. Construct a division algebra ��.

2. Choose a CM field ! splitting ��.

3. Find an abelian variety �/C of type (!,Φ).
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4. In fact � is defined over a number field  and has good reduction at E |?.

5. Apply the Shimura-Taniyama formula to relate �� to Φ.

6. Choose Φwisely (in retrospect in 3) to relate � to ��.

7. Show �#
�
= �#

′ .

�� is given by the invariants described by � (and  = Q(�)).

Proposition 1.13.18 There exists a CM field !/Q(�) such that ! splits �� and
further

[! : Q(�)] = [�� : Q(�)]1/2

Proof. Two cases:
1. Q(�) is totally real, in which case Q(�) = Q or Q(√?).

2. Q(�) is a CM field with totally real subfield Q(� + @/�).

In the case

1. Choose ! = Q(�)(√−?).

2. Let 3 = [�� : Q(�)]1/2. This ! splits ��.

�

Definition 1.13.19 CM types. For a CM field ! all the embeddings

� : ! ↩→ C

come in complex conjugate pairs, choosing an embedding for each pair defines
a subset Φ ⊆ Hom(!,C) such that

Φ ∪Φ = Hom(!,C)

Φ ∩Φ = ∅
such a choice of Φ is called a CM type. ♦

Let �/C be an abelian variety with CM by ! i.e.

! ↩→ End0(�)

then
C ⊗ ! =

∏
�

C

acts on the tangent space at the origin Lie(�).

Proposition 1.13.20 The action of C ⊗ ! factors through the quotient
∏

�∈Φ C for
some CM type Φ. We then say �/C is of type (!,Φ).

Theorem 1.13.21 For any CM type (!,Φ) there exists an abelian variety �/C of type
(!,Φ).
Proof. Found in Shimura-Taniyama. �

The fact that � is in fact defined over a number field  is also in Shimura-
Taniyama.

Theorem 1.13.22 Let�/ be an abelian variety which admits CM. Then�/ admits
potentially good reduction at all places E of  .
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Proof. Highly nontrivial, Neron models, Chevalley decomposition, Neron-
Ogg-Shafarevich criterion, result of Grothendieck on potentially stable reduc-
tion. �

After passing to a finite extension we will assume �/ has good reduction
at places E |?. So we have a reduction �F@′/F@′ . For a place F |? of ! let

ΣF = Hom(!F ,C?)

ΦF = Φ ∩ ΣF .
Theorem 1.13.23 Shimura-Taniyama formula. For all places F |? of !,

F(��F@′
)

F(@′) =
#ΦF
#ΣF

Proof. Tate has a proof using CM theory of ?-divisible groups. �

Recall we fixed � and from this we deterministically formed Q(�), �� , !
however we have no restriction on our choice of Φ.
Lemma 1.13.24 We can choose Φ such that for all places F |? of !,

F(�)
F(@) =

#ΦF
#ΣF

Proof. Let E = F |Q(�) be the place of Q(�) below F. Let

=F =
F(�)
F(@) #ΣF =

F(�)
F(@) [!F : Q?]

=
F(�)
F(@) [!F : Q(�)E][Q(�)E : Q?]

by recalling the formula for the local invariants of �� we get

=F = invF(�� ⊗Q(�) !).

But ! splits �� so =F ∈ Z, further

=F + =F =
(
F(�)
F(@) +

F(�)
F(@)

)
#ΣF

=

(
F(��)
F(@)

)
#ΣF = #ΣF

check the CM type Φ =
⋃
F ΦF where for each F #ΦF = =F . Then the formula

follows. �
Combining the previous result with the Shimura-Taniyama formulawe get

that for all places F |?
F(��F@′

)
F(@′) =

F(�)
F(@) .

Taking the correct power,

F
©­«
�<
�F@′

�<′
ª®¬ = 0∀F |?

�,��F@′
|@<′
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=⇒ F(· · · ) = 0∀F - ?
since |�<′ |F = |�<�F@′

|F = (@<
′)1/2∀ infinite places

��F@′
/�<′�

is a root of unity �#
�F@′

= �#
′ .



Chapter 2

Dessins d’Enfants

These are notes for BUNTES Spring 2018, the topic is Dessins d’Enfants, they
were last updatedNovember 4, 2020. For more details see the webpage. These
notes are by Alex, feel free to email me at alex.j.best@gmail.com to report
typos/suggest improvements, I’ll be forever grateful.

2.1 Overview (Angus)

2.1.1 Belyi morphisms
Let - be an algebraic curve over C (i.e. a compact Riemann surface) when is
- defined over Q?

Theorem 2.1.1 Belyi. An algebraic curve -/C is defined over Q ⇐⇒ there exists
a morphism � : - → P1 C ramified only over {0, 1,∞}.
Definition 2.1.2 Ramified. (AG) A morphism 5 : - → . is ramified at G ∈ -
if on local rings the induced map 5 # : O., 5 (G) → O-,G descended to

O., 5 (G)/m→ O-,G/ 5 #(m)

is not a finite separable field extension.
(RS) A morphism 5 : - → . is ramified at G ∈ - if there are charts around

G and 5 (G) such that 5 (G) = G= . This = is the ramification index. ♦

Definition 2.1.3 Belyi morphisms. A Belyi morphism is one ramified only
over {0, 1,∞}

A clean Belyi morphism or pure Belyi morphism is a Belyi morphism
where the ramification indices over 1 are all exactly 2. ♦

Lemma 2.1.4A curve- admits a Belyi morphism iff it admits a clean Belyi morphism.

Proof. If 
 : - → P1 C is Belyi, then � = 4
(1 − 
) is a clean Belyi morphism.
�

2.1.2 Dessin d’Enfants
Definition 2.1.5 A dessin d’Enfant (or Grothendieck Dessin or just Dessin)
is a triple (-0 , -1 , -2) where -2 is a compact Riemann surface, -1 is a graph,
-0 ⊂ -1 is a finite set of points, where -2 r -1 is a collection of open cells.
-1 r -0 is a disjoint union of line segments ♦

48

http://math.bu.edu/people/angusmca/buntes/spring2018.html
mailto:alex.j.best@gmail.com
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Lemma 2.1.6 The data of a dessin is equivalent to a graph with an ordering on the
edges coming out of each vertex.

Definition 2.1.7 Clean dessins. A clean dessin is a dessin with a colouring
(white and black) on the vertices such that adjacent vertices do not share a
colour. ♦

2.1.3 The Grothendieck correspondence

Given a Belyi morphism � : - → P1 C the graph �−1([0, 1]) defines a dessin.

Theorem 2.1.8 The map

{(Clean) Belyi morphisms} → {(clean) dessins}

� ↦→ �−1([0, 1])
is a bĳection up to isomorphisms.

Example 2.1.9
P1 C→ P1 C

G ↦→ G3

P1 C→ P1 C

G ↦→ G3 + 1

�

2.1.4 Covering spaces and Galois groups
A Belyi morphism defines a covering map.

�̃ : -̃ → P1 C r {0, 1,∞}

the coverings are controlled by the profinite completion of

�1(P1 C r {0, 1,∞}) = Z ∗ Z = �2.

Theorem 2.1.10 There is a faithful action

Gal(Q/Q)� �̂1(P1 C r {0, 1,∞})

Proof. By Belyi’s theorem every elliptic curve �/Q admits a Belyi morphism.
For each 9 ∈ Q there exists an elliptic curve � 9/Q with 9-invariant 9.

Given � ∈ Gal(Q/Q),
�(� 9) = �(�(9))

assume � ↦→ 1,
� 9 � ��(9) ∀9
9 = �(9) ∀9

a contradiction. �

Corollary 2.1.11 We have a faithful action of Gal(Q/Q) on dessins.

Theorem 2.1.12 We have a faithful action of Gal(Q/Q) on the set of dessins of any
fixed genus.
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2.1.5 Exercises
Exercise 2.1.13 Compute the Dessins for the following Belyi morphisms

1.
P1 C→ P1 C, G ↦→ G4

2.
P1 C→ P1 C, G ↦→ G2(3 − 2G)

3.
P1 C→ P1 C, G ↦→ 1

G(2 − G)
Exercise 2.1.14 Give an alternate proof of the fact that - admits a Belyi mor-
phism if and only if it admits a clean Belyi morphism using dessins and the
Grothendieck correspondence.

Exercise 2.1.15 Prove that a Belyimorphism corresponding to a tree, that sends
∞ to∞ is a polynomial.

2.2 Riemann Surfaces I (Ricky)

2.2.1 Definitions
Definition 2.2.1 A topological surface is a Hausdorff space - wich has a
collection of charts

{)8 : *8
∼−→ )8(*8) ⊆ C, open}8∈�

such that
- =

⋃
8∈�
*8 .

We call - a Riemann surface if the transition functions )8 ◦ )−1
9

are holomor-
phic. ♦

2.2.2 Examples
Example 2.2.2 Open subsets of C, e.g.

C

D = {I ∈ C : |I | < 1}
H = {I ∈ C : im I > 0}.

�

Example 2.2.3 Ĉ = Riemann sphere = C ∪ {∞}. A basis of neighborhoods of
∞ is given by

{I ∈ C : |I | > '} ∪ {∞}.
�

Example 2.2.4
P1(C) = {[I0 : I1] : (I0 , I1) ≠ (0, 0)}

*0 = {[I0 , I1] : I0 ≠ 0} → C
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[I0 : I1] ↦→
I1
I0

*1 = {[I0 , I1] : I1 ≠ 0} → C

[I0 : I1] ↦→
I0
I1

.

�

Example 2.2.5 Let Λ = Z ⊕ Z8 ⊆ C then - = C/Λ is a Riemann surface. �

2.2.3 Morphisms
Definition 2.2.6 (Holo/Mero)-morphisms ofRiemann surfaces. Amorphism
of Riemann surfaces is a continuous map

5 : (→ (′

such that for all charts ),# on (, (′ respectively we have # ◦ 5 ◦ )−1 is holo-
morphic.

We call a morphism 5 : (→ C a holomorphic function on (.
We say 5 : ( → C is a meromorphic function is 5 ◦ )−1 is meromorphic.

♦

Exercise 2.2.7 The set of meromorphic functions on a Riemann surface form a
field.

We denote the field of meromorphic functions byℳ(().

Proposition 2.2.8 1.26.
ℳ(Ĉ) = C(I).

Proof. Let 5 : Ĉ→ C be meromorphic. Then the number of poles of 5 is finite
say at 01 , . . . , 0= . So, locally at 08 we can write

5 (I) =
98∑
9=1

� 9 ,8

(I − 08)9
+ ℎ8(I)

with ℎ8 holomorphic. Then

5 (I) −
=∑
8=1

98∑
9=1

� 9 ,8

(I − 08)9

is holomorphic everywhere. By Liouville’s theorem this is constant. �

We say (, (′ are isomorphic if ∃ 5 : (→ (′, 6 : (′→ (morphisms such that
5 ◦ 6 = id(′ , 6 ◦ 5 = id(.

Exercise 2.2.9 Show that
Ĉ ' P1(C).

Remark 2.2.10 C ; D by Liouville.
If (, (′ are connected compact Riemann surfaces, then any nonconstant

morphism 5 : (→ (′ is surjective. (Nonconstant holomorphic maps are open)
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2.2.4 Ramification
Definition 2.2.11 Orders of vanishing. The order of vanishing at % ∈ ( of a
holomorphic function on ( is defined as follows: For ) a chart centered at %
write

5 ◦ )−1(I) = 0=I= + 0=+1I
=+1 + · · · , 0= ≠ 0

then ord%( 5 ) = =.
More generally, for 5 : (→ (′ we can define <%( 5 ) (multiplicity of 5 at %)

by using a chart # on (′ and setting

<%( 5 ) = ord%(# ◦ 5 ).

If <%( 5 ) ≥ 2 then we call % a branch point of 5 and call 5 ramified at %. ♦

Example 2.2.12
5 : C→ C, 5 (I) = I2.

The chart )0(I) = I − 0 is centered at 0 ∈ C. Then to compute <0( 5 ) we
compute

5 ◦ )−1
0 (I) = 02 + 20I + I2

hence

ord0( 5 ) =
{

0, if 0 ≠ 0
2, if 0 = 0

.

�

2.2.5 Genus
Theorem 2.2.13 Rado. Any orientable compact surface can be triangulated.

Fact 2.2.14 Riemann surfaces are orientable.
Given such an oriented polygon coming from a Riemann surface, we can

associate a word F to it from travelling around the perimeter.

Example 2.2.15 For the sphere F = 0−101−112−12. �

Fact 2.2.16 Every such word can be normalised without changing the corresponding
Riemann surface.

F =

{
F0 = 00

−1 ,

F6 = 01110
−1
1 1−1

1 · · · 06160−1
6 1
−1
6

The (uniquely determined) 6 is the genus of the surface.

Example 2.2.17 F1 = 01110
−1
1 1−1

1 .
F2 = 01110

−1
1 1102120

−1
2 1−1

2 . �

Theorem 2.2.18
"(() = E − 4 + 5 = 2 − 26(().

2.3 Riemann Hurwitz Formula (Sachi)

Exercise 2.3.1 Unimportant. The genus is invariant under changing triangu-
lation.
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In particular there are at least two distinct ways of thinking about genus
for Riemann surfaces '

1.
"(') = + − � + � = 2 − 26

2. The dimension of the space of holomorphic differentials on '.

Goal: given ' calculate genus

H2 = (G + 1)(G − 1)(G + 2)(G − 2)

so in an ad hoc way

H =
√
(G + 1)(G − 1)(G + 2)(G − 2)

when G is not a root of the above we have two distinct values for H, we can
imagine two copies of C sitting above each other and then square root will
land in both copies. We have to make branch cuts between the roots and glue
along these to account for the fact that going around a small loop surrounding
a root will change the sign of our square root. We end up with something
looking like a torus here.

Herewe examined the valuewhere therewere not enoughpreimageswhen
we plugged in a value for G. The idea is to project to G, and understand the
number of preimages.

%(G, H) = H= + ?=−1(G)H=−1 + · · · + ?0(G)

an irreducible polynomial.

' = {(G, H) : %(G, H) = 0}.

If we fix G0 ∈ P1 C we can analyse howmany H values lie over this G. If we have
fixed our coefficients we expect = solutions in H over C, i.e. points (G0 , H) ∈ '.

For some values of G0 this will not be true, there will be fewer H-values,
this occurs when we have a multiple root. This happens precisely when the
discriminant of this polynomial vanishes, the discriminant is a polynomial
and so has finitely many roots.

Definition 2.3.2 Branch points. Let � : ' → P1 C. We say G0 is a branch
point if there are fewer than = distinct H-values above G. Then define the total
branching index

1 =
∑
G∈P1 C

(deg(�) − #�−1(G)).

♦

Claim 2.3.3
"(') = deg� · "(P1 C) − 1.

Lemma 2.3.4 Locally given some choice of coordinates a non-constant morphism of
Riemann surfaces

5 : '→ (

is given by F ↦→ F= . More precisely given A ∈ ', 5 (A) = B and +B 3 B a small
neighbourhood choose an identification of

+B
Ψ−→ �
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which sends B ↦→ 0 and we can find an analytic identification

A ∈ 'A
)
−→ �

such that
5 (*A) ⊆ +B .

*A

5 //

)

��

+B

Ψ

��
�

F ↦→F<
// �

Proof. In Sachi’s notes. �

Proof. Of Claim 2.3.3.
Triangulate' so that every face lies in some small coordinate neighborhood

s.t.
� : '→ P1 C

is given by F ↦→ F< , s.t. every edge, all branch points are vertices. This
ensures that each face edge and vertex has = = deg(�) preimages (except
branch points). Then accounting for branch points we have deg(�) − #�−1(G0)
preimages. �

Example 2.3.5 %(G, H) plane curve, classically have

6 =
(3 − 1)(3 − 2)

2

P2 = {[G : H : I]} and (P2)∗ = [0 : 1 : 2], lines in P2

0G + 1H + 2I = 0

and we have lines↔ points. We have �∗ the dual curve in P2 cut out by the
tangent lines C& for & ∈ �. Claim deg�∗ = (3 − 1)3.

Want
' : {%(G, H) = 0} �−→ P1 C

compute 1. In other words, if we fix an arbitrary point & ∈ � then there are
3(3−1) lines through& which are tangent to �. Projecting to the G-coordinate
⇐⇒ family of lines through a point at∞ ⇐⇒ ∗ line in (P2)∗. We have a new
question: How many points does this line intersect (up to multiplicity). By
bezout ⇐⇒ deg�∗.

Proof (Matt emerton) Consider a point on � in P2 such that no tangent line
to the curve at∞ passes through it. Move this point to the origin. If we write

%(G, H) = 53 + 53−1 + · · · + 50

then
( 53 , 53−1) = 1

suppose they share a linear factor:

0 = ( 53)GG + ( 53)HH + 53−1,

then this defines a line through the origin. (Because this gives an equation of
an asymptote, this is a contradiction).

53 + 53−1 + · · · + 50 = 0
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353 + (3 − 1) 53−1 + · · · + 51 = 0

=⇒{
53 + 53−1 + · · · + 50 = 0
53−1 + 2 53−2 + · · · + (3 − 1) 51 = 0

.

Nowthesehave 3(3−1) commonsolutions. �∗ hasdegree 3(3−1) so 1 = 3(3−1).
Riemann-Hurwitz implies

"(') = 2 deg� − 3(3 − 1)

"(') = 23 − 3(3 − 1)
so

6 =
(3 − 1)(3 − 2)

2 .

�

A 3-fold equivalence of categories. Amazing synthesis.

1. Analysis: Compact connected riemann surfaces.

2. Algebra: Field extensions  /C where  is finitely generated of transcen-
dence degree 1 over C.

3. Geometry: Complete nonsingular irreducible algebraic curves in P= .

3) curve→ 2) field extension. Over � all rational functions %(G)
&(G) deg% =

deg&, %, & : � → C ∪ {∞}.
3)→ 1) take complex structure induced by P= .
1)→ 2) associated field of meromorphic functions on -.
1) → 3) Any curve which is holomorphic has an embedding into P=

(Riemann-Roch).
2)→ 1)  /C consider valuation rings ' such that  ⊇ ' ⊇ C.

Example 2.3.6 6 = 0, P1 C C(C), C ∪ {∞}. �

Example 2.3.7 6 = 1, elliptic curves, 5 (G, H, I) smooth plane cubic, 5 = 0,
C(

√
5 (G), G).

C/Λ→ P2

I ↦→ (I, ℘(I), ℘′(I))
I ∉ Λ

backwards

(G, H) ↦→
∫ (G,H)

(G0 ,H0)

dG
H

�

Riemann-Hurwitz (generally). There’s nothing thatdoesn’t generalise about
the previous proof.

Claim 2.3.8 For � : '→ ( a non-constant morphism of compact Riemann surfaces

"(') = deg� · "(() −
∑
G∈(
(deg(�) − #�−1(G)).
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Corollary 2.3.9 There are no non-constant morphisms from a sphere to a surface of
genus > 0.

Proof.
5 : P1 C→ (

"(P1 C) = deg 5 "(() − 1
2 = (+) · (−) − 1.

�

Exercise 2.3.10
G= + H= + I= = 0

is not solvable in non-constant polynomials for = > 2.

Exercise 2.3.11
� = C/Z + Z8

multiplication by 8 rotates G ↦→ G8 let G ∼ G8. If we mod out by ∼ to get �/∼
this is still a Riemann surface and the quotient map

5 : �→ �/∼

is nice, compute the branch points of order 4 and order 2.

Exercise 2.3.12 - compact Riemann surface of 6 ≥ 2 then there are at most
84(6 − 1) automorphisms of -.

Exercise 2.3.13 Klein quartic

G3H + H3I + I3G = 0

has 168 automorphisms and is genus 3.

2.4 Riemann Surfaces and Discrete Groups (Rod)
Welcome to BUGLES (Boston university geometry learning expository semi-
nar), the reason it is called bugles is because bugles are hyperbolic, and today
we will see a lot of hyperbolic objects.

Plan

1. Uniformization

2. Fuchsian groups

3. Automorphisms of Riemann surfaces

Proposition 2.4.1

Aut(Ĉ) = {I ↦→ 0I + 1
2I + 3 }

Aut(C) = {I ↦→ I0 + 1}

Aut(H) = {I ↦→ 0I + 1
2I + 3 , 0, 1, 2, 3 ∈ R} = PSL2(R)

Theorem 2.4.2 Σ has a universal cover Σ̃ with �1(Σ) = 1. Σ̃ → Σ holomorphic.
Σ = Σ̃/� for � = �1(Σ). � acts freely and properly discontinuously.
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2.4.1 Uniformization

Theorem 2.4.3 The only simply connected Riemann surfaces are Ĉ, C, H.

Theorem 2.4.4 Σ is a Riemann surface then

6 = 0 : Σ � Ĉ
6 = 1 : Σ � C/Λ
6 ≥ 2 : Σ � H/ .

Proof. 6 = 0 Uniformization.
6 ≥ 1 Ĉ can’t be a cover by Riemann-Hurwitz. 6 = 1 �1(Σ) = Z⊕Z abelian.
Claim: no subgroup of Aut(H) is isomorphic to Z ⊕ Z acting freely and

properly discontinuously. So Σ̃ = Ĉ I ↦→ 0I + 1 free id 0 = 1 so I ↦→ I + �1
I ↦→ I + �2.

6 = 2 �1(Σ) is not abelian but I ↦→ I + �1 is abelian!

Σ = H/ ,  ⊆ PSL2(R).

�

Goal. Understand Σ through Σ̃ and �.

Fuchsian groups. 6 ≥ 2.

Aut(H) = PSL2(R) = Isom+(H, | dI |
2

=/ )

hyperbolic H,D and PSL2(R) acts transitively on geodesics.

Definition 2.4.5 Fuchsian groups. A Fuchsian group is a discrete subgroup
of PSL2(R). ♦

Remark 2.4.6 (proof in book) Even if Γ doesn’t act freely the quotient

H→ H/Γ

is still a covering map and H/Γ is a Riemann surface.

Reflections on H. Say � is a geodesic in H, i.e. a horocycle. There is " ∈
PSL2(R) with "� the imaginary axis. Then ' = −Ī is the reflection over the
imaginary axis. Now '� = "

−1 ◦ ' ◦" is a reflection over �.

'� =
0Ī + 1
2Ī + 3 ∉ PSL2(R)

this is a a problem for us.

Triangle groups. Given =, <, ; ∈ Z∪ {∞} then there is a hyperbolic triangle
with angles �/=,�/<,�/; if

1
=
+ 1
<
+ 1
;
< 1.

With area �(1 − 1
= − 1

< − 1
; ).

In the disk model we can start with a wedge of the disk and by adding a
choice thirdgeodesicwith endpoints on the edgewe can adjust the other angles
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to be what we like.So we can construct hyperbolic triangles with whatever
angles we like. Then let '1 be the reflection over 1 edge, '2 , '3 similarly.
By reflecting our original triangle ) with these reflections we can tessellate
the disk, colouring alternately the triangles obtained using an odd or even
number of reflections.

The only remaining problem is that '8 ’s are not in PSL2(R). The solution
is to define G1 = '3 ◦ '1, G2 = '1 ◦ '2, G3 = '2 ◦ '3 which are all in PSL2(R)
now. Now we need to take the union of two adjacent triangles before as a
fundamental domain, some quadrilateral that still tessellates. So we have
formed a Fuchsian group from our triangles.

A presentation for this group is

〈G1 , G2 , G3 |G=1 = G
<
2 = G ;3 = G1G2G3 = 1〉

note =, <, ; can still be∞.

Definition 2.4.7 Triangle groups. Let Γ=,<,; be the triangle group with
signature (1/=, 1/<, 1/;). ♦

Remark 2.4.8
1
=
+ 1
<
+ 1
;
= 1

1
=
+ 1
<
+ 1
;
> 1

still work on C and Ĉ respectively.

Example 2.4.9 PSL2(Z). Consider Γ2,3,∞ angles �/2,�/3, 0. We can draw such
a triangle in the upper half plane with vertices 8 , 4�8/3 ,∞. So a fundamental
domain will be the region obtained by reflecting through the imaginary axis,
given by − 1

2 ≤ <I ≤ 1
2 , |I | ≥ 1. We have '1 =

1
Ī , '2 = −Ī + 1, '3 = −Ī so

G1 =
−1
I , G2 =

1
−I+1 , G3 = I + 1. Then Γ2,3,∞ � PSL2(Z). Sometimes denoted

Γ(1). �

Observation 2.4.10 If Γ1 < Γ2 and ) is a fundamental domain of Γ2 then if
�1 , �2 , . . . , �= ∈ Γ2 are representatives of Γ1\Γ2 then⋃

�8())

is a fundamental domain for Γ1.

Example 2.4.11 Γ(1).

Γ(2) = {
(
0 1

2 3

)
= id (mod 2)}

then
[Γ(1) : Γ(2)] = 6

representatives of Γ(2)\Γ(1) are

G1 = id, G2 =
−1
I − 1 , G3 =

I − 1
I

, G4 =
I − 1
I

, G5 =
−I
G − 1 , G6 =

−1
I
.

Lets see what these do, for example if I = 4 8�

<(G2(I) =
−1

4 8� − 1
=
−4 8� + 1

2 − 2 cos� ) =
1 − cos�

2 − 2 cos�
1
2

if we plot this we see we get two copies of a 0,0,0 triangle so this corresponds
to Γ∞,∞,∞.

〈G1 , G2 , G3 |G1G2G3 = 1〉 = 〈G1 , G2〉 = �1(P1 r{0, 1,∞}).
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�

Proposition 2.4.12 (1 = H/Γ1, (2 = H/Γ2 then

(1 � (2 ⇐⇒ Γ1 = ) ◦ Γ2 ◦ )−1 , ) ∈ PSL2(R).

Proof. ⇐ Define an ) : (1 → (2 via )([I]1) = [)(I)]2.
⇒ Take a lift

H
)̃ //

��

H

��
H/Γ1 )

// H/Γ2

then ) = )̃. �

Proposition 2.4.13 Γ a Fuchsian group acts freely

Aut(H/Γ) = #(Γ)/Γ.
Proof. Previous proposition, set Γ1 = Γ2

#(Γ) → Aut(H/Γ)

kernel is Γ. �

Corollary 2.4.14 Let Σ be a Riemann surface with 6 ≥ 2 then

|Aut(Σ)| < ∞.

Proof.
H

)1

((
)2
��

( = H/Γ
5
// H/#(Γ) = (/Aut(()

since )1 , )2 are holomorphic then so is 5 . So deg 5 = |#(Γ)/Γ| and deg 5 < ∞.
�

Say Σ, 6 ≥ 2, � ⊆ Aut(Σ). Let 6̄ be the genus of Σ/�

26 − 2 = |� |(26̄ − 2) +
∑
?

(�(?) − 1) = |� |(26̄ − 2 +
=∑
8=1
(1 − 1
|�(?8)|

))

where �(?) is the stabiliser of ? in � and {?8} area maximal set of fixed points
of � inequivalent under the action of �.

Exercise 2.4.15 Σ, 6 ≥ 2 then |Aut(Σ)| ≤ 84(6 − 1). Hint: cases.

Exercise 2.4.16 Consider

1→ Γ(=) → Γ(1) → PSL2(Z/=Z) → 1

compute genus of H/Γ(=).
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2.5 Riemann Surfaces and Discrete Groups II (Jim)

2.5.1 Moduli space of compact Riemann surfaces with genus 6
6 = 0. Uniformization tells us that up to isomorphisms all Riemann surfaces
of genus 0 are P1 hence the moduli spaceℳ0 = {pt}.

6 = 1. Uniformization tells us that each Riemann surface of genus 1 is a
torus and can be written as C/$1Z + $2Z→ C/(Z ⊕ �Z), with � = ±$1/$2.

Proposition 2.5.1 2.54.
ℳ1 ' H/PSL2(Z) ' C.

Proof. Idea: Existence of
C/Λ�1

∼−→ C/Λ�2

with )̄([0]) = [0] is equivalent to the existence of) ∈ Aut(C) (choose)(I) = FI)
such that F(Z ⊕ �1Z) = Z ⊕ �2Z. This in turn is equivalent to the existence of

�, �′ ∈ GL2(Z)

s.t. det(�) = det(�′) = ±1 so that(
F

F�1

)
�

(
1
�2

)
= �′

(
F

F�1

)
=⇒ �@ = �#2 =

0�2 + 1
2�2 + 3

and � ∈ PSL2(R). Implies � ∈ PSL2(Z) as both �1 , �2 ∈ H. Conversely if

�1 =
0�2 + 1
2�2 + 1

isomorphism is induced by )(I) = (2�2 + 3)I. �

6 > 1ℳ6 is a complex variety of dimension 36−3. Uniformization tells us
that describing a Riemann surface amounts to specifying 26 real 2×2 matrices
{�8}268=1 such that

1. det(�8) = 1 which implies that �8 depends on 3 real parameters so we
have a total of 66.

2.
∏6

8=1[�8 , �6+8] =
(
1 0
0 1

)
3 relations, so 66 − 3. Since for any � ∈ PSL2(R)

Γ = 〈�8〉 and �Γ�−1 uniformize isomorphic Riemann surfaces implies
66 − 6 real parameters, so 36 − 3 complex parameters.

2.5.2 Monodromy
Let 5 : (1 → ( be a morphism of degree 3 ramified over H1 , . . . , H= ∈ (. For
H ∈ ( r {H1 , . . . , H=} we have a group homomorphism

" 5 : �1(( r {H1 , . . . , H=}) → Bij( 5 −1(H))

� ↦→ " 5 (�) = �−1
� .

�� is defined as follows:

� ∈ �1(( r {H1 , . . . , H=})
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lifts to a path �̃ from G ∈ 5 −1(H) to another G′ ∈ 5 −1(H) set ��(G) = G′. If
we number the points in 5 −1(H) we may think of " 5 (�1) ⊆ Σ3, via some
) : {1, . . . , 3} → 5 −1(H). Mon( 5 ) is the image of " 5 (�1) in Σ3.

Monodromy and Fuchsian groups. Let

� : H/Γ1 → H/Γ

be the Fuchsian group representation of the map

5 : (1 → ( 3 H.

Identifications H = [I0]Γ for some I0 ∈ H.

�1(( r {H1 , . . . , H=}) ' Γ

5 −1(H) = {[�I0]Γ1}
where � runs along a set of representatives of Γ1\Γ.

" 5 : Γ→ Bij(Γ1\Γ)
� ↦→ " 5 (�)

=⇒ � ∼ �1([I0 , �(I0)])
where [I0 , �(I0)] is apath inH. Lift this loop toH/Γ1 is thepath�Γ1(�[I0 , �0(I0)]).
which corresponds to Γ1��, this implies ��(Γ1�) = Γ1��.

Corollary 2.5.2 2.59.
"� : Γ→ Bij(Γ1\Γ)

induces an isomorphism

Γ⋂
�∈Γ1 �

−1Γ1�
'Mon(�)

characterize morphisms by monodromy. Let 58 have degree 2, non conju-
gate.

Proposition 2.5.3 2.63. For ( a compact Riemann surface and � = {01 , . . . , 0=} ⊂ (
for some 3 ≥ 1 there are only finitely many pairs ((̃, 5 )where (̃ is a compact Riemann
surface and

5 : (̃→ (

is a degree 3 morphism with branching value set �.

Proof. Special case: Assume ( = P1 and = = 3.

Γ = Γ(2) = {� ∈ PSL2(Z) : � = id (mod 2)}

= �1((′ r {0, 1,∞})
is generated by �1 , �2 so any map " 5 : Γ(2) → Σ3 is determined by images of
�1 , �2. �

2.5.3 Galois coverings
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Definition 2.5.4 A covering 5 : (1 → (2 is Galois (or regular, or normal) if the
covering group

Aut((, 5 ) = {ℎ ∈ Aut((1) : 5 ◦ ℎ = 5 } = �

acts transitively on each fibre. With this notion we can think of (1 → (1/�. ♦
Proposition 2.5.5 2.65.

5 : (1 → (2

is Galois if and only if
5 ∗ : "((2) → "((1)

is a Galois extension. In this case Aut((1 , 5 ) ' Gal("((1)/"((2)).

Example 2.5.6 Hyperelliptic covers of P1 given by

( = {H2 =

#∏
8=1
(G − 08)} → P1

(G, H) → G

covering group � is order 2 generated by the involution �(G, H) = (G,−H). �

Proposition 2.5.7 2.66. A covering

5 : (1 → (2

is normal/Galois iff
deg( 5 ) = |Mon( 5 )|.

2.5.4 Normalization of coverings of P1

Let 5 : (→ P1 be a cover of deg 3 > 0 with Mon( 5 ) ≤ Σ3.
The normalisation

5̃ : (̃→ P1

associated to 5 has Mon( 5 ) � Aut((̃, 6̃ and 5̃ ∗ : "(P1) → "(P1) is the normal-
isation of the extension

5 ∗ : "(P1) ↩→ "(()
Normalization of extensions  ↩→ ! is a Galois extension of  of lowest

possible degree containing !.

Definition 2.5.8 Normalization of 5 : ( → P1 deg 3 > 0 is a Galois cover-
ing 5̃ : (̃ → P1 of lowest possible degree s.t. ∃� : (̃ → ( with the diagram
commuting. ♦

Corollary 2.5.9 2.73.
Mon( 5 ) ' Aut((̃, 5̃ )

Interpretation in terms of Fuchsian groups:

Proposition2.5.10Let 5 : (1 → ( be a covering ofRiemann surfaces(1r 5 −1{H1 , . . . , H=} →
( r {H1 , . . . , H=}. The unramified cover and � : H/Γ1 → H/Γ the Fuchsian group
representatives. The normalisation of 5 can be represented as the compactification of

H/
⋂
�∈Γ

�−1Γ1�→ H/Γ1 → H/Γ

so the covering group is isomorphic to Γ/⋂ �−1Γ1� 'Mon( 5 ).
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Example 2.5.11 Let �(G, H) = H2G − (H − 1)3 consider

(� → P1

(G, H) → G

(� has genus 0. (� → P1 is of degree 3 and ramified at most over 0, −27
4 ,∞.

Mon(G) ' Σ3 so not a normal covering. Normalization of ((� , G) is (�̃ , G̃)where

�̃(G, H) = H2(1 − H)2G + (1 − H + H2)

�

2.6 Belyi’s theorem (Maria)

Theorem 2.6.1 Let ( be a compact riemann surface, then the following are equivalent.

1. ( is defined over Q (iff over a number field)

2. ( admits a morphism 5 : (→ P1 with at most 3 branching values.

Definition 2.6.2 Belyi functions. A meromorphic function with less than 4
branching values is a Belyi function. ♦

Remark 2.6.3
1. Branching values can be taken to be in {0, 1,∞}.

2. If ( ≠ P1, then 5 : (→ P1 has at least 3 branching values

Definition 2.6.4 Belyi polynomials. Let <, = ∈ N, � = </(< + =), define

%�(G) = %<,=(G) =
(< + 1)<+=
<<==

G<(1 − G)=

Belyi polynomials. ♦

Proposition 2.6.5 %� satisfies
1. %� ramifies at exactly 0, 1,�,∞.

2. %�(0) = %�(1) = 0, %�(�) = 1, %�(∞) = ∞.

Example 2.6.6
(� : H2 = G(G − 1)(G − �)

with � = </(< + =). From ex. 1.32

G : (� → P1

(G, H) ↦→ G

∞ ↦→ ∞
ramifies over 0, 1,�,∞. Then 5 = %� ◦ G : (� → P1 ramifies exactly at
(0, 0), (1, 0), (�, 0),∞. With branching values 0, 0, 1,∞ so that 5 is a Belyi
function. �
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2.6.1 Proof of a) implies b)

Note 2.6.7 Its enough to show∃ 5 : (→ P1 ramified over {0, 1,∞,�1 , . . . ,�=} ⊆
Q∪{∞}. Given this we can repeatedly use Belyi polynomials to obtain 6 : (→
P1 ramified over {0, 1,∞}.

Write ( = (�
�(G, H) = ?0(G)H= + · · · + ?=(G)

defined overQ[G, H]. Let �0 = {�1 , . . . , �B} be the branching values of G : (� →
P1.

Theorem 1.86 says that the each �8 is∞, a root of ?0(G) or a common root of
�, �H which implies by lemma 1.84 that �0 ⊆ Q∪{∞} . If �0 ⊆ Q∪{∞}we are
done otherwise let <1()) ∈ Q[)] be the minimal polynomial of {�1 , . . . , �B}.
Let {�1 , . . . , �3} be the roots of <′1()) and ?′()) their min. poly. Note :
deg%(C) < deg<′1())

Note: Branch(6 ◦ 5 ) = Branch(6) ∪ 6(Branch( 5 )) branching values.
So �1 Branch(<1 ◦ G) = <1({roots of <′1}) ∪ {0,∞}.

(
G−→ P1 <1−−→ P1

If �1 ⊆ Q ∪ {∞} done. Otherwise let <2()) be the minimal polynomial /Q of
{<1(�1), . . . , <1(�3)}, �2 = Branch(<2 ◦<2 ◦ G). Fact: deg(<(C)) < deg(<1())).

Repeat inductively until �: ⊆ Q∪{∞}which is guaranteed by the decreas-
ing degrees.

2.6.2 Algebraic characterization of morphisms
Proposition 2.6.8 Defining a morphism 5 : (� → (� is equivalent to giving a pair
of rational functions

5 = ('1 , '2), '8 =
%8

&8
, %8 , &8 ∈ C[G, H], &8 ∉ (�)

such that &degG (�)
1 &

degH (�)
2 �('1 , '2) = �� for some � ∈ C[G, H]. 5 ('1 , '2) is an

isomorphism if there exists an inverse morphism ℎ : (� → (� .

Remark 2.6.9

( 5
5 //

<
  

(�

ℎ

��
(�

The fact that this diagram commutes can be expressed by polynomial identi-
ties.

2.6.3 Galois action
Let Gal(C) = Gal(C/Q).
Definition 2.6.10 For � ∈ Gal(C), 0 ∈ C denote 0� = �(0),

1. If % =
∑
08 9G

8H 9 ∈ C[G, H] set

%� =

∑
0�8 9G

8H 9 ∈ C[G, H]

if ' = %/& set '� = %�/&�.

2. If ( ' (� , (� = (�� .
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3. IfΨ = ('1 , '2) (� → (� is a morphism, setΨ� = ('�
1 , '

�
2 ) : (�� → (�� .

4. For an equivalence class ((, 5 ) = ((� , '(G, H)) of ramified covers of P1 set
((, 5 )� = ((� , 5 �) = ((�� , '�(G, H)).

♦

Exercise 2.6.11 Verify this Galois action is well-defined (lemma 3.12).
Recall: (� is constructed from a noncompact Riemann surface (×

�
⊆ C2

by adding finitely many points, (theorem 1.86). If % = (0, 1) ∈ (×
�
then

%� = (0� , 1�). What about the other points?

2.6.4 Points and valuations
Definition 2.6.12 Let ℳ be a function field. A (discrete) valuation of ℳ is
E :ℳ∗ → Z s.t.

1. E()#) = E()) + E(#)

2. E() ± #) ≥ min{E()), E(#)}

3. E()) = 0 if ) ∈ C∗

4. E is nontrivial ∃) : E()) ≠ 0

set E(0) = ∞. ♦

Facts:
�E = {) ∈ ℳ : E()) ≥ 0} ⊆ ℳ

is a subring that is a local ring with a maximal ideal

"E = {) ∈ ℳ : E()) > 0} = ())

for some ) a uniformizer.
If E()) = 1 E is normalised.

Proposition 2.6.13 3.15. Every point % ∈ ( a compact Riemann surface defines a
valuation onℳ(() by E%()) = ord%()).

Proof. Easy exercise. �

Theorem 2.6.14 3.23. For any compact Riemann surface (

% ∈ ( ↦→ E% = ord%

gives a 1-1 correspondence between points of ( and normalised valuations onℳ(().

Proof. Sketch: First prove it for ( = P1.
Inductively meromorphic functions separate points.
Surjectivity study behaviour of valuations in finite extensions of fields and

use a nonconstant morphism 5 : (→ P1 to reduce to the case of P1. �

Galois action on points. Definition 2.6.15
1. Given a valuation E onℳ(() define a valuation E� onℳ((�) by E� =
E ◦ �−1 i.e. E�(#�) = E(#) for all # ∈ ℳ(().

2. For % ∈ ( define %� ∈ (� as the unique point in (� s.t. E%� = (E%)�.

♦
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Proposition 2.6.16 3.25.
1. For � ∈ Gal(C), % ↦→ %� is a bĳection (→ (�.

2. On % ∈ (×
�
this agrees with the previous definition of %�.

3. 0� = 0 for all 0 ∈ Q ∪ {∞} for all � ∈ Gal(C).

Proof. Sketch

1. 0 ↦→ 0�
−1 .

2. Follows as in proof of 3.22

3. Obvious for 0 ∈ Q, for∞:

(E∞)�(G − 1) = E∞(G − 0�
−1) = 1 = E∞(G − 1)

for all 0 ∈ C implies (E∞)�
−1
= E∞ implies∞� = ∞.

�

2.6.5 Elementary invariants of the action of Gal(C).
Remark 2.6.17 The bĳection ( ↔ (� is not holomorphic. In general ( and (�
are not isomorphic.

Theorem 2.6.18 The action of Gal(C) on pairs ((, 5 ) satisfies
1.

deg( 5 �) = deg( 5 )

2.
( 5 (%))� = 5 �(%�)

3.
ord%� ( 5 �) = ord%( 5 )

4. 0 ∈ Ĉ is a branching value of 5 iff 0� is a branching value of 5 �.

5. genus(() = genus((�) i.e. they are homeomorphic.

6. Aut((, 5 ) → Aut((� , 5 �) via ℎ ↦→ ℎ� is a group homomorphism.

7. The monodromy group Mon( 5 ) of ((, 5 ) is isomorphic to Mon( 5 �) of ((� , 5 �).
We will use properties 1 and 4 at least.

Proposition 2.6.19 Criterion 3.29. For a compact Riemann surface ( the following
are equivalent

1. ( is defined over Q.

2. {(�}�∈Gal(C) contains only finitely many isomorphism classes of Riemann sur-
faces.

Proof. 1 implies 2: ( = (� , � =  [G, H] for  a number field then

|{��}�∈Gal(C) | ≤ [ : Q]

2 implies 1 is section 3.7. �
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Proof of b implies a in Belyi’s theorem (3.61). Suppose 5 : ( → P1 is a
morphism of degree 3 with branching values {0, 1,∞}. By theorem 3.28
∀� ∈ Gal(C)

5 � : (� → P1

is a morphism of degree 3 and branching values are

{�(0), �(1), �(∞)} = {0, 1,∞}.

So { 5 �}�∈Gal(C) gives rise to only finitely many monodromy homomorphisms.

� 5 � : �1(P1 r{0, 1,∞}) → Σ3

the fundamental group is free on two generators so there are only finitely
many such maps. Theorem 2.61 implies {(�}�∈Gal(C) contains only finitely
many equivalence classes so by the criterion ( is defined over Q.

2.6.6 The field of definition of Belyi functions (3.8)

Proposition 2.6.20 Belyi functions are defined over Q.

Proof. Use the same methods as in 3.7. �

2.7 Dessins (Berke)
�Q � (-, �) ↔ ((, 5 )� �Q

where (-, �) is a dessin, ((, 5 ) is a Belyi pair.

2.7.1 Dessins
Definition 2.7.1 A dessin is a pair (-, �) where - is an oriented compact
topological surface and � ⊂ - is a finite graph:

1. D is connected

2. D is bicoloured

3. - r � is a disjoint union of topological disks.

♦
Not all of these are so important (for example 3 implies 1 (but the converse

does not hold)). We can also obtain a bicoloured graph from an uncoloured
graph by subdividing all edges and colouring the new vertices black and the
others white.

A single edge in a sphere is, a single edge in a torus is not.

Permutation representationof aDessin. Label the edgesof adessin {1, . . . , #}
then

�0(8) = subsequent edge in the cycle around the white vertex of 8

as we have a positive orientation on the edges

�1(8) = subsequent edge in the cycle around the black vertex of 8.

Then we define
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Definition 2.7.2 (�0 , �1) is the permutation representation pair of (-, �). ♦

Say
�0 = (1, . . . , #1)(#1 + 1, . . . , #2) · · ·

a product of disjoint cycles. Then each of these cycles corresponds to a white
vertex, where the length of the cycle is the degree of the corresponding vertex.
Same for �1 and black vertices.

{cycles appearing in the decomposition of �0�1}
l

{faces of �}
Exercise 2.7.3 Prove this.
Remark 2.7.4 � connected implies that 〈�0 , �1〉 is transitive on Σ# . As � is
bicoloured the cycles on � contain an even number of edges.

A dessin is not a triangulation of - but

"(-) = #+ − #� + #�

proof later.

Proposition 2.7.5

"(-) = (#cycles of �0 + #cycles of �1) − # + #{cycles of �0�1}.

(�0 , �1){ (-′, �)
〈�0 , �1〉 ⊆ Σ#

is transitive.
Proposition 2.7.6 There exists (-, �) with permutation representation (�0 , �1).

Proof. Write �0�1 = �1 · · · �: , �8 disjoint cycles each of length =8 with
∑
=8 = # .

Create : faces bounded by 2=1 , . . . , 2=: vertices, and assign the vertices white
and black colours so that the graph is bicoloured. As �0�1 should jump two
each time we get an identification of all edges which we then glue using �0. �

Definition 2.7.7 We say that

(-1 , �1) ∼ (-2 , �2)

if there exists anorientationpreservinghomeomorphism) : -1 → -2, ) |�1 : �1
∼−→

�2. ♦

Theorem 2.7.8

{Dessins}/∼↔ {(�0 , �1), 〈�0 , �1〉 ⊆ Σ# transitive}/∼

2.7.2 Dessins 2 Belyi pairs
Triangle decomposition of (-, �) { )(�) a set of triangles that cover � and
intersect along edges or at vertices.

Example 2.7.9 Edge in the sphere, add an extra vertex × not on the edge and
get a decomposition into two triangles. �

We will label triangles by )±
9
as there are two for each edge, by orientation

some are the same.



CHAPTER 2. DESSINS D’ENFANTS 69

)(�){ 5� : - → Ĉ

Glue
5 ?
9 : )?

9 → H
?

for ? ∈ {+,−}, where 5 +
9
= 5 −

9
on the intersection. Where %)9

∼−→ R ∪ {∞}

black ↦→ 0

white ↦→ 1

× ↦→ ∞
and we have Branch( 5�) ⊆ {0, 1,∞}. Now deg 5� = #edges of �, <E( 5�) =
deg E, 5 −1

�
([0, 1]) = �. Modify - a little bit and use some lemma to get

(� 'top - for some Riemann surface with 5� : (� → P1.

Definition 2.7.10 ((, 5 ) is a Belyi pair with ( compact Riemann surface and 5
a Belyi function on (.

((1 , 51) ∼ ((2 , 52)
if it is an isomorphism of ramified coverings. ♦

So we can now go in both directions.

{Dessins}/∼

l
{Belyi pairs}/∼
(-, �) ↦→ ((� , 5�)
((, � 5 ) ←� ((, 5 )

Now to define the Galois action

�Q � {Dessins} ↔ {Belyi pairs}

(-, �)

��

// (-, �)�

((� , 5�) // ((�
�
, 5 �
�
)�

OO

The �Q action is faithful on dessins of genus 6.

Example 2.7.11 Same example P1 with a single edge, 5� = I, deg 5� = # edges,
<E( 5 ) = deg E. �

Exercise 2.7.12 String.

Exercise 2.7.13 = star.

2.8 A Sandwich Table of Dessins d’Enfants
Alex: So I haven’t typed this section as it was a lot of pictures and I haven’t
got nice scans of them, will try at some point (maybe?). Angus’ notes can be
found at http://math.bu.edu/people/angusmca/buntes/spring2018.html.

http://math.bu.edu/people/angusmca/buntes/spring2018.html
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2.9 Belyi’s theorem, effectiveMordell and ABC (An-
gus)

We begin with one of the most famous results in arithmetic geometry.

Theorem 2.9.1 Mordell conjecture/Falting’s theorem. Let � be an algebraic
curve of genus ≥ 2 over a number field  . Then �( ) is finite.

There aremanyproofs of this, Falting’s being the original andmost famous.

Remark 2.9.2 Falting’s proof is not effective. That is, it cannot predict the
number of points or give any bounds.

Today we’ll show how this theorem follows from a (much harder conjec-
ture), but how this nonetheless gives new insight into the question of effec-
tiveness. Specifically we’ll show ABC implies Mordell.

“Mordell is as easy as ABC”- Zagier

Conjecture 2.9.3 ABC. Let �, �, � ∈ Z s.t. gcd(�, �, �) = 1 and � + � + � = 0,
then for all & > 0 there exists a constant :& s.t.

#(�, �, �) > :&�(�, �, �)1−&

where
#(�, �, �) =

∏
? |���

?

�(�, �, �) = max(|�|, |�|, |� |).
This is a remarkably deep statement about the integers. Something surprising
about how one compares the additive and multiplicative structures of the
integers.

For our purposes (to connect it to the curves and Mordell) we’d like to
remove the dependence on integrality and coprimality, by making it scaling
invariant.

We now define

�(�, �, �) =
∏
E

max(|�|E , |�|E , |� |E)

#(�, �, �) =
∏
?∈�

?

for
� = {? prime : max(|�|? , |�|? , |� |?) > min(|�|? , |�|? , |� |?)}.

Exercise 2.9.4 For sanity.

�(��,��,��) = �(�, �, �)

#(��,��,��) = #(�, �, �)
for �, �, �, � ∈ Q×. Moreover if �, �, � ∈ Z and gcd = 1 then we recover the
original definition.

Since we have � + � + � = 0 and our functions are scaling invariant, they
only depend on A = −�/�. We’ll also reformulate it over an arbitrary number
field  .

Note that to satisfy the hypotheses of the conjecture we require

A ∈ P1
 r{0, 1,∞}.
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We now define
�(A) =

∏
E

max(1, |A |E)

#(A) =
∏
?∈�

?

for
� = {? prime : max(E?(A), E?(1/A), E?(A − 1)) > 0}.

Remark 2.9.5 In fact this new height is off from the old one by a constant factor,
but since ABC allows for a constant factor this won’t trouble us.

Motivation: ABC implies Fermat bound. One can see this simply by as-
suming a solution

G= + H= = I= , = ≥ 3

and setting
(�, �, �) = (G= , H= , I=)

then

#(�, �, �) =
∏
? |���

? ≤ |GHI | < max(|G |3 , |H |3 , |I |3) = �(�, �, �)3/= .

So setting
& = 1 − 3/=

for (�, �, �) s.t. �(�, �, �) is sufficiently large we get a contradiction to ABC.
Thus ABC gives us a bound on the possible solutions to the Fermat equation,
reducing the remainder of the conjecture to a finite computation.

Let us phrase this in the following alternate way: Let

�= : G= + H= + I= = 0

be the Fermat curve and consider the function

5 : �= → P1

(G : H : I) ↦→ −
(
G

H

)=
ramified over 0, 1,∞.

Note 2.9.6 deg( 5 ) = =2

Each of 0, 1,∞ has = preimages in �=(Q).
The idea now is that#(�, �, �) ismeasuring ramification, while�(�, �, �)

is a height function. The note above tells us that each of 0, 1,∞ contributes
a factor of $(�(�, �, �)=/=2) to #(�, �, �). So in this formulation, what we
used was the existence of a rational function 5 such that

#{? ∈ �(Q) : 5 (?) ∈ {0, 1,∞}} < deg( 5 ).

Exercise 2.9.7 If � has genus 0 or 1, no such 5 can exist (hint: Riemann-
Hurwitz).

ABC implies a bound on Mordell. We begin with a technical proposition:
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Proposition 2.9.8 Let  be a number field an d �/ a curve. Let 5 ∈  (�) be a
rational function of degree 3. Then for ? ∈ �( ) r 5 −1(0) we have

log#0( 5 (?)) < (1 − 1 5 (0)/3) log�( 5 (?)) + $(
√

log�( 5 (?)) + 1)

with the following notation

#(A) = #0(A)#1(A)#∞(A)

#0(A) =
∏
p⊇(A)

Norm(p)

#1(A) =
∏

p⊇(1−A)
Norm(p)

#∞(A) =
∏

p⊇(1/A)
Norm(p)

1 5 (0) =
∑
5 (?)=0

(4? − 1).

Proof. The genus 0 case follows from the fact that the 5 is a rational function
(and in fact the error term is $(1)) (exercise). For the general case we need the
theory of log heights on curves. From this we require the following

• For � a divisor on � we have a height function

ℎ�(·)

which is well defined up to $(1).

• If
� =

∑
<:�:

is a decomposition into irreducible divisors, then

ℎ�(%) =
∑

<: ℎ�:
(%).

• For Δ a degree 0 divisor

ℎΔ(%) = $(
√

log�( 5 (%)) + 1).

Let � = div0( 5 ) =
∑
<:�: , �′ =

∑
5 (%)=0(%) then 1 5 (0) = deg�′. Then

log�( 5 (%)) = ℎ�(%) + $(1) =
∑

<: ℎ�:
(%) + $(1)

since log�( 5 (%)) is also a height function relative to �. We now turn to
#0( 5 (%)). Any prime occurring in this must also occur in ℎ�:

(%) for some :
(except for a finite set {? : ? | 5 or ? bad red. for �}). Then

#0( 5 (%)) <
∑

ℎ�:
(%) + $(1) = ℎ�′(%) + $(1).

Letting
Δ = (deg�)�′ − (deg�′)�

we have
ℎΔ(%) = $(

√
log�( 5 (%)) + 1)
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thus
log#0( 5 (%)) < ℎ�′(%) + $(1)

=
1

deg� (deg�′)ℎ�′(%) + $(1)

=
1

deg� (deg�′)ℎ�(%) + $(
√

log�( 5 (%)) + 1)

=
1 − 1 5 (0)

3
log�( 5 (%)) + $(

√
log�( 5 (%)) + 1)

�

Remark 2.9.9 One can show the above for #1 , #∞ instead making the appro-
priate replacements for 5 .

Adding the three terms together we get

log#0( 5 (%))#1( 5 (%))#∞( 5 (%))

<

((
1 −

1 5 (0)
3

)
+

(
1 −

1 5 (1)
3

)
+

(
1 −

1 5 (∞)
3

))
log�( 5 (%)) + $(· · · )

log#( 5 (%)) < 1
3

(
# 5 −1(0) + # 5 −1(1) + # 5 −1(∞)

)
log�( 5 (%)) + $(· · · )

<
<

3
log�( 5 (%)) + $(· · · )

where
< = #{% ∈ �(Q) : 5 (%) ∈ {0, 1,∞}}

exponentiating we get

#( 5 (%)) < �( 5 (%))</3 .

Theorem 2.9.10 ABC implies Mordell. ABC implies Mordell.

Proof. Let � be a given curve of genus 6 ≥ 2 Belyi’s theorem gives a function

5 : � → P1

ramified over {0, 1,∞}. By Riemann-Hurwitz < = 3 + 2 − 26, 3 = deg( 5 ) <
as above. Thus < < 3, thus we can pick 0 < & < 1 − <

3 and so for sufficiently
large �( 5 (%)) (i.e. all but finitely many) we have a counterexample to ABC. �

Remark 2.9.11 Closing remarks. Belyi’s theorem gives an algorithm for
determining 5 : � → P1 i.e. it is effective.

One can also show ABC implies Siegel’s theorem.
In fact it can be shown that a particular effective form of Mordell (applied

to H2 + H = G5) for all number fields implies ABC. This is related to Szpiro’s
conjecture.

References:

1. Elkies - ABC implies Mordell

2. Serre - Lectures on Mordell-Weil
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2.10 Dessins, integer points on elliptic curves and a
proof of the ABC conjecture (Alex)

2.10.1 A proof of the ABC theorem (for polynomials)
Last weekAngus told us about the incredibly powerful ABC conjecture and its
arithmetic consequences (apparently). Thisweekwewill prove this conjecture
(for polynomials). The proof is very similar to some of the things Angus
mentioned, but seeing as I wasn’t there its new to me... Following Goldring
/ Stothers / Parab.

Let  be algebraically closed of characteristic 0, with 5 ∈  [G], we can
define the radical as before

rad( 5 ) =
∏
? | 5

?

over the primes/irreducibles dividing 5 , this is the maximal squarefree poly-
nomial dividing 5 . How do we measure the size of a polynomial? Let
A( 5 ) = deg rad( 5 ), and ℎ( 51 , . . . , 5=) = max{deg 58}. This is a complicated
way of saying

#{G ∈  : 5 (G) = 0},
but we do so to emphasise the link with ABC.

The result is then
Theorem 2.10.1 Mason-Stothers. Let

4 , 5 , 6 ∈  [G], 4 + 5 = 6

be pairwise coprime and all of height > 0. Then

ℎ(4 , 5 , 6) < A(4 5 6) = A(4) + A( 5 ) + A(6).

We have sharpness if and only if 5 /6 is a Belyi map for P1 → P1 with ( 5 /6)(∞) ∈
{0, 1,∞}. Another way of saying this is that if deg 5 = deg 6 then their leading
coefficients are equal, and hence deg(4) < deg( 5 ).

Proof. First of all we note that the statement is symmetric in 4 , 5 , 6, so we
may arrange that ℎ(6) ≤ ℎ(4 , 5 ) which implies that ℎ(4) = ℎ( 5 ) = ℎ(4 , 5 , 6).
The second statement is less obviously invariant but note that ) is a Belyi
function is equivalent to 1 − ) and 1/) being Belyi also and this preserves
)(∞) ∈ {0, 1,∞}, so rearranging does not change the truth of the second
statement either. Let ) = 5 /6 so deg()) = max{deg( 5 ), deg(6)} = ℎ(4 , 5 , 6),
we will denote this by ℎ now. Apply Riemann-Hurwitz (surprise-surprise)

−2 = −2ℎ +
∑
G∈P1

4)(G) − 1.

Let
'H =

∑
G: 5 (G)=H

4)(G) − 1

be the ramification above H, we will consider �0 , �1 , �∞. These ramification
numbers will simply be ℎ−#()−1(H)). Lets beginwith '1, we have 5 (G)/6(G) =
1 so 4(G) = 0 and in fact

'1 = ℎ(4) − A(4) = ℎ − A(4).

For '0 we have either 5 (G) = 0 or 6(G) = ∞. Having 6(G) = ∞ means G = ∞
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but this cannot really happen as ℎ( 5 ) ≥ ℎ(6). So this is really just∑
G: 5 (G)=0

4)(G) − 1 = ℎ − A( 5 ).

Finally )(G) = ∞ only when 6(G) = 0 or G = ∞. If ℎ( 5 ) = ℎ(6) then )(∞) ≠ ∞
and we have simply

'∞ = ℎ − A(6).
If ℎ(6) < ℎ( 5 ) then we also have )(∞) = ∞ so we pick up an extra preimage
and we get instead

'∞ = ℎ − (A(6) + 1).
Back up in Riemann-Hurwitz this comes down (magically?) to

−2 =���
���:

0
−2ℎ + ℎ + ℎ + ℎ − A(4) − A( 5 ) − A(6) + ' − �ℎ( 5 )>ℎ(6)

so
' = ℎ − A(4 5 6) − 2 + �ℎ( 5 )>ℎ(6)

but of course ' ≥ 0 so
ℎ ≥ A(4 5 6) + 1

with equality exactly when

ℎ = A(4 5 6) + 1 =⇒ ' = 0, ℎ( 5 ) > ℎ(6).

' = 0 is equivalent to being Belyi. �

2.10.2 Back to number theory
That was all well and good, but this is a number theory seminar, not a function
field analogues of number theory seminar, so let’s take it back to why we are
all here, solving Diophantine equations.

Let’s try and find nontrivial integral points on Mordell curves!

�: : H2 = G3 + :.
Example 2.10.2

10012 = 50093 − (50093 − 10012)
so I found a large point on

H2 = G3 − (50093 − 10012) = G3 − 125675213728

are you not impressed? �

Although this point would look slightly non-trivial if I started with the
curve 50093 is roughly 125675213728 anyway so you should only be impressed
if I find points of height somewhat larger than the coefficients. We should
probably ask that

|G |3 > |: |
by some margin at least.

A nice question is then given : how big can an integer point (G, H) on �:
be? Bounds are known, e.g. Via work of Baker we get

max(|G |, |H |) < 41010 |: |1000 .

Ouch.
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If we want to study more realistic bounds we can instead reverse the
problem. Can we minimise G3 − H2 for integer G, H, how close can the square
of a large integer and the cube of a large integer be? Euler showed that
|G3 − H2 | = 1 has only 1 (interesting) solution, for example.

Marshall Hall was interested in this, did some nice computations and
conjectured:

Conjecture 2.10.3 Marshall Hall’s conjecture, 1970. If

G3 − H2 = :

for integers G, H then

|: | >
√
|G |
5

(or : = 0...).
This is false!

Example 2.10.4 Elkies (who else?). If

G = 5853886516781223, H = 447884928428402042307918

is a point on
H2 = G3 − 1641843

then √
|G |
:

= 46.6004943471754.

�
This is far larger than the previous best known, but still remains the record

as far as I can tell. It seems Hall’s conjecture is unlikely to be true for any fixed
constant, but the following of Stark-Trotter is more believable.

Conjecture 2.10.5 Stark-Trotter/Weak Hall. For any & > 0 there is some �(&)
such that for any G, H integers

|G3 − H2 | > �(&)G 1
2−&

for any G > �(&).
If Hall’s/Stark-Trotter is true we get a huge improvement on Baker√

|G |
|: | < 100 =⇒ G < 104:2

and hence
H2 = G3 + : < 1012:6 + :

giving polynomial bounds on G, H in terms of :.
How might one find such triple (G, H, :) that is extremal? One approach is

to try and come up with a parametrisation of nice triples. We can search for
polynomials -(C), .(C),  (C) and then plug in various integer values for C and
hope for the best. To give ourselves the best chance of succeeding we want
 (C) to be smaller than -(C)3 and .(C)2 for some values of C. This leads us to
ask for  to be of smallest degree possible. So how low can we go?

This is the point where we come full circle right, we are searching for

-(C)3 − .(C)2 =  (C)
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with degree of  minimised, so we apply Mason-Stothers to see that, if " is
the degree of the left hand terms we have deg(-) = 2< and deg(.) = 3<,
indeed ℎ in Mason-Stothers is then 6< We also have A(-3) = A(-) ≤ 2< and
A(-2) = A(.) ≤ 3< so together Mason-Stothers gives

6< < 2< + 3< + A( )

or < < A( ). So we have lower-bounded the degree of  in terms of 1
2 deg(-)

for example.
We just proved:

Conjecture 2.10.6 Birch B. J., Chowla S., Hall M., Jr., Schinzel A. On the
difference G3− H2, 1965.. Let -,. be two coprime polynomials with -3 , .2 of equal
degree (6<) and equal leading coefficient, then

 = -3 − .2

is of degree > <.
(Now the speaker has just given a theorem with an inequality, so in order to appear

smart one of you should ask is this bound sharp.)
The bound is sharp, this can mean several things in general, originally it was asked

that for infinity many < there is an example where deg = < + 1.
The first part was proved initially by Davenport (in the same year, and

journal). The second part had to wait until ’81 for Stothers to prove it.
Someone else should probably also ask, how is any of this related to

Dessins?
To prove sharpness we have to exhibit for each < triple of polynomials

-,.,  of degrees 2<, 3<, < + 1. Coming up with polynomial families is
hard, drawing stupid pictures is easy, can Dessins aid us here?

Lets back-track, when we proved Mason-Stothers we also said that sharp-
ness was equivalent to 5 /6 being Belyi, so -(C)3/ (C) = ( (C) + .(C)2)/ (C) =
.(C)2/ (C)+1 should be a Belyimap of degree 6< from P1 → P1. What does its
ramification look like? We should have all preimages of 0 degree 3, preimages
of 1 degree 2, and above infinity < + 1 points of degree 1 and the remaining
of degree 6< − (< + 1) = 5< − 1.

How can we draw a Dessin like this? Begin with a tree with all internal
vertices degree 3, with 2< vertices, this will have 2< − 1 edges, and as it is
trivalent by the handshake lemma

3#{internal} + #{leaves} = 4< − 2

and
#{internal} + #{leaves} = 2<

giving
2#{internal} = 2< − 2
#{internal} = < − 1
#{leaves} = < + 1

Add loops to the leaves, you now have a clean Dessin as above. It has 2< − 1+
< + 1 = 3< edges. We have a face for every loop of degree 1, and one on the
outside of degree < + 1+ 2(2< − 1) = 5< − 1 as each internal edge is traversed
twice if you walk around the outside. So this works!

Example 2.10.7 For < = 1

(G2 + 2)3 − (G3 + 3G)2 = 3G2 + 8.
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< = 2
(G4 − 4G)3 − (G6 − 6G3 + 6)2 = 8G3 − 36.

�

Example 2.10.8 For < = 5

-(C) = 1
9 (C

10 + 6C7 + 15C4 + 12C)

.(C) = 1
54 (2C

15 + 18C12 + 72C9 + 144C6 + 135C3 + 27)

 (C) = − 1
108 (3C

6 + 14C3 + 27)

and we can let C = −3 to get -(−3) = 5234, .(−3) = −378661 and  (−3) = −17,
so we have a point

(5234, 378661) ∈ �17 : H2 = G3 + 17

letting C = ±9 we get

|3842427663 − 75319694514582 | = 14668

|3906200823 − 77202586434652 | = 14857

both of which have √
|G |
:
≈ 1.33,

these get lower as we increase C though. �

We should expect this decrease from this method as if deg- = 2< and
deg = < + 1 then

√
-(C)/ (C) grows like C</C<+1 = C−1.

Can we do the same for abc?
Take the Dessin with a deg 1 vertex at infinity, degree 3 at 0 with an edge

surrounding 1, we get a Belyi function

5 (G) = 64G3

(G + 9)3(G + 1) , 5 (G) − 1 = −(G
2 − 18G − 27)2
(G + 9)3(G + 1)

plugging in G = 0/1 and cross multiplying gives

64031 + (02 − 1801 − 2712)2 = (0 + 91)3(0 + 1)

which could of course be verified independently, but howwould you find this
identity without Dessins? Now for 0 = −32, 1 = 23 we get

−221 · 23 + 112 = −1 · 32 · 56 · 73

or
112 + 32 · 56 · 73 = 221 · 23

This is the second highest quality abc triple known with quality

log 2
log' = 1.62599

(the current winner has quality 1.6299).
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References. A semi-random order, maybe starting at the top is nice though.
If you have trouble finding something let me know.

1. Belyi’s theoremandDessinsd’enfant -KoundinyaVajjha https://kodyvajjha.
github.io/images/bel.pdf

2. On Computing Belyi Maps - J. Sĳsling, J. Voight

3. Belyi Functions: Examples, Properties, and Applications - Zvonkin (re-
ally nice survey)

4. OnDavenport’s bound for the degree of 5 3− 62 and Riemann’s Existence
Theorem - Umberto Zannier

5. Unifying Themes Suggested by Belyi’s Theorem - Wushi Goldring

6. Polynomial Identities and Hauptmoduln - W. W. Stothers

7. Elliptic Surfaces and Davenport-Stothers Triples - Tetsuji Shioda

8. The abc-theorem, Davenport’s inequality and elliptic surfaces - Tetsuji
Shioda

9. It’s As Easy As abc - Andrew Granville, Thomas J. Tucker

10. Polynomial and Fermat-Pell families that attain the Davenport-Mason
bound - Noam D. Elkies, Mark Watkins (on Watkins webpage)

11. Halltripels en kindertekeningen - Hans Montanus (in Dutch, but math
is universal right?)

12. Computational Number Theory and Algebraic Geometry Spring 2012,
taught by Noam Elkies, notes by Jason Bland

13. Davenport-Zannier polynomials over Q - Fedor Pakovich, Alexander K.
Zvonkin (a nice extension perhaps?)

14. Minimum Degree of the Difference of Two Polynomials over Q, and
Weighted Plane Trees - Fedor Pakovich, Alexander K. Zvonkin (as above)

15. The ABC-conjecture for polynomials - Abhishek Parab

16. On Marshall Hall’s Conjecture and Gaps Between Integer Points on
Mordell Elliptic Curves - Ryan D’Mello

17. Neighboring powers - F. Beukers, C. L. Stewart (a more general problem,
but nice history and examples)

18. Rational Points Near Curves and Small Nonzero |G3 − H2 | via Lattice
Reduction - Elkies

19. ABC implies Mordell - Elkies

20. Dessins d’enfant - Jeroen Sĳsling (master thesis)

21. Algorithms and differential relations for Belyi functions - Mark van
Hoeĳ, Raimundas Vidunas.

22. Belyi functions for hyperbolic hypergeometric-to-Heun transformations
- Mark van Hoeĳ, Raimundas Vidunas (has application to ABC over
number fields at the end)

https://kodyvajjha.github.io/images/bel.pdf
https://kodyvajjha.github.io/images/bel.pdf
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23. Some remarks on the S-unit equation in function fields - Umberto Zan-
nier

24. A note on integral points on elliptic curves - Mark Watkins

25. On Hall’s conjecture - Andrej Dujella (more recent progress)

26. Hecke Groups, Dessins d’Enfants and the Archimedean Solids - Yang-
Hui He, and James Read

27. Belyi functions for Archimedean solids - Nicolas Magot, Alexander
Zvonkin (didn’t really use this but it’s nice!)

2.11 ThreeShortStories aboutBelyi’s theorem(Ricky)

Theorem 2.11.1 -/C a curve. Then - is defined over Q iff there exists a Belyi map

) : - → P1

such that �()) ⊆ {0, 1,∞}.
Main reference: Unifying Themes Suggested by Belyi’s Theorem - Wushi

Goldring

2.11.1 The case of the Rising Degree

Definition 2.11.2 The Belyi degree of -/Q (a curve) is the minimal degree of
) : - → P1 a Belyi map. ♦

Question, how does the Belyi degree of -/Q relate to the arithmetic of -?

Definition 2.11.3 The field of moduli of -/Q is the intersection over all fields
⊆ Q over which - is defined. Similarly for a morphism ) : - → .. ♦

Remark 2.11.4 This is not the same as the field of definition always.
Given -/Q with field of moduli  we say - has good (resp. semistable)

reduction at p ⊆ O if there exists a model for - over O p s.t. the special fibre
is smooth (resp. semistable) reduction.

For ? ∈ Z we say - has good/semistable reduction at ? if it dies for all p|?.

Theorem 2.11.5 Zapponi. If -/Q then the Belyi degree of - is at least the largest
prime ? ∈ Z such that - has bad semistable reduction at ?.

Remark 2.11.6
1. The lower bound is not “sharp” because there exist �/ with good

reduction everywhere, but no degree 1 maps ) : �→ P1.

2. If
� : H2 = G3 + G2 + ?

then � has bad semistable reduction at ? so the Belyi degree of � is ≥ ?.

Theorem 2.11.7 Beckmann. Let ) : - → P1 be a Belyi map with field of moduli
". Let � be the Galois group of the Galois closure of ). Then for all ? such that
? - |� |, )̃ : -̃ → P1 has good reduction at ? and ? is unramified in ".

Proof. Of Zapponi.
Let ) : - → P1 be a Belyi map of degree =. Let  be the field of moduli
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of -, " the field of moduli of ) then "/ is a finite extension. Take � as
above and let p ⊆ O be a place of bad semistable reduction for -. Then ℘ |p
for ℘ ⊆ O" is a place of bad semistable reduction for ). By Theorem 2.11.7
? | |� | for ? ∈ Z below p but � ↩→ (= which implies ? |=! so ? ≤ =. �

2.11.2 Finitists Dream
Recall that if : is a perfect field of characteristic ? then

) : �1 → �2

is said to be tamely ramified at % ∈ �1 if ? - 4)(%) (wildly ramified if ? |4)(%)).

Theorem 2.11.8 Wild ?-Belyi. For � a curve over : perfect of characteristic ?,
there exists a “wild Belyi map”

) : � → P1

such that �()) = {∞}. I.e. every curve /: is birational to an étale cover of A1.

Example 2.11.9
G< → A1

G ↦→ G? + 1
G

but the tame étale fundamental group of A1 is 0. �

Theorem 2.11.10 Tame ?-Belyi (Saidi). Let ? > 2. For �/F? there exists
) : � → P1 tamely ramified everywhere (i.e. possibly unramified) with

�()) ⊆ {0, 1,∞}.

Lemma 2.11.11 Fulton. Let ? > 2 then for �/: (: algebraically closed of character-
istic ?) there exists # : � → P1 such that

4#(%) ≤ 2.

Proof. Of Tame ?-Belyi
Take # : � → P1 as in the lemma then

�(#) ⊆ P1(F?< )

for some <. Define
5 : P1 → P1

by
G ↦→ G?

<−1.

Take ) = 5 ◦ #. So � is tamely ramified everywhere and �()) ⊆ {0, 1,∞}. �
Analogue of Fulton’s lemma is that there exists

� : � → P1

for char(:) ≠ 3 such that 4�(%) = 1 or 3.

2.11.3 In the Stacks

Observation 2.11.12 P1 r{0, 1,∞} is the moduli space of genus 0 curves with
four (ordered) marked points.

(P1 , 
1 , 
2 , 
3 , 
4) ↦→ im(
4)when 
1 ↦→ 0, 
2 ↦→ 1, 
3 ↦→ ∞.
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Definition 2.11.13 Let ℳ6,= be the moduli space of genus 6 curves with =
(ordered) marked points (thenℳ6,[=] is the same for unordered points). If =
is large enough relative to 6 thenℳ6,= will be a scheme (but the unordered
version will not). ♦

Example 2.11.14
ℳ0,4 ' P1 r{0, 1,∞}

�

Question 2.11.15 Braungardt. Is every -/Q (smooth projective variety) bira-
tional to a finite étale cover of someℳ6,[=]? �

Note 2.11.16 There exists an étale map

ℳ6,= →ℳ6,[=]

by forgetting the ordering of the points.
So the dimension 1 case of the conjecture is Belyi’s theorem, by

- r )−1(�())) → P1 r{0, 1,∞} ' ℳ0,4 →ℳ0,[4].

In dimension 2 we haveℳ1,[2] andℳ0,[5], the only 2-d spaces of interest.
We also have an étale map

ℳ1,[2]

−→ℳ0,[5]

as follows:
� = (�; {@1 , @2}) ∈ ℳ1,[2]

with

(�) = (P1; {A1 , A2 , A3 , A4 , A5})

where the A8 come from constructing a projection ) from � to P1 situated
perpendicularly to the line joining @1 , @2. This then has 4 ramification points

�()) = {A1 , A2 , A3 , A4}

and A5 = )(@1) = )(@2). So Braungardt for surfaces (-/Q)? Does there exist
) : - →ℳ0,[5] which is étale?

Theorem 2.11.17 Braungardt. For -/Q an abelian surface - is birational to an
étale cover ofℳ0,[5].

Proof. Sketch.
For an abelian surface over Q there exists another isogenous to it which is

principally polarized. Such surfaces come in two flavours

�1 × �2

or �(�) for � of genus 2.
Case 1:
Let )8 : �8 → P1 r{0, 1,∞} be Belyi maps. Then we have 
 : �

)1 ,)2−−−−→
P1 ×P1. Then 
 restricts to a finite unramified cover


−1(() 
−→ (

where
( = (P1 r{0, 1,∞} × P1 r{0, 1,∞}) r Δ.
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Note that ( ' ℳ0,5 by

(0, 1) ↦→ (P1; {0, 1,∞, 0, 1}).

So � is birational to 
−1(()which is an étale cover ofℳ0,[5].
Case 2
If � = �(�) then use ) : � → P1 and a relation between � and Sym2(�). �

2.12 Dessins in Physics (Jim)
Physics. Let " be a manifold with a metric 6. We call the pair (", 6) a
“spacetime manifold”. Let ℰ be a “space of fields”, either �∞("), sections of
some �→ ", connections, or similar.

(()) =
∫
"

ℒ())

for ) ∈ ℰ and ℒ the Lagrangian. “Physically realisable states” are then fields
) that minimise (()). , is a superpotential, this is a term in ℒ that satisfies
some special symmetries. E.g. we could also have

(()1 , )2) =
∫
"

ℒ()1 , )2)

the, might satisfy,()1 , )2) =,()2 , )1).

Definition 2.12.1 Gauge transformations. Let � � �
?
−→ " be an action s.t.

each fibre �G = ?−1(G) is a representation of �. A gauge is a section B(G) of
�→ ". A gauge transformation is a map 6 : " → � s.t.

6(G)B(G)

is another section, call � the gauge group. The important gauge transforma-
tions are the ones that fix the set of physically realisable states (i.e. fixes the
subset of ℰ that minimise (). ♦

Quivers and dessins. Let’s now study the relationship between quivers and
dessins.
Example 2.12.2N = 4 SYM (supersymmetric Yang-Mills) (Gauge symmetries
given by some product of SU(#)) . �

A quiver is a directed graph, possibly with self-loops. Here we think of
the nodes as corresponding to factors of the gauge group. And the arrows as
fields, so in a bouquet with 3 petals we have three fields, and only � = SU(#).

There is also the notion of a periodic quiver (a tiling of the plane). We
can take the triangular lattice and consider its dual, this is a hexagonal tiling
with a bicolouring corresponding to the fact we had upwards pointing and
downwards pointing triangles. This is a Dimer model.

Relating the Dimermodel back to physics: We have hexagonal faces in cor-
respondence with factors of the Gauge group, and edges fields, with vertices
terms in, .

So one distinct face gives one factor in the gauge group so � = SU(#).
3 distinct edges give 3 fields -1 , -2 , -3. To recover , consider the permu-
tation arising from reading the edges around the vertices counterclockwise.
A black vertex (1, 2, 3) gives �� corresponding to a positive term in , . A
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white vertex (1, 2, 3) gives �, corresponding to a negative term in , . Then
�∞ = (���, )−1 = (123) �8 gives a term for each cycle. Each cycle in �� gives a
product of fields indexed by the cycle, e.g. in this example �� gives -1-2-3.
Each cycle in �−1

,
gives a product of fields indexed by the cycle, e.g. in this

example �, gives -1-3-2. Then

, = Tr((sim of �� terms) − (sim of �, terms))

= Tr(-1-2-3 − -1-3-2).

Aut({�� , �, , �∞}) = {� ∈ (3 : ��8�−1 = �8)
= {1, (123), (132)}

= Z/3Z.

The fundamental domain of the Dimer gives a dessin on the torus with
two vertices of degree 3. This corresponds to the Belyi pair (Σ, �)where

Σ : H2 = G3 + 1

� : Σ→ P1

(G, H) ↦→
H + 1

2 .

Aut(Σ, �) ' Aut({�� , �, , �∞})
Aut(Σ, �) is generated by

(G, H) ↦→ (F3G, H)
where F3 = 1.
Example 2.12.3 Take the quiver with two vertices and two edges in each di-
rection connecting them. This has 4 fields and two factors of � (i.e. � =

SU(#) × SU(#)). The dimer is a square lattice alternately coloured, with
�� = �, = (1234), �∞ = (13)(24).

, = Tr(-1-2-3-4 − -1-4-3-2).

In this case the Belyi pair is

Σ : H2 = G(G − 1)(G − 1
2 )

� =
G2

2G − 1 .

Aut({�� , �, , �∞}) = 〈(1234)〉 ' Z/4Z

)± : (G, H) ↦→
(

G

2G − 1 ,
±8

(2G − 1)2

)
)2
+ = )2

− : (G, H) ↦→ (G,−H)

)3
+ = )−1

+ = )−

)4
+ = 1

so
Aut(Σ, �) ' Z/4Z

�−1(0) = {(0, 0)}
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�−1(1) = {(1, 0)}

�−1(∞) = {(12 , 0), (∞,∞)}

on the Dimer we have the square lattice so taking a fundamental domain
containing of the vertices we see the torus as a topology. �

Example 2.12.4 Final example. Let’s jump straight to the Dimer the hexagonal
lattice with fundamental domain containing 6 vertices. We have 9 fields and
three factors in the gauge group � = SU(#)2.

�� = (147)(258)(369)

�, = (123)(456)(789)
�∞ = (195)(276)(384)

so
, = Tr

∑
8 , 9 ,:

- 8
12-

9

23-
:
31&8 9:

where

&8 9: =

{
sgn(8 9:) if 8 , 9 , : distinct
0 otw

- 8
12 acts on the 8th field by #, #̄ , 1 where # is the canonical representation, #̄

the anticanonical and 1 is trivial.

Aut({�� , �, , �∞}) ' Z/3Z × Z/3Z

now the Belyi pair

Σ = projective closure of � = {(G, H) : G3 + H3 = 1}

�(G, H) = G3

�1(G, H) = (F1G, H)
�2(G, H) = (G, F2H)

F3
8 = 1.

�
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Supersingular isogeny graphs
and Quaternion Algebras

These are notes for BUNTES Fall 2018, the topic is Supersingular isogeny
graphs and Quaternion Algebras.
http://math.bu.edu/people/midff/buntes/fall2018.html.
Outline:

1. Background, isogeny graphs, applications.

2. Supersingular isogeny graph cryptography (candidate for post-quantum
cryptography).

3. Introduction to Quaternion algebras.

4. The Deuring correspondence:{
maximal orders O ⊆ �?,∞

}
/∼↔

{
9 s.s. ∈ F?2

}
/Gal(F?2/F?).

References: [95, 101, 100]

3.1 Isogenygraphs: backgroundandmotivation (Maria
Ines)

3.1.1 Background
Let : = F@ , char(:) = ? ≠ 2, 3.

Definition 3.1.1 Elliptic curves. An elliptic curve �/: is a smooth projective
curve of genus 1 together with a point∞ ∈ �(:). ♦

We can always write such a curve using a Weierstrass equation

� : H2 = G3 + 0G + 1, 0, 1 ∈ :

� is really the projective closure of this affine equation.

Definition 3.1.2 9-invariants. The 9-invariant of an elliptic curve � is

9(�) = 9(0, 1) = 1728 403

403 + 2712

doesn’t depend on the choice of Weierstrass equation. ♦

86

http://math.bu.edu/people/midff/buntes/fall2018.html
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Fact 3.1.3
1. �, �′ are isomorphic over : ⇐⇒ 9(�) = 9(�′).

2. There is a 1-1 correspondence

: ↔ :-isomorphism classes of EC’s /:.

Definition 3.1.4 Isogenies. Let �, �′/: be elliptic curves. An isogeny, ) : �→
�′ is a non-constant morphism of pointed curves. The degree deg) is the
degree as amorphism. �, �′ are said to be =-isogenous if there exists) : �→ �′

of degree =. 9 , 9′ ∈ : are =-isogenous if the corresponding elliptic curves are.
♦

Fact 3.1.5
1. If ? - = = deg) then the kernel of ) has size = () is separable).

2. every finite subgoup of �(:) is the kernel of a separable isogeny from �, unique
up to isomorphism.

3. Every =-isogeny ) : �→ �′ has a dual isogeny )̂ : �′→ � such that

) ◦ )̂ = )̂ ◦ ) = [=],

the multiplication-by-= map.

4. The =-torsion subgroup

�[=] =
{
% ∈ �(:) : =% = ∞

}
is isomorphic to (Z/=)2 if ? - =.

Lemma 3.1.6 Let �/: be an elliptic curve with 9(�) ∉ {0, 1728} and let ; ≠ ? be
prime, up to isomorphism the number of ;-isogenies from � defined over : is 0,1,2 or
; + 1.
Proof. In Maria’s notes. �

The modular equation. Let 9(�) be the modular 9-function. For each prime
; the minimal polynomial ); of 9(;�) over C(9(�)) is the modular polynomial

); ∈ Z[9(�)][H] ' Z[G, H].

Fact 3.1.7
1. ); is symmetric in G, H and has a degree ; + 1 in both variables.

2. The modular equation
);(G, H) = 0

is a canonical model for
.0(;) = Γ0(;)\H

it parameterises pairs of elliptic curves related by an ;-isogeny. This moduli
interpretation is still valid when we use any field � with char(�) ≠ ;.

3. Let <;(9 , 9′) = ordC=9′ );(9 , C), whenever 9 , 9′ ≠ 0, 1728,

<;(9 , 9′) = <;(9′, 9).
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The endomorphism ring. Definition 3.1.8 Endomorphisms of elliptic curves.
An endomorphism of an elliptic curve � is either the zero map or an isogeny
from � to itself. They form a ring End(�). ♦

For = ∈ // we ahve [=] ∈ End(�) so Z ⊆ End(�) over a finite field :,
End(�) is always larger than Z. It is either an order in an imaginary quadratic
field, in which case we say � is ordinary. Or an order in an quaternion algebra,
in which case we say � is supersingular. We say � has complex multiplication
by O.

Proposition 3.1.9 Let �/: = F?= be an elliptic curve, TFAE
1. � is supersingular.

2. �[?] is trivial.

3. The map [?] : �→ � is purely inseparable and 9(�) ∈ F?2 .

Note 3.1.10 If �, �′ are isogenous elliptic curves then End(�)⊗Z Q ' End(�′)⊗Z
Q. So supersingularity is preserved by isogenies.

Isogeny graphs of elliptic curves. Let : = F@ with char(:) = ? and ; ≠ ? be
prime.

Definition 3.1.11 Isogeny graphs. The ;-isogeny graph �;(:) is the directed
graph with vertex set : and edges (9 , 9′) present with multiplicity

< 9(; , ;′) = ordC=9 );(9 , C)

vertices are : isomorphism classes of elliptic curves /:, edges are isomorphism
classes of ;-isogenies defined over :. ♦

Since <;(9 , 9′) = <(9′, 9) whenever 9 , 9′ ≠ 0, 1728 the subgraph of �;(:)
supported on : r {0, 1728} can be thought of as undirected. By the last note
�;(:) consists of ordinary and supersingular components.

Supersingular isogeny graphs. Since every supersingular 9-invariant lives
in F?2 if � is supersingular all roots of );(9(�), H) live in F?2 . Every vertex in a
supersingular component has out-degree ; + 1.

Moreover by a result of Kohel �;(F?2) has only one supersingular compo-
nent.

By the above if ? ≡ 1 (mod 12) then the supersingular component of
�;(F?2) is an undirected (; + 1)-regular graph with around ?/12 vertices.

Theorem 3.1.12 Pizer. The supersingular component of �;(F?2) is a Ramanujan
graph.

Definition 3.1.13 Ramanujan graphs. A connected 3-regular graph is a
Ramanujan graph if �2 ≤

√
3 − 1 where �2 is the second largest eigenvalue of

its adjacent matrix. (The largest one is always 3, by 3-regularity.) ♦

Ordinary isogenygraphs. Let�/F@ beanordinary elliptic curve, thenEnd(�) '
O is an order in an imaginary quadratic field  with Z[�] ⊆ O ⊆ O where �
is Frobenius and

 = Q(
√
(Tr�)2 − 4@)

by Tate, isogenous elliptic curves have the same Tr�.
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We can separate the vertices in the component + of �;(:) containing 9(�)
into levels +0 , . . . , +3 so that 9(�′) ∈ +8 if 8 = E;([O : O′]). We’ll see that⋃3
8=0+8 is connected.
Let ) : � → �′ be an ;-isogeny between two elliptic curves with CM by

O = Z + �Z, O′ = Z + �′Z. Then )̂�′) ∈ End(�) =⇒ ;�′ ∈ O. Similarly
;� ∈ O′. There are 3 cases

1. O = O′ () is horizontal).

2. [O : O′] = ; () is descending).

3. [O′ : O] = ; () is ascending).

In the last two cases we say ) is critical.

Horizontal isogenies. �/: with CM by O ⊆  imaginary quadratic. Let a
be an invertible ideal.

�[a] = {% ∈ �(:) : 
(%) = 0∀
 ∈ a}

this is a finite group so it is the kernel of a separable isogeny )a. If ? - #(a)
then deg()a) = #(a)with a invertible implying )a is horizontal.

Each horizontal ;-isogeny ) arises from some invertible ideal a of norm ;.
If ; |[O : O] no such ideals exist, otherwise the number of invertible ideals

of norm ; is

1 +
(
disc( )

;

)
=


0 if ; inert
1 if ; ramified
2 if ; splits

Vertical isogenies. Let O be an order in an imaginary quadratic field  of
discriminant � < −4 and let O′ = Z + ;O.
Lemma 3.1.14 Let �′/: be an elliptic curve with CM by O′ then there is a unique
ascending ;-isogeny �′→ � with �/: an elliptic curve with CM by O.
Definition 3.1.15 An ;-volcano + is a connected undirected graph whose ver-
tices are partitioned into levels +0 , . . . , +3.

1. The subgraph +0 is regular of degree ≤ 2.

2. For each 8 > 0 each vertex in +8 has exactly one neighbour in level +8−1,
and this accounts for all edges outside of +0.

3. For 8 < 3 each vertex has degree ; + 1.

The number 3 is the depth. ♦01234567891011121314151617181920212223242526
Figure 3.1.16 A 3-volcano

The Sage code used to make this picture was:

N = 3 # number of flows
p = 3
d = 2
G = graphs.BalancedTree(p,d) # a (p+1)-regular tree of depth

d
G.delete_edge(G.edges()[0])
F = G.subgraph(G.connected_component_containing_vertex(0)) #
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A single ' flow '
H = N*F
H.add_cycle([len(F.vertices())*i for i in range(N)])
show(H)
#latex(H) # for the code

Theorem 3.1.17 Kohel. Let + be an ordinary component of �;(F@) that doesn’t
contain 0 or 1728 then + is an ;-volcano s.t.

1. All vertices in +8 have the same endomorphism ring O8 .

2. The subgraph on +0 has degree

1 +
(
disc( )

;

)
where  = Frac(O0)

3. If (
disc( )

;

)
≥ 0

then #+0 is the order [;] in Cl(O0) else #+0 = 1.

4. The depth of + is 3 = E;([O : Z[�]]) where � is the Frobenius morphism on
any � with 9(�) ∈ + .

5. ; - [O : O0], [O8 : O8+1] = ; for 0 ≤ 8 < 3.

Application: Identifying supersingular elliptic curves. Algorithm3.1.18 Suther-
land. Input: Elliptic curve �/:, char : = ?.

Output: Ordinary or supersingular.

1. If 9(�) ∉ F?2 then ordinary.

2. If ? = 2, 3 return supersingular if 9(�) = 0 or ordinary otherwise.

3. Find 3 roots of )2(9(�), 4) over F?2 if not possible return ordinary.

4. Walk 3 paths in parallel for up to dlog2 ?e + 1 steps. If any of these paths get to
+3, return ordinary.

5. Otherwise supersingular.

3.2 Supersingular isogenygraphcryptography (Asra)
Supersingular isogeny graph crypto is a candidate for post-quantum crypto,
not based on factoring etc.

Recall last time we defined Ramanujan graphs, graphs with very good
connectivity properties, a type of expander.

Proposition 3.2.1 If � is a Ramanujan graph, G ∈ +, ( ⊆ + . For a sufficiently large
path beginning at G, the probability that the path ends in ( is at least |( |/2|+ |.

Upshot: supersingular isogeny graphs are (; + 1)-regular, undirected, Ra-
manujan, connected (technically, Ramanujan means connected already, but its
worth emphasising).
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Some of our algorithms are only dependent on having a graph with this
property, not so much the interpretation in terms of isogenies.

Supersingular isogeny graphs first appeared in crypto as potential hash
functions.

3.2.1 Hash functions
(2010) (Charles, Goren, Lauter) proposed a cryptographically secure hash
function based on the hardness of computing paths in a supersingular isogeny
graphs.

Definition 3.2.2 Hash functions. A hash function is a deterministic function
ℎ : {0, 1}∗ → {0, 1}= . ♦

Definition 3.2.3 Collision resistance. A hash function ℎ is collision resistant
if its hard to find G1 , G2 with G1 ≠ G2 s.t. ℎ(G1) = ℎ(G2). ♦

Definition 3.2.4 Preimage resistance. Ahash function ℎ is preimage resistant
if given H ∈ {0, 1}= its hard to find G s.t. ℎ(G) = H. ♦

Cool example, private set intersection, say two groups, Starbucks and BU
want to find a list of common customers (students who bought something at
Starbucks) but don’twant to reveal anything to eachother about the students or
customers not in the intersection. Compute hashes of the names of customers
and share the hashes, can compute the size of, and the intersection itself.

3.2.2 Supersingular isogeny hash functions
Parameters. �;(F?2), ? ≡ 1 (mod 12), ; to be small, fix an ordering on the
edges, fix an initial vertex 90 and an incoming edge.

Protocol. < ∈ {0, 1}∗ write this as an ;-bit string, < ∈ {0, 1, . . . , ; − 1}∗, walk
the graph based on < without backtracking.

Map the final 9 invariant to {0, 1}=≈log ? .

Properties. Difficult means exponential in the size of the input normally.

Proposition 3.2.5
1. Preimage resistant iff when given 9 it is difficult to compute a positive integer 4

and an isogeny ) : � 90 → � 9 with degree ;4 .

2. Collision resistant iff when given 9 it is difficult to compute 4 and ) : � 90 → � 90
with degree ;4 .

3.2.3 Diffie-Hellman Key Exchange (1976)

Choose ?, Z/?, 6 then Alice computes 60 send to Bob, he computes 61 and
sends it back, they both compute 601 , which is their shared secret.

The security is based on the hardness of computing 601 given 60 , 61 .

3.2.4 Supersingular isogeny Diffie-Hellman (SIDH)
Parameters. Supersingular elliptic curve of smooth order: fix ? to be big
enough ? = ;4�

�
;
4�
�
5 ±1. ;� , ;� small primes, 5 is a number chosen such that ? is

big. Construct a supersingular elliptic curve � such that #�(F?2) = (;4�
�
;
4�
�
5 )2,

using Broker’s algorithm.
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Construct bases (%� , &�) for �[;4�� ], (%� , &�) for �[;4�� ].

Protocol. Alice takes <� , =� ∈ Z/;4�
�

Bob takes <� , =� ∈ Z/;4�
�

Alice finds '� = <�%� + =�&�

Bob finds '� = <�%� + =�&�

Alice finds )� : �→ �/〈'�〉 = ��
Bob finds )� : �→ �/〈'�〉 = ��
They send each other �8 , )8(%8), )8(&8).
Both compute )′

�
: �� → ��/〈<�)�(%�) + =�)�(&�)〉 or analogous.

Shared secret is 9(���).

Hardness.

1. (Decisional supersingular isogeny problem)Given �, (%� , &�) a basis for
;
4�
�

torsion, let �� be another curve, is �� ;4�� isogenous to �?

2. (Computational supersingular isogeny problem) Let )� : �→ �� be an
isogenywith a kernel of the form 〈<�%�+=�&�〉. Given �� and )�(%�)
)�(&�), find '�. ?1/4 classical, ?1/6 quantum.

3. Given �� , �� , )�(%�), )�(&�), )�(%�), )�(&�) find 9-invariant of ���.

3.2.5 Supersingular isogeny public key
Classically DH key-exchange{ ElGamal encryption.

1. Key generation.
Alice: secret )� : �→ ��, public �� and )�(%�), )�(&�).

2. Encryption.
Bob: choose )� : �→ ��, compute 9(���).
Send Alice 2 = (�� , )�(%�), )�(&�), < ⊕ 9(���))

3. Decryption.
Alice use (�� , )�(%�), )�(&�)) to compute 9(���). Computes (< ⊕
9(���)) ⊕ 9(���) = <.

�(F?2), ? = ;4�
�
;
4�
�
5 ± 1, for 128-bit security use a 512-bit key.

3.2.6 Algorithmic aspects
1. (Choosing 5 ) Prime number theorem for arithmetic progressions gives

you a bound on the density of primes of the form ;
4�
�
;
4�
�
5 ± 1

2. Choosing a s.s. e.c. with the right group order, Broker’s algorithm.

3. Finding a basis for �[;4�
�
].

(a) Find a random point in �(F?2) say %.
(b) Check the order of (;4�

�
5 )2 ·%. If its ;4�

�
set %� = %. Otherwise repeat

from 1.
(c) Do the same with &� = &.
(d) Check independence by seeing if 4(%� , &�) has the right order, so

that it is in �[;4�
�
] torsion.



CHAPTER 3. SUPERSINGULAR ISOGENY GRAPHS AND QUATERNION ALGEBRAS93

4. Computing the kernels generated by '� = <�%� + =�&�, <� , =� ∈
Z/;4�

�
Z. Analogue of double and add. Set '� = %� + [<−1

�
=�]&�. Use

differential addition (when you compute �+�with side info �−�) and
a Montgomery ladder

5. (Computing smooth degree isogenies) Decompose the ;4�
�

isogeny into
4� different ;�-isogenies, )8 : �8 → �8+1 the kernel of )8 is 〈;4�−8−1

�
'�〉.

Vélu’s formula runs in $(;) for ;-isogeny.

3.3 Quaternion Algebras (Alex)
Q: Why study quaternion algebras?

A: They arise as the endomorphism algebras of supersingular elliptic curves
/F?2 .

I don’t want to spoiler next week at all, but I cannot talk about quaternion
algebras without a little bit of motivation first!

Example 3.3.1 What are we doing again? Lets take

 = F9 = F3[
] = F3[G]/(G2 − G − 1)

and
�/ : H2 = G3 + 
G = 5 (G),

simple eh? It’s supersingular as the 9-invariant is 0 (and are in characteristic 3).
Alternatively, count points or even compute theHasse invariant, the coefficient
of ? − 1 = 2 in 5 (G)(?−1)/2=1, yep, it’s 0.

We therefore have #�( ) = 9+1 = 10 sowehave a 2-torsionpoint (% = (0, 0))
and any other point we can use to generate (will be 5 or 10 torsion). Let G = 1
so H2 = 1 + 
 = 
2 so H = ±
, say & = (1, 
).

We have one endomorphism, ?-power frobenius G ↦→ G3, H ↦→ H3. How to
find another one?

Lets compute an isogenous curve and see what happens! We will compute
# : �→ �/〈%〉 = �′. In general the formulae are a little annoying [100], when
you have a 2-torsion point at (0, 0), not as bad:

# =

(
G +

5 ′(0)
G

, H −
H 5 ′(0)
G2

)
5 ′(0) = 


so
# =

(
G2 + 

G

, H
G2 − 

G2

)
(aside: if 6/ℎ = (G2 + 
)/G then (6/ℎ)′ = (6′ℎ − 6ℎ′)/ℎ2 = (2G2 − (G2 + 
))/G2 =
(G2 − 
)/G2, sanity check/fast computation?). The curve is then

�′ : H2 = G3 + 0G2 + (
 − 5
)G + 0 = G3 − 
G.

I think really here we’re just recovering those classic formulae for 2-isogenies
between curves with a rational 2 torsion point at (0, 0) (used in 2-descent).

� : H2 = G(G2 + 0G + 1)
� : E2 = D(D2 + 01D + 11)
) : � → �

(G, H) ↦→ ((H/G)2 , H − 1H/G2)
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)̂ : � → �

(D, E) ↦→
(
1
4

(
E

D

)2
,
1
8 (E − 11E/D2)

)
So far so good, our curve doesn’t look exactly the same, but it’s 9-invariant

is, so we are still in business. Is

� ' �′?

If we substitute G = 
2G, H = 
3H into �′ we get


6H2 = 
6G3 − 
3G

H2 = G3 − 
−3G = G3 + 
G,
call this map �. Excellent, so to get #′ : �→ � we compose � ◦ #.

� ◦
(
G2 + 

G

,
(G2 − 
)H

G2

)
=

(

2 G

2 + 

G

, 
3 (G2 − 
)H
G2

)
=

(
(
 + 1)G

2 + 

G

, (−
 + 1)
(G2 − 
)H

G2

)
.

What happens to our other point &? #′(&) = (
2(1 + 
), 
4(1 − 
)) =
(−1, 
 − 1)

(0 : 0 : 1) ↦→ (0 : 1 : 0), (0 : 1 : 0) ↦→ (0 : 1 : 0), (1 : 
 : 1) ↦→ (−1 : 
 − 1 : 1),
(1 : −
 : 1) ↦→ (−1 : −
 + 1 : 1), (−1 : 
 − 1 : 1) ↦→ (1 : −
 : 1),
(−1 : −
 + 1 : 1) ↦→ (1 : 
 : 1), (
 : 
 + 1 : 1) ↦→ (−1 : −
 + 1 : 1),

(
 : −
 − 1 : 1) ↦→ (−1 : 
 − 1 : 1), (−
 : 1 : 1) ↦→ (1 : 
 : 1), (−
 : −1 : 1) ↦→ (1 : −
 : 1)

Aword of caution: If you are very awake you may check and be led to believe
that this is just the multiplication by −2 isogeny on �, its action on �(F9) points
is the same!!!!! It’s not the same isogeny though so you can relax. Now we
have an endomorphism ringwith two elements, what are the relations between
themselves, and each other?

As we quotiented by a rational 2-torsion point we have computed a factor
of � − 1, the other factor comes from quotienting by 5-torsion. In fact we find.
The frobenius has characteristic polynomial C2 + 9 = (C + 38)(C − 38) � looks like
38. # has characteristic polynomial C2 − 2C + 2 = (C + 1)2 + 1, so # + 1 looks like
±8. ?? · # = � − 1 ?? · (8 − 1) = 38 − 1, so ?? = 2 − 8 = 2 − (# + 1) = 1 − #.

So what if we quotient by non-rational 2-torsion? Pass to the quadratic
extension F34 , which we get from adjoining the other roots of 0 = G3 + 
G i.e.
±
√
−
. Denote this extension F3[�], (�2 − 1)2 = −
. We can use Vélu again, it’s

degree two still but a bit more ugh, you might need a computer from now on,
actually I’ve been using one all along.

) =

( (
 + 1) G2 +
(
−�3 − � − 1

)
G

G − (�2 − 1) , H
(−
 + 1) G2 +

(
�3 − �2 + � − 1

)
G − 1

(G − (�2 − 1))2

)
doing a computation it looks like ) satisfies )2 − ) + 2.

What are the relations between these? Hopefully they generate the en-
domorphism ring by now but without relations we are screwed! Do they
commute? Computing � = )# − #) is relevant, if 0, commutative, otherwise
not! Note that if they are algebraically dependant they must commute! In our
example we can compute �2 + 3 = 0 �
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Finish this example, compute the endomorphism ring as a recognisable
quaternion order.Aside: I now believe Asra when she says not to use Vélu’s
formulae for large degree!

Aside 2: Frobenius can be weird for supersingular curves, e.g. for

H2 = G3 + G/F9

we have � = −3. Or
H2 = G3 + 1/F25

we have � = −5
Indeed one can find on the internet claims like, all elliptic curves over finite

fields have extra endomorphisms because frobenius exists!Show by hand that
H2 + H = G3/F4 is supersingular and that frobenius is just the multiplication by
−2 map.PODASIP: this happens for all ?2?

3.3.1 Quaternion Algebras
Pretty much all of this material was ripped with the utmost love and affection
from [101], check it out.

Proposition 3.3.2 The theory of Quaternion algebras is very rich.

Proof. The above book is 800 pages long. �

So nowwe have gone out into nature and observed a beautiful new species
of algebra, time to catch it, pin it to a wall, dissect it to study it in detail. It
might not look as pretty any more but it’s the way the science is done.

Example 3.3.3 Hamilton’s quaternions. Hamilton’s quaternions H were the
first quaternion algebra to be discovered (citation needed). The structure is like
two copies of C tensored together in some non-commuting way over R. We
have a real algebra with two generators 8 , 9 s.t. 82 = 92 = (8 9)2 = −1 we let : = 8 9
for aesthetic reasons (note that these relations imply noncommutativity!). Like
this we get a division algebra. �

Quaternion algebras are a generalisation of this to other fields.

Definition 3.3.4 Quaternion algebras. Let � be a field (not characteristic 2), a
quaternion algebra over � is an algebra � over � for which there exist 0, 1 ∈ �×
such that there is a basis

1, 8 , 9 , : ∈ �
such that

82 = 0, 92 = 1, : = 8 9 = −98,
it is automatic that :2 = −01 from this.

We denote this particular quaternion algebra by
(
0,1
�

)
♦

Example 3.3.5

H =

(
−1,−1

R

)
.

�

Example 3.3.6 What is (
1, 1
�

) (
=

(
1,−1
�

))
?

We have another way to come up with 4-dimensional non-commutative alge-
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bras over fields, matrices! Let

8 =

(
1 0
0 −1

)
9 =

(
0 1
1 0

)
so

: = 8 9 =

(
0 1
−1 0

)
= −98

as required. �

Call this example split, in analogy with quadratic theory, If G2 − # has a
solution mod ? then

(
#
?

)
= 1 =

(
1
?

)
.

Note that if 0 or 1 ∈ (�×)2 then we can divide the corresponding basis
element by

√
0 or whatever and find that

(
0,1
�

)
=

(
1,1
�

)
. This shows:

Proposition 3.3.7 After passing to the algebraic closure (or even the quadratic clo-
sure!) every quaternion algebra is split.

This is helpful as it allows us to work with non-split quaternion algebras
as matrix algebras over a quadratic extension.

Example 3.3.8 H/R can be seen as Mat2×2(R(8)) = Mat2×2(C), explicitly

8 = 8

(
1 0
0 −1

)
=

(
8 0
0 −8

)
9 = 8

(
0 1
1 0

)
=

(
0 8

8 0

)
please excuse the unfortunate notational clash here, I hope you agree it’s
somewhat unavoidable. �

Here is a nice lemma I probably used implicitly already somewhere!

Lemma 3.3.9 An �-algebra � with �-algebra generators 8 , 9 satisfying 82 , 92 ∈ �×,
8 9 = −98 is automatically a quaternion algebra (i.e. dimension 4).

Proof. Show linear independence of 1, 8 , 9 , 8 9 (exercise). �

Definition 3.3.10 Conjugate, trace and norm. Given a quaternion algebra
�/� there is a unique anti-involution · : �→ �, called conjugation.

With basis 1, 8 , 9 , 8 9 ∈
(
0,1
�

)
as above it is given as

G + H8 + I 9 + F89 = G − H8 − I 9 − F89, G, H, I, F ∈ �.

As normal (heh) we define the (reduced) norm and trace

Norm 
 = 
 + 
, ∀
 ∈ �

Norm(G + H8 + I 9 + F89) = G2 − 0H2 − 1I2 + 01F2

and
Tr 
 = 
 + 
, ∀
 ∈ �

Tr(G + H8 + I 9 + F89) = 2G.

♦
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3.3.1.1 Orders

In our example, while the endomorphism algebra End(�) ⊗Q was of interest,
the endomorphism ring End(�) was the more fundamental object. What is
this? A quaternion ring?

Definition 3.3.11 Orders in quaternion algebras. Let �/Q be a quaternion
algebra, an order in � is a full rank sub-Z-module that is also a subring. ♦

Example 3.3.12 The Lipschitz order. � =
(
−1,−1

Q

)
(Hamilton quaternions with

Q-coefficients) then we have an order

Z + Z8 + Z9 + Z8 9

the Lipschitz order. �

Definition 3.3.13 Maximality. Orders are ordered (heh) with respect to inclu-
sion, thus we get notions of maximality of orders etc. ♦

Is the Lipschitz order maximal? NO! Whats going on? Z[8] is maximal in
Q(8) after all. Consider

8 + 9 + :, (8 + 9 + :)2 = 82 + 92 + :2 +����:0
8 9 + 98 +����:

0
8: + :8 +����:

0
9: + : 9 = −3

so we have a Z[
√
−3] lurking inside

(
−1,−1

Q

)
, quaternion algebras are not ev-

erything they appear to be at first sight! Z[
√
−3] is non-maximal and we must

add
√
−3/2 to make it so. Lets add this in the quaternion setting:

Example 3.3.14 The Hurwitz order. Let � =
(
−1,−1

Q

)
, then

Z + Z8 + Z9 + Z
(
8 + 9 + :

2

)
is an index two suborder of the Lipschitz order, called theHurwitz order, this
is maximal. �

Warning, just because
√
−3 ∈

(
−1,−1

Q

)
we do not have

(
−1,−3

Q

)
=

(
−1,−1

Q

)
!

Example 3.3.15 /Exercise. Show that the elliptic curve from the exercise earlier

H2 + H = G3/F2

has endomorphism algebra the Hurwitz order.
Solution. Here is what me and Angus think, we have the 2-power frobenius
� a degree 2 isogeny whose square is minus 2, we also have the isogeny
) : G ↦→ �3G, H ↦→ H which is in fact an automorphism (degree 1) and satisifies
)2+)+1 = 0. The relation between these two isogenies is that�) = )2� : G ↦→
�2

3G
2 , H ↦→ H2.
Inside the Huwitz order we have some candidates for an element whose

square is −2 there are a few, coming in two types 0 + 1 for 0 ≠ 1 ∈ {8 , 9 , :} and
0 − 1 for 0 ≠ 1 ∈ {8 , 9 , :}, we choose the second type (why? because it works
and the other doesn’t), let ? = 8 + 9 for concreteness. We also have a cube root
of unity in the Hurwitz order, it is 5 = (−1 + 8 + 9 + :)/2.

We can calculate now what ? 5 and 5 2? are, they both come out to be
−8 + :, some other square root of minus 2, which makes sense because degree
is multiplicative. Anyway this is consistent with the endomorphism ring
but there is a slight problem, the order generated here has discriminant 6,
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so its non-maximal as we know its contained in the Hurwitz order but the
discriminant is higher, Deuring tells us we have to get a maximal order so we
need something extra. �

Warning, there is no such thing as the maximal order of a quaternion
algebra! Rather there are multiple maximal orders due to non-commutativity,
e.g. if O is a maximal order then so is


O
−1 ≠ O.

Normally when we have unique maximal things with a certain property,
its because we can always take spans/unions and they still have that property.

This is no longer true here, the sum of two elements with integral trace and
norm need not remain so, nor the product.

We can define discriminants of orders which like normal give a hint as to
their maximality

O = Z + Z8 + Z9 + Z8 9 ⊆
(
0, 1

Q

)

discO = 3(1, 8 , 9 , 8 9) =

��������det
©­­­«
2 0 0 0
0 20 0 0
0 0 21 0
0 0 0 −201

ª®®®¬
�������� = (401)2

Exercise 3.3.16 Find the discriminant of the Lipschitz order.

3.3.1.2 Local theory

Theorem 3.3.17Over a local field � ≠ C there is a unique division quaternion algebra
�/� up to �-isomorphism.

If � = Q? , ? ≠ 2 then this is (
4 , ?

Q?

)
for 4 any quadratic non-residue mod ?.

This is saying that any quadratic extension of � embeds into �!

Definition 3.3.18 Split and ramified quaternion algebras. Let �/QE be a
quaternion algebra, we say that � is{

split if � � "2(QE) =
(

1,−1
QE

)
ramified otherwise

Correspondingly we say that �/Q is split/ramified at a place E if the
corresponding � ⊗ QE has that property. ♦

The terminology definite for quaternion algebras ramified at infinity is also
used (i.e. for which � ⊗ R = H).

Theorem 3.3.19 Albert-Brauer-Hasse-Noether. Let �/� be a quaternion algebra
over a number field � (or any central simple algebra), if � splits at every place E of �
then � is a matrix algebra "3(�).

In fact:
Theorem 3.3.20 Two quaternion algebras are isomorphic if and only if they are
isomorphic everywhere locally, i.e. if the set of places at which they ramify is the same.

Warning: Quaternion algebras may not be ramified where you think they
are?
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Knowing the ramification of a quaternion algebra Q is enough to identify
it uniquely, in fact we have the following theorem

Theorem 3.3.21 Main Theorem [101, 14.1.3]. There is a sequence of bĳections{
quaternion algebras �/Q

}
/isom.

( ↦→ unique � ramified at exactly ( l � ↦→ {? : � is ramifies at ?}{
( ⊆ places of Q, 2|#(

}
� ↦→ {? |�} ∪ {∞} if 2 - $(�) l ( ↦→

∏
?∈(,?≠∞

?{
� ∈ Z>0 squarefree

}
Sometimes however we want generators and relations not just ramification

information: (As we will only care about discriminant ? quaternion algebras)
In our setting the relevant theorem is:

Theorem 3.3.22 Pizer. Let Q?,∞ be the unique quaternion algebra ramified at ?,∞,
let @ ≡ 3 (mod 4) be such that

(
?

@

)
= −1, then

Q?,∞ �



(
−1,−1

Q

)
if ? ≡ 2 (mod 4),(

−1,−?
Q

)
if ? ≡ 3 (mod 4),(

−2,−?
Q

)
if ? ≡ 1 (mod 8),(

−?,−@
Q

)
if ? ≡ 5 (mod 8).

Ibukiyama has given a nice description of a maximal order in such.
Here are some nice references:

1. Computational Problems in Supersingular Elliptic Curve Isogenies -
StevenD.Galbraith andFrederikVercauteren https://www.esat.kuleuven.
be/cosic/publications/article-2842.pdf

2. Computing Isogenies Between Abelian Varieties - David Lubicz Damien
Robert https://perso.univ-rennes1.fr/david.lubicz/articles/isogenies.
pdf

3. Toric forms of elliptic curves and their arithmetic - Wouter Castryck
and Frederik Vercauteren https://homes.esat.kuleuven.be/~fvercaut/
papers/ec_forms.pdf

4. Isogenies of Elliptic Curves: A Computational Approach - Daniel Shu-
mow https://www.sagemath.org/files/thesis/shumow-thesis-2009.pdf

5. Hard and Easy Problems for Supersingular Isogeny Graphs - Christophe
Petit and Kristin Lauter https://eprint.iacr.org/2017/962.pdf

6. Perspectives on the Albert-Brauer-Hasse-Noether Theorem for Quater-
nionAlgebras - Thomas R. Shemanske https://www.math.dartmouth.edu/
~trs/expository-papers/tex/ABHN.pdf

7. COMPUTINGISOGENIESBETWEENSUPERSINGULARELLIPTICCURVES
OVER Fp CHRISTINA DELFS AND STEVEN D. GALBRAITH http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.740.6509&rep=rep1&

type=pdf

https://www.esat.kuleuven.be/cosic/publications/article-2842.pdf
https://www.esat.kuleuven.be/cosic/publications/article-2842.pdf
https://perso.univ-rennes1.fr/david.lubicz/articles/isogenies.pdf
https://perso.univ-rennes1.fr/david.lubicz/articles/isogenies.pdf
https://homes.esat.kuleuven.be/~fvercaut/papers/ec_forms.pdf
https://homes.esat.kuleuven.be/~fvercaut/papers/ec_forms.pdf
https://www.sagemath.org/files/thesis/shumow-thesis-2009.pdf
https://eprint.iacr.org/2017/962.pdf
https://www.math.dartmouth.edu/~trs/expository-papers/tex/ABHN.pdf
https://www.math.dartmouth.edu/~trs/expository-papers/tex/ABHN.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.740.6509&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.740.6509&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.740.6509&rep=rep1&type=pdf
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3.4 The Deuring Correspondence (Maria Ines)
References:

1. Voight ch. 16,17,42

2. Hard and Easy Problems for Supersingular Isogeny Graphs - Christophe
Petit and Kristin Lauter https://eprint.iacr.org/2017/962.pdf

3.4.1 Background: Ideals and Ideal classes
Let �/Q be a quaternion algebra and O ⊆ � be an order. If � ⊆ � is a lattice,
we can define O!(�) = {
 ∈ � : 
� ⊆ �}. This is an order , it’s the left order of �
similarly can define O'(�).

Definition 3.4.1 A left (resp. right) fractional ideal is a lattice � ⊆ � s.t.
O ⊆ O!(�) resp O ⊆ O'(�) ♦

Definition 3.4.2 Compatibility. For lattices � , � ⊆ � we say � is compatible
with � if

O'(�) = O!(�).
A lattice � is invertible if there is a lattice �′ ⊆ � s.t.

��′ = O!(�) = O'(�′)

�′� = O!(�′) = O'(�)
with both products compatible ♦

Proposition 3.4.3 Let O ⊆ � be a maximal order then every left or right fractional
O-ideal is invertible.
Definition 3.4.4 Principal ideals. An ideal of the form

� = O!(�)
 = 
O'(�)

is a principal ideal. ♦

Fact 3.4.5 � is invertible with �−1 = 
−1O!(�) = O'(�)
−1.

Definition 3.4.6 Reduced norms. Let � ⊆ � be a fractional ideal the reduced
norm of � is the positive generator of the fractional ideal generated by

{nrd(
) : 
 ∈ �}

in Q. We denote it nrd(�). ♦

Ideal classes. Definition 3.4.7 Ideal classes. Two left fractional ideals � , � ⊆ �
are in the same left class

� ∼! �
if ∃
 ∈ �× s.t. �
 = �. Equivalently if O!(�) = O!(�) and � ∼ � as left modules
over this order. ∼! is an equivalence relation [�] is the class of �. If � is invertible
then every � ∈ [�]! is invertible, and then we say [�]! is invertible. ♦

Definition 3.4.8 Class sets. Let O ⊆ � be an order. The left class set of O is

Cls! O = {[�]! : � ⊆ � is invertible and O!(�) = O}
its a pointed set with distinguished element [O]!. ♦

https://eprint.iacr.org/2017/962.pdf
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Theorem 3.4.9 Let O ⊆ � be an order. then Cls! O is finite. We call # Cls! O the
left class number of O.

Types of orders. Let O ,O′ ⊆ � be orders.

Definition 3.4.10We sayO ,O′ are of the same type if ∃
 ∈ �× s.t. O′ = 
−1O
.
O ,O′ are locally of the same type ifO? ,O′? are of the same type for all primes in
Z∪{∞}. O is connected to O′ if there exists an invertible fractional O ,O′-ideal
� ⊆ � called a connecting ideal. ♦

Lemma 3.4.11 O ,O′ are of the same type iff they are isomorphic as Z-algebras.
O ,O′ are connected iff they are locally of the same type.

Definition 3.4.12 Let O ⊆ � be an order.
1. The genus Gen(O) of O is the set of orders in � connected to O.

2. The type set Typ(O) of O is the set of Z-algebra isomorphism classes of
orders in Gen(O).

♦

Lemma 3.4.13 The set map Cls!(O) → Typ(O)

[�]! ↦→ class of O'(�)

is surjective.

Remark 3.4.14
1. Any two maximal orders in � are connected.

2. In particular there are only finitely many conjugacy classes of maximal
orders in �.

Example 3.4.15 Voight 17.6.3. Let

� =

(
−1,−23

Q

)
Then O = Z + Z8 + Z 8+9

2 + Z8 8+92 is a maximal order and

Typ(O) = {[O], [O2], [O3]} .

�

3.4.2 The Deuring Correspondence
Fix a prime ?, let � be an elliptic curve over F@ = F?= .

Lemma 3.4.16 The endomorphism algebra End(�)Q = End(�) ⊗ Q of � is either Q
an imaginary quadratic field or a definite quaternion algebra /Q.

Theorem 3.4.17 Deuring, this proof by Lenstra. Let �/F@ be a s.s. e.c. (i.e.
assume End(�) ⊗ Q is a quaternion algebra). Then Ram(�) = {?,∞} and O =

End(�) is a maximal order in �.

Proof. Let = > 0 be prime to ?. Then

�[=] ' Z/= ⊕ Z/=

as groups so End(�[=]) ' "2(Z/=).
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Claim: The structure map O/=O → End(�[=]) is an isomorphism.
Check: suppose ) ∈ O kills �[=], then since ) is separable then ∃ # ∈ O

s.t. ) = =#. Hence ) = 0 ∈ O/=. This gives injectivity.
As both rings are finite with the same order =4 we have an isomorphism.
Since O is a free Z module

O; = O ⊗ Q; = O ⊗ lim←−−
=

Z/;=

' lim←−−
=

O/;= ' lim←−−
=

End(�[;=])

' EndZ; ' "2(Z;)
for any ; ≠ ? primes. This is an isomorphism as Z-algebras.

In particular O; is maximal in �; ' "2(Q;) and � is split at ; for all
; ≠ ?. Since � is definite, it follows from the classification theorem that
Ram(�) =

{
?,∞

}
.

Fact: O? is maximal in �? (thm 42.1.9 of voight).
O is maximal in � because it is locally maximal. �

Theorem 3.4.18 Deuring correspondence.{
maximal orders O ⊆ �?,∞

}
/∼↔

{
9 s.s. ∈ F?2

}
/Gal(F?2/F?).

Proof. Voight 42.4.7. �

Definition3.4.19Let � ⊆ O = End(�)bean integral leftO-idealwith (nrd(�), ?) =
1. Define

�[�] = {% ∈ �(F@) : 
(%) = 0∀
 ∈ �}
Then there is a separable isogeny

Φ� : �→ �/�[�]

with kerΦ� = �[�]. ♦

Fact 3.4.20
deg(Φ�) = nrd(�)

Proposition 3.4.21 The association � ↦→ )� is a 1-1 correspondence provided that
(deg)� , ?) = 1.

3.4.3 Applications to SIG crypto
Problem 3.4.22 Constructive Deuring correspondence. Given a maximal
order O ⊆ �?,∞ return a s.s. 9-invariant 9 s.t. O ' End(� 9). �

Problem 3.4.23 Inverse Deuring correspondence. Given a supersingular
9 invariant 9, compute a maximal order O ⊆ �?,∞ s.t. O ' End(� 9). O is
described by a Z-basis. �

Problem 3.4.24 Endomorphism ring computation problem. Given a super-
singular 9 invariant 9, End(� 9). End(� 9) should be returned as 4 or 3 rational
maps that form a Z-basis. Their representation should be efficient in storage
and in evaluation time at points. �

Remark 3.4.25
1. Problem 1 can be solved in polynomial time, (Prop. 14 in Petit-Lauter).
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2. P2 and P3 are polynomially equivalent but this isn’t obvious (P-L sec.3.1
and 3.2)

3. There is no known efficient algorithm to solve P3.
Recall: the (Charles-Goren-Lauter) CGL hash function is preimage resis-

tant iff given 2 s.s. 9-invariants 91 , 92 its computationally hard to compute a
positive integer 4 and an isogeny ) : � 91 → � 92 of degree ;4 .

Proposition 3.4.26 Assume there’s an efficient algorithm to solve P3. Then there is
an efficient algorithm to solve the preimage problem for the CGL hash function

Proof. Algorithm
Input: two s.s. 9-invariants 9B , 9C ∈ F?2 .
Output: sequence of 9-invariants

9B , . . . , 90 , . . . , 9C .

1. Compute End(9B), End(9C).

2. Compute OB ' End(� 9B ), OC ' End(� 9C )

3. Compute ideals �B and �C connecting O0 to OB , OC
4. Compute ideals �B ∈ [�B],�C ∈ [�C], with norms ;4B , ;4C .

5. For � ∈ {�B , �C} and corresponding � ∈ {�B , �C} and 4 ∈ {4B , 4C} compute
�8 = O0?

2 + O0;
8 for 8 = 0, . . . , 4. For 8 = 0, . . . , 4 compute  8 ∈ [�8]! with

powersmooth norm. Translate  8 into an isogeny

) : �0 → �8

Deduce a sequence (90 , 9(�1), . . . , 9(�) = 94).

6. Return (9(�B), . . . , 90 , . . . , 9(�C)).

Except for step 1 everything can be done efficiently. �

Remark 3.4.27 The converse is also true.



Chapter 4

?-divisible groups

These are notes for the short-lived BUNTES Fall 2018 part II, the topic is
?-divisible groups.
http://math.bu.edu/people/midff/buntes/fall2018.html.
References:

1. Tate

2. Schatz

4.1 ?-divisible groups (Sachi)
Why study ?-divisible groups (Jacob Stix).

1. Analyse local ?-adic galois action on ?-torsion of elliptic curves, Serre’s
open image theorem.

); : � → Aut[;]
Surjective for almost all ;.

2. Tool for representing ?-adic cohomology, e.g ?-adic hodge theory.

3. Describe local properties of moduli spaces of abelian varieties which
map to moduli spaces of ?-divisible groups which can be described by
semilinear algebra (Serre-Tate).

4. Explicit local CFT via Lubin-Tate formal groups describing wildly rami-
fied abelian extensions.

5. The true fundamental group in characteristic ? must include infinitesi-
mal group schemes, ?-divisible groups enter through their tatemodules.

Detour, schemes. There is an (anti)-equivalence of categories

{ring} ↔ {affine schemes}.

Moral whatever a scheme is the data of a ring is enough to specify it +
homs

Hom'8=6(�, �) ↔ Hom� 5 5 (Spec�, Spec �)
to specify a base field or base ring play a similar game with '-algebras and
'-schemes.
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Yoneda, schemes are functors: Let '[)1 , . . . , )=] be a polynomial ring over
', we want solutions to

51 = 52 = · · · = 5< = 0

with coefficients in � this is asking for a map

'[)1 , . . . , )=]/( 58) → �

same as
Hom'−0;6('[)1 , . . . , )=]/( 58), �)

functor � to this is a functor from '-algs to sets.

Definition 4.1.1 For any affine scheme � = Spec � we attach a functor ℎ-
from Schop to sets, sending Spec ( ↦→ HomSch(Spec (, -) = Hom'8=6(�, () =
ℎ-(Spec (). spec S points of X ♦

Example 4.1.2
A= = Spec Z[)1 , . . . , )=]

A=()) = HomSch(),A=) = Hom'8=6(Z[)1 , . . . , )=], () � (=

�

Example 4.1.3

� : Spec :[G, H]/(H2 − (G3 + 0G + 1)), : = Q

�(Q(8)) = Q(8) points, choosing G, H satisfying weierstrass equation. �

Suppose ℎ- : Schop → ' factors through Grp → Set then this is a group
scheme.
Example 4.1.4

G0 = Spec :[C]
( ↦→ Hom(:[C], () � ((,+)

�

Example 4.1.5
G< = Spec :[C , C−1]

( ↦→ Hom(:[C , C−1], () � ((× , ·)
�

Example 4.1.6
�= = Spec :[C]/(C= − 1)

�

Example 4.1.7

?= = Spec :[C]/(C?= )

char : = ? �

Cartier Duality � is a finite group scheme /' there is a dual

�∗()) = Hom(�) ,G<)

'-scheme )
� � (�∗)∗

Example 4.1.8
�?= ↔ Z/?=
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�

Definition 4.1.9 Let ? be a prime and ℎ a non-negative integer. A ?-divisible
group of height ℎ is an inductive system

(�E , 8E)

where each �E is a group scheme /' of size ?Eℎ

8E : �E → �E+1

identifies �E with kernel of multiplication by ?E .

0→ �E
8E−→ �E+1

[?E ]
−−→ �E+1

♦

Remark 4.1.10 We can show that �� , �E are two levels then

0→ ��

8�,E
−−→ ��+E

[?�]
−−−→ ��,E

so
0→ �� → ��+E → �E → 0.

The connected etale sequence
A finite flat group scheme � over a henselian local ring ' admitsa (functo-

rial) decomposition
0→ �◦ → �→ �et → 0

connected and etale
There is an equivalence of categories between finite etale gp scheme /'

and its continuous Gal(:/:)modules when ' = : is a field.

Definition 4.1.11 An =-dimensional formal lie group /' is the formal power
series ring

� = '[[G1 , . . . , G=]]
with a suitable co-multiplication structure.

<∗ : �→ �⊗̂�

<∗(-8) = ( 58(., /))
require

1.
�(-, 0) = �(0, -) = -

2.
�(-, �(., /)) = �(�(., /), -) = -

3.
�(., /) = �(/,.)

♦
Let # denote multiplication by ? in � then � is divisible if # is an isogeny

(surj. with finite kernel). Alternatively � is a finite free #(�)-module.

Theorem 4.1.12 Let ' be a complete noetherian local ring with residue characteristic
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? > 0. We have an equiv of cats

conn. p-div gps↔ div. formal lie groups /R

Example 4.1.13
G<(?), �(-) = . + / + ./

�

Example 4.1.14 � ordinary elliptic curve /F?

�[?](F?)
is non-empty

�[?] = �[?]◦ × �[?]et.

etale group schemes over alg. closed fields are constant

� = �[?]◦ × �

It can’t be entirely etale [?] would be etale but this induces the 0 map on
tangent space so �[?]◦ ≠ 0.

|�[?]| = ?2

so each order ?.

� = Z/?
� is cartier self dual

�∗ = �? = �[?]◦

Induct for �[?=]. �



Chapter 5

Shimura varieties

These are notes for BUNTES Fall 2018 part III, the topic is Shimura varieties
http://math.bu.edu/people/midff/buntes/fall2018.html.
Outline:

1. Modular curves/forms

2. Abelian varieties

3. Hodge structures

4. Definition/construction of Shimura varieties

References:

• Weinstein, Lecture Notes on Shimura varieties

• Milne, Introduction to Shimura Varieties

5.1 Modular curves (Aash)

Definition 5.1.1 Lattices. A lattice is a free abelian group of rank 2

Λ ⊗ R→ C

is an isomorphism
Λ = Z[
] ⊕ Z[�]

if
Λ = �Λ′, � ∈ C

then we say the two lattices are homothetic. ♦

Any lattice is homothetic to one of the form

Λ = 〈1, �〉

as we can take a positively oriented basis we have that all such are equivalent
to

� ∈ H = {I ∈ C : =(I) > 0}.
So there is a bĳection between H and ordered bases of lattices.

SL2(Z) acts on H and the action corresponds to changing bases.
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The action of PSL2(Z) is faithful. 8 , � = 4�8/3 have non-trivial stabilisers

Stab8 = 〈(〉 =
(

0 1
−1 0

)
Stab� = 〈)(〉, ) =

(
1 1
0 1

)
We can determine the order of elements by looking at the characteristic

polynomials.
We then have

.(1) = SL2(Z)\H
a complex manifold and

9 : .(1) → C

is an isomorphism.
We have a fundamental domain for this action

� = {I ∈ C : |I | ≥ 1, |<(I)| ≤ 1
2 }

.(1) is Hausdorff because the action is properly discontinuous.
Care must be taken around the elliptic points (those with larger stabiliser),

to define the complex structure.
The extended upper half plane

H∗ = H ∪ P1(Q)

also has an SL2(Z) action via fractional linear transformations, which is proper.
We can define a basis of neighbourhoods around the cusps by transforming

them to the cusp∞where we can use the basis of neighbourhoods given by

H# = {I ∈ H : |=(I)| > #}.

The parameter @ around∞ is defined as 42�8I/# for some # ∈ Z, @ is fixed
by ).

We can quotient by the action of SL2(Z) on H∗ to get

-(1) = SL2(Z)\H∗

which is now compact, genus 0, which matches up with .(1) having C points
C earlier.

If - is a projective curve then -(C) has the structure of a compact Riemann
surface. If ( is such a surface then there exists a unique up to isomorphism -
with -(C) = (.

The meromorphic functions on ( are the function field of - and there is a
correspondence

Compact Riemann surfaces↔ Smooth proj. curves

Given a finite index subgroup of SL2(Z) we can do something similar to
obtain

Γ\H.

One of the most prominent examples of such a subgroup is

Γ(#) =
{
� ∈ SL2(Z) : � ≡

(
1 0
0 1

)
(mod #)

}
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along with

Γ1(#) =
{
� ∈ SL2(Z) : � ≡

(
1 ∗
0 1

)
(mod #)

}
Γ0(#) =

{
� ∈ SL2(Z) : � ≡

(
∗ ∗
0 ∗

)
(mod #)

}
.

Γ(#) is normal inside SL2(Z) and Γ1(#) is normal inside Γ0(#).
The aforementioned equivalence of categories gives us a smooth projective

curve for each of these examples.
In fact one can find a smooth projective curve with Q-coefficients realising

each of these Riemann surfaces.
For

Γ0(#)\H∗

we have the function 9(I) from before, but also 9(#I) which is still a function
on the quotient now as

9(#�I) = 9

(
#
0I + 1
2I + 3

)
= 9

(
#

0I + 1
2′#I + 3

)
= 9

(
0#I + 1#
2′#I + 3

)
= 9 (�′#I)
= 9 (#I)

We can therefore let
6 =

∏
�

(. − 9(�#I))

the product over the cosets of Γ0(#) ⊆ SL2(Z).
The coefficients of 6 are meromorphic functions on -(1) = C[9]. So we

have
6(.) = �(9(I), .)

and
6(9(#I)) = �(9(I), 9(#I)) = 0

then �(-,.) is irreducible and has integer coefficients.
Then the curve -0(#)whose function field is

Q[-,.]/�(-,.)

so* ⊆ -0(#) is isomorphic to an affine variety defined by

�(-,.) = 0 r singular pts

Γ0(#)\H→ *(C)
I ↦→ (9(I), 9(#I))

9(�I) = I ∀I iff � ∈ SL2(Z).
If for I = I1 , I2 have (9(I), 9(#I)) equal then I1 , I2 are in the same Γ0(#)

orbit.
We can do similar for Γ1 but only over Q(�# ).



CHAPTER 5. SHIMURA VARIETIES 111

Elliptic curves. Several definitions:

1. Smooth proj. curve genus 1 with a rational point.

2. smooth curve given by Weierstrass eqn.

H2 + 01GH + 03H = G
3 + 02G

2 + 04G + 06.

3. Complex torus of dimension 1.

Over C at least all are equivalent.
To get the weierstrass equation from the curve we use Riemann-Roch to

see that
�(1[0]) = 1, �(2[0]) = 2, �(3[0]) = 3

Sowe call a generator of�(2[0])r�([0]) the function G same for H and�(3[0]),
now in �(6[0])we have

1, G, H, G2 , GH, H2 , G3

so there is a linear relation among these, giving the Weierstrass equation.
To get the equation for a torus we use the Weierstrass ℘ function.

5.2 Modular forms (Asra)
Last time we saw the 9-function, which was SL2(Z)-invariant, this is quite a
strong condition, and in fact 9 is pretty much all we get under this condition.
So instead we weaken this somewhat to some other variance property.

If F = 5 (I)dI on H and 5 (I) is meromorphic. � ∈ Γ then

5 (�I)3(�I) = 5 (�I)3
(
0I + 1
2I + 3

)
= 5 (�I)

(
· · ·d
(2I + 3)2

)
so we get a condition

5 (�I) = (2I + 3)2 5 (I)
this is how we come to:
Definition 5.2.1 A holomorphic function 5 : H → C is a weakly modular
function for Γ of weight : if

5 (�I) = (2I + 3): 5 (I)∀� =
(
0 1

2 3

)
∈ Γ.

♦

Remark 5.2.2 If −� ∈ Γ and : odd

5 (−I) = − 5 (−I)

so in this setting we only have interesting behaviour for even :.
If Γ is a congruence subgroup of level # we have(

1 #

0 1

)
∈ Γ

gives you a @-expansion
@ = 42�8I
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5 (I) =
∑
<∈Z

0<@
</# .

5 is holomorphic at∞ if 0< = 0 for < < 0.
5 is holomorphic at all cusps if 5 (�I)(2I + 3): is holomorphic at ∞ for all

� ∈ SL2(Z).

Example 5.2.3 Cusps for Γ0(?), we know we have∞, what is the orbit of this?

� ∈ Γ0(?), � =
(
0 1

2? 3

)
�∞ =

0

2?

so anything with a ? in the denominator is equivalent to ∞, what about the
rest?

�0 = 1

3
, gcd(1, 3) = 1,

so we have two cusps. �

Definition 5.2.4 Modular forms. A modular form is a weakly modular
function that is holomorphic at all the cusps. ♦

Example 5.2.5 Eisenstein series

�:(I) =
′∑

<,=∈Z

1
(<I + =):

is a modular form of weight : > 2 for SL2(Z).

lim
im I→∞

�:(I) = lim
im I→∞

′∑
<,=∈Z

1
(<I + =):

=

′∑
=∈Z

1
=:

= 2�(:).

So here the function does not vanish at 0. �

Definition 5.2.6 Cusp forms. A cusp form is a modular form that vanishes at
all cusps. ♦

Given a cusp it will be stabilised by some(
1 ℎ

0 1

)
call the smallest such ℎ for a given cusp the width of the cusp.

Example 5.2.7 Let’s find the width of a cusp in Γ0(@?)we have(
1 1
0 1

)
so the width of∞ is 1.

What about 
 = 1/??
1. Find an element � ∈ SL2(Z) s.t. �(∞) = 
.

2. Compute

�(G) = �

(
1 G

0 1

)
�−1

3. Find the smallest G such that �(G) = Γ0(?@)
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� =

(
1 0
? 1

)
, �(∞) = 1

?(
1 0
? 1

) (
1 G

0 1

) (
1 0
−? 1

)
=

(
1 − ?G G

−?2 ?G + 1

)
�

Example 5.2.8 Acusp form. LetΔ(�) = 62(�)3−2763(�)2 , 62(�) = 60�4(�), 63(�) =
140�6(�) Δ(�) has weight 12 for SL2(Z). This vanishes at∞ because

�(4) = �4

90

�(6) = �6

945
also

9(I) =
62(�)3
Δ(�)

so Δ(�) vanishes at∞ because 62(�) doesn’t and 9(I) has a simple pole at∞. �
":(Γ) as the space of modular forms of weight : for Γ is a C -v.s. (:(Γ) as

the space of cusp forms of weight : for Γ is a C -v.s.

Theorem 5.2.9 ":(Γ) and (:(Γ) are finite dimensional

dim(":(Γ)) =


0 if : ≤ −1
1 if : = 0
(: − 1)(6 − 1) + E∞ :

2 +
∑
?[ :2 (1 − 1

4?
)] if : ≥ 2

where 6 is the genus of -(Γ) E∞ is the number of inequivalent cusps % are the elliptic
points [·] is the integer part

dim((:(Γ)) =
{

0 if : ≤ 0
(: − 1)(6 − 1) + E∞( :2 − 1) +∑

?[ :2 (1 − 1
4?
)] if : ≥ 2

dim((2(Γ)) = 6(-(Γ))
Proposition 5.2.10 If 5 ∈ (2(Γ) then 5 (I)dI is a holomorphic differential.

Given an elliptic curve
�/C = C/Λ
�→ �′

C/Λ→ C/Λ′,
studying degree = isogenies, is like studying index = sublattices

Definition 5.2.11 Hecke operators. = ≥ 1 then )(=) is the =thHecke operator
acting on

Div(ℒ)
by

)(=)Λ =
∑

Λ′⊆Λ, [Λ:Λ′]==
(Λ′)

♦

Definition 5.2.12 Let � ∈ C× the homothety operator '� is '�Λ = �Λ. ♦
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Theorem 5.2.13
1.

'�'� = '��

2.
'�)(=) = )(=)'�

3.
)(=<) = )(=))(<), gcd(=, <) = 1

4.
)(?4))(?) = )(?4+1) + ?)(?4−1)'?

Proof. Of 4.
Λ ∈ ℒ for Λ′ ⊆ Λ index ?4+1 have

0(Λ′) = #{Γ : Λ′ ⊆ Λ ⊆? Λ}

1(Λ′) = 1 if Λ′ ⊆ ?Λ
now

)(?4))(?)Λ = )(?4)
∑
Γ⊆?Λ
(Γ) =

∑
Γ⊆?Λ

∑
Λ′⊆?4 Γ

(Λ′) =
∑
Λ′⊆?4 Γ

0(Λ′)(Λ′)

)(?4+1)Λ =
∑

Λ′⊆
?4+1Λ

(Λ′)

)(?4−1)'?Λ = )(?4−1)(?Λ) =
∑

Λ′′⊆
?4−1 ?Λ

(Λ′′) =
∑

Λ′⊆
?4+1Λ

1(Λ′)(Λ′)

Split into cases, do some maths.. �

Hecke operators on lattices Given Λ′ ⊆= Λ there is an integer matrix of
determinant = taking one basis to the other. Have a correspondence

{
 ∈ "2(Z) : det(
) = =} ↔ {Λ′ : Λ′ ⊆= Λ}
representatives in Hermite normal form

(= = {
(
0 1

0 3

)
: 03 = =, 0, 3 > 0 0 ≤ 1 < 3}

Corollary 5.2.14 Let Λ ∈ ℒ, Λ = ZF1 + ZF2 then )(=) acts as follows

)(=)Λ =
∑

03==, 0,3>0 0≤1<3
Z(0F1 + 1F2) + Z3F2 =

∑

∈(=


Λ

Corollary 5.2.15 For ? prime )(?):

)(?)Λ = Z?F1 + ZF2 +
∑

0≤1<?
Z(F1 + 1F2) + Z?F2.

The Hecke operators act on modular forms 5 (�) by reinterpreting weakly
modular functions of weight : as functions on lattices that have a weight :
action under homothety.

This boils down to

():(=) 5 )(�) = =:−1
∑

03==, 0,3>0 0≤1<3
3−: 5

(
0� + 1
3

)
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Corollary 5.2.16 For ? prime

():(?) 5 )(�) = ?:−1 5 (?I) + 1
?

∑
0≤1<?

5

(
I + 1
?

)
.

We have an action on fourier expansions

5 (#) =
∑
<∈Z

0<@
<

):(?) 5 (�) = ?:−1
∑
<∈Z

0<@
?< + 1

?

?−1∑
1=0

(∑
<∈Z

0<4
2�8<(I+1)/?

)
= ?:−1

∑
<∈Z

0<@
?< + 1

?

∑
<∈Z

0<4
2�8<I/?

?−1∑
1=0

42�8<1/?︸   ︷︷   ︸
? if ? |<,0 otw

= ?:−1
∑
<∈Z

0<@
?< +

∑
<∈Z

0?<@
<

Corollary 5.2.17
01()?( 5 )) = 0?( 5 )

If 5 ∈ (:(Γ0(1)) is an eigenfunction for these operators we can normalise so
that 01( 5 ) = 1.

)(<))(=) = )(<=)
0<0= = 0<=

0?A = 0?0?A−1 + ?:−10?A+1

Definition 5.2.18 Petersson inner product. The Petersson inner product of
two cusp forms 5 , 6 ∈ (:(SL2(Z)) is defined to be〈

5 , 6
〉
=

∫
D
5 6̄H:−2 dG dH

whereD is a fundamental domain for SL2(Z). ♦

Proposition 5.2.19 Let 5 , 6 ∈ (:(SL2(Z)), = ∈ N then〈
)(=) 5 , 6

〉
=

〈
5 , )(=)6

〉
.

5.3 Abelian varieties and Jacobians (Angus)

5.3.1 Background
Definition 5.3.1 An elliptic curve is any one of the following

1. Smooth projective curve of genus 1 with a marked rational point.

2. A smooth projective curve with a group law

3. if : ⊆ C we have
�(C) = C/Λ

Λ = Z$1 ⊕ Z$2 , $1/$2 ∉ R

4. if char : ≠ 2, 3 A smooth projective curve specified by

H2 = G3 + 0G + 1.
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♦
Aash showed that 1 implies 4 and 3 implies 1.
One can view the group law on � either via the chord-tangent method

(Bezout’s theorem). Or via the isomorphism

�→ Pic0(�)

% ↦→ [%] − [0].
Definition 5.3.2An abelian variety is a proper irreducible varietywith a group
law given by regular functions. ♦

Remark 5.3.3
1. In this definition proper is equivalent to projective.

2. The rigidity theorem tells us:

(a) Any morphism of abelian varieties that preserves the identity is a
homomorphism.

(b) Abelian varieties are abelian

5.3.2 Ablelian varieties over C
Proposition 5.3.4 Let �/: ⊆ C then

�(C) = C6/Λ

where 6 = dim� and Λ ⊆ C6 is a rank 26 lattice.

Proof. The lie algebra Lie(�(C)) is a complex vector space of dimension 6. We
have the exponential

exp: Lie(�(C)) → �(C)
which is surjective onto the connected component of the identity, and locally
at 0 a diffeomorphism. So exp surjects. Since its locally isomorphic at 0 we
have ker(exp) discrete and hence a lattice. � proper means �(C) is compact so

rank ker(exp) = 26.

�
We have a map

{AVs/C} → {complex tori}
but this is not surjective. Which lattices give AVs?

Definition 5.3.5 Hermitian forms. Let + be a C-vector space and Λ ⊆ + be a
full lattice. A Hermitian form on + is a function

� : + ×+ → C

which is C-linear in the first component, C-antilinear in the second (i.e. a
sesquilinear form). And satisfies

�(D, E) = �(E, D)

A Riemann form on (+,Λ) is a positive definite Hermitian form on + s.t.
im(� |+ ) : Λ→ Z. ♦
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Proposition 5.3.6 We have a bĳection

{AVs/C} ↔ {(+,Λ) s.t. there is a Riemann form on (+,Λ)}.

Proof. Swinnerton-Dyer analytic theory of AVs ch.2. �

Example 5.3.7 For an elliptic curve �(C) = C/Z$1 + Z$2

�(D, E) = DĒ/im($1$̄2).

�

5.3.3 Jacobian varieties
Definition 5.3.8 Given - a curve

Pic0(-) = Div0(-)/{( 5 ) : 5 ∈  (-)}

this is some abelian group. ♦

Theorem 5.3.9 Let - be a genus 6 curve /:. Then there exists an abelian variety
Jac(-)/: of dim = 6 s.t.

Jac(-)(!) = Pic0(- ⊗ !)
Remark 5.3.10 This is false as stated unless -(:) ≠ ∅.

Proof. Idea: Pick %0 ∈ -(:)we have a bĳection

Div0(-) → DivA(-)

� ↦→ � + A[%0]
we have a map

- A → - A/(A = -(A) → DivA(-)
we can construct Jac(-) as a quotient of -(A) full details Milne AVs ch. 2. �

Jacobians over C. Given - a compact Riemann surface of genus 6 then

�0(-,Ω1
-) ' C6

one might wish to consider, for %, & ∈ -, $ ∈ �0(-,Ω1
-
)∫ &

%

$

this is not well defined as there are choices of path % → &.

�1(-,Z) = Z26

have a map
�1(-,Z) → �0(-,Ω1

-)
∨

� ↦→ ($ ↦→
∫
�
$)

Let
�(-) = �0(-,Ω1

-)
∨/�1(-,Z)
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Theorem 5.3.11 �(-) is the C points of an abelian variety over C. Further the map

Pic0(-) → �(-)

[%] − [&] ↦→ ($ ↦→
∫ %

&

$)

is an isomorphism of abelian groups.

Proof. For the first claim we need a Riemann form on

(�0(-,Ω1
-)
∨ , �1(-,Z))

we have
�1(-,Z) × �1(-,Z) → Z

(�1 , �2) ↦→ −(�1 ∩ �2).
�

Remark 5.3.12 In this case we see

Lie(Jac(-)) = �0(-,Ω1
-)

this is true in general.

5.3.4 Some constructions/properties of AVs
Let �, � be AVs/:. Any identity preserving morphism ) : � → � is a homo-
morphism. Such a homomorphism is called an isogeny if it surjective with
finite kernel. i.e. [=] : �→ � is an isogeny and for char(:) - =.

�[=] ' (Z/=)26

then we have the Tate module for ; prime

);� = lim←−−
=

�[;=] ' Z26
;

in fact
�1

et(�,Z;) ' );�∨

we can also consider Pic0(�). There exists an abelian variety

�̂/;

s.t.
�̂(!) = Pic0(� ⊗ !)

this is called the dual abelian variety. So earlier we saw �̂ ' �. in general
�̂ ; �.

However for an ample divisor � we get an isog

)� : �→ �̂

% ↦→ C∗%� − �

an isogeny ) : �→ �̂ is a polarization if

) = )�/:̄
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over C a polarization is equivalent to a choice of Riemann form.
A principal polarization is a polarization which is an isomorphism. e.g.

)[0] : �→ �̂

% ↦→ [%] − [0]
Remark 5.3.13 Jacobian varieties always admit principal polarizations.

On );� we have a Weil pairing

);� × );�∨ → Z;

Maps between Jacobians. Let -,./: be curves and 5 : - → . a morphism.

Definition 5.3.14 We have a pushforward map

5∗ : Pic0(-) → Pic0(.)∑
=G[G] ↦→

∑
=G[ 5 (G)]

if 5 is finite then we have a pullback

5 ∗ : Pic0(.) → Pic0(-)∑
=H[H] ↦→

∑
=H[ 5 −1(H)]

(with multiplicity). ♦

We want further maps between jacobians

Definition 5.3.15 A correspondence between -,. is a curve / and a pair of
finite morphisms.

- ← /→ .

then we get induced maps

)∗ = 6∗ 5
∗ : Pic0(-) → Pic0(.)

)∗ = 5∗6
∗ : Pic0(.) → Pic0(-)

♦

Modular jacobians and Hecke correspondences. Consider ? - # we have

-0(#) = {(�, �# ) : � e.c. , �# cyclic sub order #}

-0(?#) = {(�, �?# )} = {(�, �# , �?)}
so we have
Definition 5.3.16 the Hecke correspondence )? on -0(#) is

-0(#) ←� -0(?#) → -0(#)

(�, �# ) ←� (�, �# , �?) → (�/�? , �? + �# ).
♦

We have the modular jacobian �0(#) and the induced map

)? : �0(#) → �0(#)
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[�] ↦→
∑
�?⊆�
[�/�?]

One can consider �0(#)F?

Theorem 5.3.17 Eichler-Shimura. )?∗ = Frob? +? Frob−1
? ∈ End(�0(#)F? ).

5.4 Ricky Show

5.4.1 Moduli of PPAVs
Recall if �/C is an abelian variety, then

� = �(C) = C6/Λ, 6 = dim(�)

Λ � �1(�,Z)
Also a polarization � : �→ �∨ is equivalent to choosing a Riemann form

� : Λ ×Λ→ Z

s.t.

1. � is bilinear alternating

2. �R : + ×+ → R has �R(8E, 8F) = �R(E, F).

3.
�(E, F) = �R(8E, F) + 8�R(E, F)

is a positive definite Hermitian form on + .

A principal polarization corresponds to � being a perfect pairing.

Definition 5.4.1 A PPAV (principally polarized abelian variety) is a pair
(�,�). ♦

If (Z26 ,Ψ) is the standard 26-dim symplectic formΨ then by linear algebra
there is a symplectic isomorphism


 : Z26 ∼−→ Λ

withΨ(E, F) = �(
(E), 
(F)).
Recall the standardΨ is

Ψ(E, F) = ET�F, � =

(
0 �6
−�6 0

)
Definition 5.4.2 The Siegel upper half space is

H6 = {/ = - + 8. ∈ "6(C) : /T = /; -,. ∈ "6(R); . > 0}

i.e. . is pos. def. ♦

Check: H1 is the usual upper half plane.

Proposition 5.4.3 H6 � Sp26(R)/*(6) where Sp26(') = {" ∈ GL26(') :
"T�" = �}

*(6) = $(26) ∩ Sp26(R) ∩GL6(C).



CHAPTER 5. SHIMURA VARIETIES 121

Proof. (Sketch) First one can show that Sp26(R) acts transitively on H6 via
linear fractional transformations:

" =

(
� �

� �

)
∈ Sp26(R), / ∈ H6

" · / = (�/ + �)(�/ + �)−1 ∈ H6

second one computes Stab � = *(6)
For 6 = 1, Sp2(R) = SL2(R) acts transitively on H1, Stab(8) = SO(2) = *(1).(

cos� sin�
− sin� cos�

)
8 = 8

and if (
0 1

2 3

)
8 = 8

then 08 + 1 = −2 + 38 so " =

(
0 1

−1 0

)
∈ SO(2). �

Proposition 5.4.4 There is a natural bĳection between

{(�,�, 
) : (�,�) = %%�+, 
 : Z26 ∼−→ Λ} ∼−→H6

this induces a bĳection

{(�,�)} ∼−→ Sp26(Z)\H6 = Sp26(Z)\ Sp26(R)/*(6).

Proof. We will construct a map

{(�,�, 
)} ∼−→ Sp26(R)/*(6)

first we construct a bĳection between

{(�,�, 
)}

and some linear data on a fixed space , so given (�,�, 
) use 
 to identify


 : Z26 ∼−→ Λ = �1(�,Z)

then tensor with R to get


R : R26 ∼−→ Λ ⊗ R � Lie(�)(= C6)

the action of 8 on the right induces � on the left with �2 = −�.
From �R(8E, 8F) = �R(E, F)we get � symplectic

ΨR(�E, �F) = ΨR(E, F)

from �R(8E, E) > 0 we get � is positive

ΨR(�E, E) > 0

conversely given � symplectic positive �2 = −� onR26 we can construct (�,�) =
(+/Z26 , �) This comes with an 
 for free since �1(�,Z) � Z26 .

Suppose � and �0 are two complex structures, symplectic positive matrices
on R26 . Then a lemma from linear algebra tells us that there exists a ( ∈
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Sp26(R). s.t. �0 = (�(−1. We see that this ( is well defined up to an element
of � = /(�) ∩ Sp26(R). But if � ∈ � then � preserves the associated C-str. on
R26 . then since � is symplectic, it preserves

�(E, F) = �R(8E, F) + 8�R(E, F)

implies
� ∈ *(6).

�

5.4.2 Hodge structures

Let" be a �∞ compactR-manifold. Then� 8
sing(",R) � � 8

dR("). What about
for compact C-manifolds -? For " have � 8

dR(") = � 8(Ω•(")). This won’t
give de Rham isomorphism for -:

� 8
sing(-)

supported up to 8 = 23 with 3 = dimC(-). but � 8(Ω•hol(�)) is supported up to
8 = 3.

For "
0→ R→ Ω0 → Ω1 → · · · → Ω3 → 0

is a resolution of R by acyclic sheaves, by the existence of �∞ bump functions.

� 8
dR(") � �

8(",R) � � 8
sing(",R).

For- this doesn’tworkwithΩ•hol as there are no holomorphic bump functions.

0→ C→ Ω0
hol → Ω1

hol → · · · → Ω•hol → 0

is still a resolution but not acyclic. Instead we use hypercohomology which
takes as input any resolution and outputs a cohomology group. This has the
property that

� 8(-,C) � H8(Ω•-)

so we define � 8
dR(-) = H8(Ω•

-
). so that

� 8
dR(-) � �

8(-,C) � � 8
sing(-,C)

On - we have the sheaf of (?, @) forms Ω?,@ These are locally given by∑
|� |=?,|� |=@

5� ,� dI� dĪ� .

We have
%̄ : Ω?,@ → Ω?,@+1

satisfying %̄2 = 0. So we can define �?,@(-) = ker %̄/im %̄ (Dolbeaut cohomol-
ogy).

Theorem 5.4.5 Hodge decomposition. For a compact Kahler manifold (e.g. - a
projective variety) we have

�=
dR(-) �

⊕
?+@==

�?,@(-).
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Remark 5.4.6
�?,@(-) � �@(-,Ω?)

using %̄ Poincaré lemma

Example 5.4.7 �/C elliptic curve.

�0
dR = �

0,0

�1
dR = �

1,0 ⊕ �0,1

�2
dR = �

2,0 ⊕ �1,1 ⊕ �0,2

outer terms 0, diamond is 1 , 1 , 1, 1. �

Definition 5.4.8 Hodge structures. A Hodge structure on +/R is a Z-
bigrading on +C = + ⊗ C such that

+
?,@
= + @,?

its of Hodge type ( ⊆ Z2 if +?@ ≠ 0 iff (?, @) ∈ (, ♦

Example 5.4.9 theHodgedecompositiongives ahodge structureon�=
sing(-,R).

�
If + has a hodge structure of weight = (i.e. +?@ ≠ 0 iff ?, @ = =). Then we

can recover the hodge structure from the associated hodge filtration

Fil? +C =
⊕
?′≥?

+?′@

Example 5.4.10
Fil0(�1(�)) = �1,0 ⊕ �0,1

Fil1(�1(�)) = �1,0

Fil2(�1(�)) = 0

�

Exercise 5.4.11
+?,@ = Fil? + ∩ Fil@ +

in weight =.

Alternative definition.
S = ResC

R G<

S(�) = {(0, 1) ∈ �2 : 02 + 12 ≠ 0}
S(R) = C×

Proposition 5.4.12There is a natural bĳection betweenmorphisms of algebraic groups

S→ GL(+)

and Hodge structures on + .
Hence for any lie group � we can define a hodge structure on � as a

morphism of algebraic groups
S→ �

If �→ GL(+) is a faithful rep this induces a hodge structure on + .
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Definition 5.4.13Apolarization of aHS ℎ : S→ GL(E) is an alternating bilinear
form

Ψ : + ×+ → R

with
1.

Ψ(�E, �F) = Ψ(E, F) for � = ℎ(8)

2.
Ψ(E, �F) is pos. def.

♦

5.5 Variations of Hodge Structures (Sachi)

5.5.1 Review of Hodge Theory

- complex manifold - ⊆ P# which is <-dimensional. For each = associate to
-

�Z = �
=
sing(-,Z)/tors

�C = �Z ⊗ C = �=
dR(-)

we have a bilinear pairing

& : �Z × �Z → Z

&(
, �) =
∫
-


 ∪ � ∪ $<−=

where $ is a generator of �2(P# ,Z) restricted to -. This gives us the set-up of
- as a differentiable manifold. Now say something about complex structure.
We have a decomposition of differential forms on -

�=(-) =
⊕
?+@==

�?,@

degree = forms decomposing as a combination of type ?, @ forms.
Hodge theorem descends to a decomposition on cohomology

�=
dR(-) =

⊕
?+@==

�?,@

�?,@ = �@,?

&(�?,@ , �?′ ,@′) = 0

unless ? + ?′ = @ + @′ = =.
A hodge structure of weight = is the data (�Z , &) satisfying the Hodge

decomposition, Bilinearity
Questions:

1. To what extent does the HS of - determine -? (Torelli problem)

2. To what extent can we read off the geometric data of - from its Hodge
structure.
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5.5.2 Variations of Hodge structures:
Let . ⊆ - be codimension :, this gives a class in

� :,:(-) ⊆ �2:(-,C)

what about the converse?
For each cohomology class � in�2:(-,C) is � a rational linear combination

of classes of subvarieties. (Hodge conjecture).

5.5.2.1 Hodge theory for curves

(�Z , &), �1,0 ⊕ �0,1 have the period matrix

�0,1/Λ � Jac(�)

H2 = G(G − 1)(G − �)
� ∈ P1 −{0, 1,∞}

each �� ↔ �1,0 ⊕ �0,1 so can ask as � varies we can ask how �1,0 is situated
inside of �1,0 ⊕ �0,1.

$ =
dG
H
∈ �0(-,Ω-)

pairing with �1(-) ∫
�
$.

For � a variety {-1} are varieties with Hodge structures for each 1 ∈ �.
Locally we can identify

�Z = �
=(-1 ,Z)/tors

and �C with that of -10 .
Then consider

�=−:,:(-1)
or the associated

�: =

:⊕
;=0

�=−; ,;(-1)

subspaces of �C.
Question: What is a moduli space of linear subspaces?
Answer: The grassmanian!

Gr(:, +)

of :-dimensional subspaces of a fixed vector space + . What is the tangent
space to the Grassmanian at a point, ⊆ +?

Hom(,,+/,)

if we take the complementary subspace, ⊕ � = + given another subspace

, ′ ∩ � = {0}

have �,′ ,��
Gr(:, +) = {all, ′}
� Hom(,, �)

by �� ◦ (�, |,′)−1.
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Fact 5.5.1
1. ) : �→ Gr mapping 1 ↦→ �:(-1) ⊆ �C is holomorphic.

2. In terms of identifying the tangent space of the grassmanian to the hom set, the
image under

d): = �:

of any tangent vector of � at 10 carries �: to �:+1/�: so we have maps

�: : )10�→ Hom(�=−:,:(-), �=−:−1,:+1(-))

satisfying
�:+1(+) ◦ �:(,) = �:+1(,) ◦ �:(,)

for all E, F ∈ ).
Since �:(-1) satisfy

&(�: , �=−:−1) = 0

for all 1.
&(�E(E)(
), �) +&(
, �=−:−1(E)(�)) = 0

for all 
 ∈ �=−:,:(-), � ∈ � :+1,=−:−1(-) for E ∈ )

Definition 5.5.2 Infinitesimal variation of Hodge structures. An infinitesi-
mal variation of Hodge structures is

(�Z , &, �
?,@ , ), �@ : ) → Hom(�?,@ , �?−1,@+1))

♦
Two observations:

Remark 5.5.3 Variations of hodge structures are often computable, e.g. for
hypersurfaces in P# .

- ⊆ P=+1

let - = { 5 = 0} of deg 3.
Lefschetz implies the only interesting cohomology is in the middle dimen-

sion.
�=(-)
�=,0(-)

Poincaré residues of = + 1 forms of P=+1 with poles along -

Res$ 6(I0 , . . . , I=+1)Ω
5

=
6Ω̃∑ % 5
%I8

.

C[I0 , . . . , I=+1]/Jacobian ideal

graded parts �?,@(-)

Problem 5.5.4 Identify �Z inside of �= �

Solution: VHS �: maps turn out to be polynomial multiplication 3 ≥ =+1.

Theorem 5.5.5 Noether-Lefschetz. A surface ( ⊆ P4 of degree 3 ≥ 4 having
general moduli contains no curves other than complete intersections ( ∩ ) with other
surfaces ).
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5.6 Moduli of linearized C-structures (RICKY)

5.6.1 Motivation: Period morphisms
Recall for � a polarized AV we get a lattice �1(�,Z) with some structure.
To keep track of the C-structure we record the Hodge structure induced on
�1(�,R) via the Hodge decomposition theorem. If we want to say construct
a moduli space of Elliptic Curves we might try to create a moduli space of
C-structures on a fixed torus ).

The linearized version of this is to fix�1(),R) and consider possibleHodge
structures on it.
Example 5.6.1

�� : H2 = G(G − 1)(G − �)

ℰ
5
−→ ( = P1 r{0, 1,∞}

then we can identify
+� = �

1
sing(�� ,R)

for nearby � ∈ (. Then the Hodge structure looks like:

�1+�,C = 〈
dG
H
〉 ↩→ +�,C

this induces a period map
( ⊇ * → P1

sending B ↦→ �1+B,C. �

Today generalise the role of P1 in this.

5.6.2 Moduli of Hodge structures
Recall: a Hodge structure on a real vector space+ is equivalent to a morphism
ℎ : S→ GL(+)where S = ResC

R G< Given ℎ, let

+?,@ = {E ∈ +C : ℎ(I)E = I−? Ī−@E}
(the characters of S are of the form "?,@ = I−? Ī−@ for (?, @) ∈ Z2. So a general
Hodge structure on a Lie group � is defined to be a map S→ �.

Lemma 5.6.2 The combinatorial data of two Hodge structures are the same iff they
are conjugate (i.e. the maps S→ GL(+) are conjugate).

Proof. If ℎ and ℎ′ are conjugate by 6 then conjugation by 6 takes+?,@ of one into
the other (b/c it preserves the character spaces of S). Conversely if {+?,@

1 , +
?,@

2 }
are two HS with the same combinatorial data then we can take 6 : +C → +C.
Taking +?,@

1 � +
?,@

2 and satisfying 6(Ē) = 6(E) (using Hodge symmetry) since
6 commutes with ·̄, it descends to a map on + . �

Let - be a conjugacy class of morphisms ℎ : S→ �.
Impose the condition that:

ℎ(R×) lies in the center of �(R)∀ℎ (5.6.1)

(If the HS on + is of weight : then ℎ(C) = C: �, the converse is also true.)
� acts transitively on - (via conjugation). So

- = �/ 
for  = Stab(ℎ) for some ℎ in -. This gives - the structure of a �∞-manifold.
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The C-structure on -. We give )ℎ- = Lie�/Lie a C-v.s. structure let
#6(G) = 6G6−1 gives

�→ Aut(�)
and its derivative is the adjoint map ad. If we compose with ℎ : S→ � we get
a hodge structure on ! = Lie�.

As ℎ(R×) is in the center of �(R), have ad ℎ(R×) is the identity on !. Hence
the hodge structure on ! is of weight 0. By above remark.

Let !0,0 = !0,0
C ∩ ! be the real (0, 0) part of the HS on !.

Lemma 5.6.3
!0,0 = Lie 

Proof. By the definition of  , #ℎ(:) = : for all : ∈  . Differentiating gives

(ad ℎ)(E) = E

for all E ∈ Lie So Lie ⊆ !0,0. Conversely if E ∈ !0,0 then (ad ℎ)(E) = E
implies

(ad ℎ)(exp E) = exp E

so exp E ∈  i.e. E ∈ Lie . �

Lemma 5.6.4 The inclusion ! ↩→ !C induces an isomorphism of R-v.s.

!/!0,0 ∼−→ !C/�0!C.

Proof. see notes. �

These lemmas combined give )ℎ- a C-structure.
To get a C-manifold structure on - we embed - into a C manifold in a way

that respects the C-structures on the tangent spaces.
Pick a faithful representation � ↩→ GL(+). Then ℎ ∈ - we get a Hodge

structure on + via
S

ℎ−→ �
�
−→ GL(+)

all other ℎ′ ∈ - have the same combinatorial data.
Let F be the flag variety parameterises filtrations of the type associated to

ℎ ∈ -.
To be safe assume + of weight :.
We have an injective map

- ↩→ )ℱ
this induces a complex structure on -, see notes for deets.

5.6.3 Geometric conditions and chill (on VHS)
Recall that a VHS parameterised by a space ( must satisfy “Griffiths transver-
sality”, this translates to the condition

Theorem 5.6.5 A VHS on + satisfies Griffiths transversality iff

the HS on ! = Lie(�) of type {(−1, 1), (0, 0), (1,−1)}. (5.6.2)

Background on Cartan involutions. Let � be a real algebraic group with
involution �. Then a real form of � associated to � is

��(�) = {6 ∈ �(� ⊗ C) : �(6) = 6̄}

for all R-algebras �.
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Example 5.6.6 � = GL= , �(6) = (6⊥)−1 then

�� = *(=)

observe that this is compact! �

Definition 5.6.7 Cartan involutions. � is called a Cartan involution if ��

is compact, i.e. ��(R) is compact and meets every connected component of
��(C). ♦

Theorem 5.6.8 Let � be connected, then � is reductive iff � admits a Cartan involu-
tion.
Lemma 5.6.9 for next time. If  is a compact lie group then any C-representation
+ of it admits a  -invariant pos. def. Hermitian form

Conversely if  has a faithful representation admitting a  -inv pos. def. Herm.
form. then  is compact.

Proof.  compact, take any �0(D, E) a pos. def. herm. form on + . Then

�(D, E) =
∫
 

�0( D,  E)d 

is  -invariant with some properties. For the converse statement the conditions
imply  ↩→ *( ) hence  is compact. �

Remark 5.6.10One source of involutions on� come from � ∈ �r/ s.t. �2 ∈ /
then

6 ↦→ �6�−1

is such an involution. e.g. �!!

5.7 What is ... a Shimura Variety? (Angus)
Motivation. We began by studying modular curves e.g. .0(#) = Γ0(#)\ℋ
Aash proved

.0(#) = Γ0(#)\ SL2(R)/SO2(R).
Consider A =

∏′
E QE the adele ring of Q. Let

 0(#) = {
(
0 1

2 3

)
∈ GL2(Ẑ) : 2 ≡ 0? mod #}.

Theorem 5.7.1 Strong approximation.

GL2(A) = GL2(Q)GL2(R)+ 0(#).
Corollary 5.7.2

.0(#) = GL2(Q)/(GL2(A))\GL2(A)/ 0(#) SO2(R)
We will generalise this final viewpoint for general �.
Last time - = conjugacy class of morphisms

ℎ : S→ � for �/R

an algebraic group s.t.

1.
ℎ(R×) ⊆ /(�(R))
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2. Thehodge structureonLie(�) inducedbyad ◦ℎ is of type {(−1, 1), (0, 0), (1,−1)}.
We also began studying Cartan involutions. Take an involution � of � and

define
��(�) = {6 ∈ �(� ⊗ C : �(6) = 6̄}

this �� is another algebraic group /R.

Remark 5.7.3 �� is a real form of �, i.e. �� ⊗ C ' � ⊗ C.

Example 5.7.4 � = GL= , �(6) = (6T)−1 then �� = *(=). �

Recall the definition of a Cartan involution.
For � ∈ �(R) s.t. �2 ∈ /(�(R)) then

� : 6 ↦→ �6�−1

is an involution.
When is it Cartan?

Definition 5.7.5 An R-representation + of � is �-polarizable if there exists a
�-invariant bilinear form

Ψ : + ×+ → R

s.t.
Ψ(G, �H)

is symmetric and positive definite. ♦

Theorem 5.7.6 Let �/R be an algebraic group. Let � ∈ �(R) s.t. �2 ∈ /(�(R)).
Let � : 6 ↦→ �6�−1 then � is a Cartan involution iff � admits a faithful �-polarizable
representation.

Proof. ⇒. Assume�� is compact. Let+ be a faithfulR-representationof��(R).
From last time, there exists a ��(R)-invariant positive definite symmetric form

Ψ : + ×+ → R

consider Φ(D, E) = Ψ(D, �−1E). Then Φ(G, �H) is positive definite and sym-
metric so Φ is a �-polarization.
⇐. Let + be �-polarizable so we have Ψ : + × + → R. Then ΨC : +C ×

+C → C is symmetric bilinear �-invariant. Let �(D, E) = ΨC(D, Ē) consider
��(D, E) = �(D, �E).

�� is ��(R)-invariant positive definite, Hermitian. From last time �� is
compact. �

Now introduce polarizations on Hodge structures.

Definition 5.7.7 A polarization on a weight : Hodge structure

ℎ : S→ GL(+)

+C =
⊕
?+@=:

+?,@

is a bilinear formΨ : + ×+ → R s.t.
1. Ψ is (symmetric/alternating) if : is even / odd.

2. Letting
� : +C ×+C → C

be given by
�(D, E) = 8:Ψ(D, Ē)
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then the
+?,@

are orthogonal with respect to � and � |+?,@ has sign 8?−@−: .

♦
Why polarize?
Recall: the set ofpolarizedHodge structures onR26 of type {(−1, 0), (0,−1)}

is the Siegel upper half spaceℋ6 .

Lemma 5.7.8 Let R(=) be the vector space R with Hodge structure I ↦→ |I |= . A
bilinear formΨ on + (of weight :) is a polarization iff

1. Ψ : + ×+ → R(−:) is a morphism of Hodge structures.

2. Ψ(E, ℎ(8)F) is symmetric and positive definite.

Proof. ⇐ in Jared’s notes.
⇒, we want to show

Ψ(ℎ(I)E, ℎ(I)F) = |I |−:Ψ(E, F)

Ψ(ℎ(I)E, ℎ(I)F) = 8−:�(ℎ(I)E, ℎ(I)F)

= 8−:�(ℎ(I)
∑

E?,@ ,
∑

ℎ(I)F?@)
= · · ·

= |I |−:Ψ(E, F)
using orthogonality. �

Let + be a faithful representation of � s.t. for all ℎ ∈ - we get a Hodge
structure on + .

Call + polarizable if in the weight decomposition

+ =

⊕
:

+:

each+: admits a bilinear formΨ: s.t. ℎ ∈ - gives a polarizedHodge structure
on +: .

To define the adjoint group, take the adjoint representation

ad: �ad
1 = ad(�1)

if �1 is connected then �ad
1 = �1//(�1).

Theorem 5.7.9 Let �1 be the smallest subgroup of � through which all the ℎ ∈ -
factor. A faithful representation + is polarizable iff

1. �1 is reductive.

2. For some ℎ ∈ - (equivalently for all ℎ ∈ -) conjugation by ℎ(8) is a Cartan
involution on the adjoint group �ad

1 .

Proof. ⇒ Let �2 ⊆ �1 be the smallest subgroup containing ℎ(*1) for all ℎ ∈ -
where *1 = {|I | = 1} ⊆ C×. Then �1 is generated by �2 and ℎ(C) for all
C ∈ R× , ℎ ∈ -. Since ℎ(C) is always central have �ad

1 = �ad
2 . By the previous

lemma, ∀I ∈ *1

Ψ(ℎ(I), E, ℎ(I)F) = Ψ(E, F)
so Ψ is �2 invariant. Father Ψ(E, ℎ(8)F) is symmetric positive definite for all
ℎ ∈ -. So conjugation by ℎ(8) is a Cartan involution on �2 so on �ad

2 = �ad
1 . �
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Definition 5.7.10 Shimura data. A Shimura datum is a pair (�, -)where
1. �/Q is a reductive algebraic group.

2. - is a �(R)-conjugacy class of morphisms ℎ : S→ �R s.t.

(a) ∀ℎ ∈ - the Hodge structure on Lie(�R) induced by ad ◦ℎ is of type
{(−1, 1), (0, 0), (1,−1)}.

(b) The involution ad ℎ(8) (i.e. conjugation by ℎ(8)) is a Cartan involu-
tion on �ad.

(c) � has no Q-factor on which the projection of ℎ is trivial.

♦

Definition 5.7.11 Let A∞ =
∏′

?≠∞Q? be the ring of finite adeles of Q. Let
 ⊆ �(A∞) be a compact open subgroup. The shimura variety of level  then
Sh (�, -) is given by

Sh (�, -) = �(Q)\- × �(A∞)/ 

The shimura variety at infinite level is

Sh(�, -) = lim←−−
 

�(Q)\- × �(A∞)/ = �(Q)\- × �(A∞)

♦

Example 5.7.12 GL2. - = conj. class containing ℎ : (0+18) ↦→
(
0 1

−1 0

)
↔ CrR

↔ { complex structures on + = Q2}.

ℎ ↦→ 8

Let �/C be an elliptic curve. We have the full Tate module

)� = lim←−−
#

�[#] ' Ẑ2

We have the full rational Tate module

+∞� = )� ⊗ A∞ ' (A∞)2

' �1(�,Q) ⊗Q A∞

�

Proposition 5.7.13 Sh(GL2 , -) classifies isogeny classes of pairs (�, �) where

�/C an elliptic curve

� : A∞ ×A∞
∼−→ +∞(�)

an A∞ linear isomorphism.

Remark 5.7.14 An isogeny is 5 ∈ Hom(�, �′) ⊗ Q sending � ↦→ �′ Sh(GL2 , -)
has components indexed by Ẑ×.
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5.8 Canonical models (Alex)
Recall we defined Shimura varieties given a Shimura datum (�, -) and a
compact open  ⊆ �(A∞) as

Sh (�, -) = �(Q)\(- × �(A∞))/ 

a quasi-projective variety, and more generally the infinite level version

Sh (�, -) = lim←−−
 

Sh (�, -) = �(Q)\(- × �(A∞))

which is a pro-variety and in fact a scheme.
These are varieties over C, we might hope to define them over a number

field or even a ring of integers, so that we can do number theoretic things (look
locally prime by prime for instance, or identify special rational points).

In the case where our Shimura variety is a natural moduli space (modular
curves) might expect that this is indeed possible.

There will be two words in this talk, special and canonical that already
have a vague meaning, we will be giving them a precise meaning in this talk
for once!

5.8.1 Galois descent
Say you have a variety over C. Is it really a C-variety, or is it a : variety for
: ⊆ C that has been base-changed to C?

Question 5.8.1Given -/C a variety, is there a subfield : ⊆ C and an -0/: with

- ' -0 ×: C

we then say - descends to :, and that -0 is a model of - over :. �

Preview: some examples of curves. Example 5.8.2 Let

� : G2 + H2 = �/C

is there �0/Q s.t. �0 ×Q C ' �. Yes, we have

� ' G2 + H2 = 1/C ' (G2 + H2 = 1/Q) ×Q C.

�

Example 5.8.3 Let now
� : H2 = G3 + 8G + 1/C

is there some �0/Q such that

�0 ×Q C ' �?

If there was such the following would be true: For any � ∈ Gal(C/Q)we have

��︸︷︷︸
H2=G3+�(8)G+1

5 � ,∼
←−−− �0 ×Q C

5 ,∼
−−→ �

but two elliptic curves are isomorphic (over C) if and only if they have the
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same 9-invariant.

9(�) = 1728 483

483 + 27 · 12 = 1728
(
1 + −27
−48 + 27

)
9(��) = 1728 4�(8)3

4�(8)3 + 27 · 12 = �(9(�))

so these curves are not isomorphic overQ, nowaydoes it come fromaQ-curve.
�

This example suggests another interesting behaviour, the curve over C
could come from a :-curve in multiple ways, which are non-isomorphic over
the base.
Example 5.8.4 Let now

� : H2 = G3 + G + 1/C
we have

�0 : H2 = G3 + G + 1/Q
duh... but also

�′0 : 2H2 = G3 + G + 1 ' H2 = G3 + 4G + 8/Q,

both are isomorphic to � over C but are not isomorphic to each other over Q.
�

Coming back to our necessary condition:

Question 5.8.5 If for all � ∈ Gal(C/:)we have some

5� : -
∼−→ -�

does - descend to :? �
For elliptic curves we have 9(��) = �(9(�)) so � ' �� for all � implies

9(�) ∈ : and hence there is an elliptic curve �0/: with 9(�0) = 9(�) hence they
are isomorphic over C, explicitly:

H2 + GH = G3 − 36
9(�) − 1728

G − 1
9(�) − 1728

when 9 ≠ 0, 1728.
So our necessary condition is sufficient for genus 1 (exercise: genus 0).
Now I will subtly switch to quasiprojective-variety-land.
Notice however that given

-0/:
so that we have natural

(-0 ×: C)
5� ,∼−−−→ (-0 ×: C)�

various isomorphic curves, we have the relation

5 �� 5� = 5��.

Theorem 5.8.6 Weil 1956. -/C descends to : if and only if we can find 5� as above
satisfying a cocycle condition

5�� = ( 5�)� 5� : - → -� → -��,

such a system is called a Weil descent datum.
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This condition sounds like it could be irritating to check, fortunately we
have the following:

Remark 5.8.7 If -/C has no automorphisms (i.e. a generic genus 6 ≥ 3 curve)
then the cocycle condition is trivial and we just need the isomorphisms as in
our first necessary condition. This is as 5 −1

�� 5
�
� 5� is just some automorphism,

we want it to be the identity.
Unfortunately many curves of interest have a lot of automorphisms how-

ever. Like superelliptic curves/cyclic covers.
This motivates the following definition:

Definition 5.8.8 Field of moduli. The field of moduli of -/C is the fixed field
of

{� ∈ Gal(C/Q) : -� ' -}.
♦

It would be great if every curve could be defined over its field of moduli.
“You can’t always get what you want, but if you try sometimes, you might

find, you get what you need” - The philosopher Jagger.

Example 5.8.9 Shimura. Let < be odd and define a hyperelliptic curve of
genus < − 1 (which is even) as

- : H2 = 00G
< +

<∑
A=1
(0AG<+A + (−1)A 0�A G<−A), 08 ∈ C, 0< = 1, 00 ∈ R

� is complex conjugation, then we have an isomorphism

� : - → -� , �(G, H) = (−G−1 , 8G−<H)

��� : (G, H) ↦→ (G,−H)

so the field of moduli is contained in R. As long as we pick all 08 , 0
�
8
alge-

braically independent overQ there are no automorphisms except±1. Exercise,
in this case - has no model over R. �

Warning even though trivial automorphism group is best, it is not really
the case that more automorphisms is worse for you.

What does help is points

Theorem 5.8.10 Weil 1956, Milne 14.6. -/C descends to : if all -� ' - and
there exists a set of points %1 , . . . , %= ∈ -(C) s.t.

1. The only automorphism of - fixing each %8 is the identity.

2. There exists a subfield ! ⊆ C finitely generated /: s.t. �%8 = %8 for all � fixing
!.

Goal. Identify a special set of points, and some field ! as above where we
“know” the galois action.

5.8.2 Reflex fields
First we define a field based on a Shimura datum, this will (eventually) be the
field we hope to descend the associated Shimura variety to.

Definition 5.8.11 Algebraic tori. An algebraic torus over a field : is an
algebraic group ) such that ):̄ ' (G<)= . ♦
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Let �/Q be reductive, : ⊆ C and let

�(:) = �( )\Hom(G< , �:)

be the set of conj. classes of cocharacters /:.
For (�, -) a Shimura datum we can take

- 3 G ↦→ �G(I) = ℎGC(I, 1) ∈ �(Qalg) ⊆ �(C).

So think of 2(-) ∈ �(Qalg)
Definition 5.8.12 Reflex fields. The reflex field, denoted �(�, -) is the field
of definition of 2(-) inside Qalg. ♦

Fact 5.8.13 Any field of definition of � contained in Qalg is contained in �(�, -).

5.8.3 Special points
In the theory of modular curves and the upper half plane there are certain
points that play an important role, imaginary quadratic integers in H.

Why are these points special? They are fixed points: if we try and solve for
I ∈ H

I =

∈SL2(Z)︷  ︸︸  ︷(
0 1

2 3

)
I =

0I + 1
2I + 3

we get
2I2 + (3 − 0)I − 1 = 0

which has discriminant (3−0)2+421 = 32−203+02+412 = (0+3)2−4(03−12) =
Tr2 −4 det so I is an eigenvalue of this matrix. (note that a matrix must be
elliptic to have fixed points in the upper half plane).

In fact this is a general phenomenon:

Definition 5.8.14 Special points. G ∈ - is a special point if there is a Q-torus
) ⊆ � s.t.

ℎG(C×) ⊆ )(R)
we also say (), G) is a special pair. ♦

Remark 5.8.15 (), G) special means )(R) fixes G.
Conversely if ) is a maximal torus of � with )(R) fixing G then ℎG(C×) is

in the centraliser of )(R) inside �(R)which is itself =⇒ (), G) is special.
I said this generalises CM points, how?

Example 5.8.16 Let � = GL2 and H±1 = C r R then we have our old friend the
�(R) action (

0 1

2 3

)
I =

0I + 1
2I + 3

so if I ∈ C r R generates an imaginary quadratic field �/Q (which is a 2-d
Q-vector space) we can embed

� ↩→Mat2(Q)

using basis 〈1,−I〉 for �.
So we get a maximal subtorus ) = Res�/Q(G<) ⊆ �.
Now

� ⊗ C = 〈1 ⊗ 1, 1 ⊗ (−I)〉
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and we can map
� ⊗ C→ C

4 ⊗ I ↦→ 4I

we have a kernel of dimension 1

〈I ⊗ 1 + 1 ⊗ (−I)〉 = 〈
(
I

1

)
〉

exercise check Res�/Q(G<)(R). �

5.8.4 Canonical models
Given a special pair (), G) ⊂ (�, -)we have a cocharacter �G of ) defined over
�(G)we can form the map

AG : A×
�(G)

% ↦→∏
� : �(G)→Qalg �(�G (%))

−−−−−−−−−−−−−−−−−−−→ )(AQ) → )(A 5 )

the last map just forgets the infinite components.
We have the artin map from CFT

art�(G) : A×
�(G) � Gal(�(G)ab/�(G))

AG : A×
�(G) → )(A 5 ).

Call [G, 0] the point of Sh (�, -) represented by (G, 0).

Definition 5.8.17 Milne 12.8. Let (�, -) be a Shimura datum, and let  be
a compact open subgroup of �(A 5 ). A model " (�, -) of Sh (�, -) over
�(�, -) is a canonical model if, for every special pair (), G) ⊆ (�, -) and
0 ∈ �(A 5 ), [G, 0] has coordinates in �(G)ab and

�[G, 0] = [G, AG(B)0] 

for all
� ∈ Gal(�(G)ab/�(G))

B ∈ A×
�(G)

art�(G)(B) = �

In other words, " (�, -) is canonical if every automorphism � of C fixing
�(G) acts on [G, 0] according to the above rule, where B is any idele such that

art�(G)(B) = � |�(G)ab.

♦

Example 5.8.18 ) an algebraic torus over Q and

ℎ : S→ )R

then (), ℎ) is a Shimura datum � = �(), ℎ) is the field of definition �ℎ in this
case

Sh (), ℎ) = )(Q)\{ℎ} × )(A 5 )/ 
is a finite set, defines a continuous action of

Gal(�ab/�)� Sh (), ℎ),
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this action defines amodel of Sh (), ℎ) over �which by definition is canonical.
�

Theorem 5.8.19 Langlands conjecture, Milne 1983. Let (�, -) be a shimura
datum, � an automorphism of C. Langlands defined

(�� , -�)

and conjectured a unique isomorphism

5� : Sh(�� , -�) → Sh(�, -)

satisfying some conditions. Then the 5� for � ∈ Gal(C/�(�, -)) are a descent datum,
and the model is canonical.
Theorem 5.8.20 For any Shimura datum (�, -), Sh (�, -) has a canonical model
(defined to be a compatible system of canonical models for Sh ). The canonical model
is unique up to unique isomorphism.

Some references:

1. Weil’s Galois Descent Theorem; AComputational Point Of View - Ruben
A. Hidalgo And Sebastian Reyes-carocca

2. On the field of moduli of superelliptic curves - Ruben Hidalgo and Tony
Shaska

3. Varieties Without Extra Automorphisms I: Curves - Bjorn Poonen

4. LectureOnShimuraCurves 6: Special PointsAndCanonicalModels Pete
L. Clark http://math.uga.edu/~pete/SC7-CMpoints.pdf (Shimura curves
only but still)

5. Shimura Varieties and Canonical models (slides) - Brian Smithling http:
//www.math.mcgill.ca/goren/Montreal-Toronto/Brian.pdf.

6. https://tlovering.wordpress.com/2014/09/03/galois-descent-for-transcendental-extensions/.

7. Canonical models of Shimura curves - J.S. Milne (a great article I found
after the talk...)

http://math.uga.edu/~pete/SC7-CMpoints.pdf
http://www.math.mcgill.ca/goren/Montreal-Toronto/Brian.pdf
http://www.math.mcgill.ca/goren/Montreal-Toronto/Brian.pdf
https://tlovering.wordpress.com/2014/09/03/galois-descent-for-transcendental-extensions/


Chapter 6

Gross-Zagier

These are notes for BUNTES Fall 2019, the topic is Gross-Zagier, they were
last updated November 4, 2020. For more details see the webpage. These
notes are by Alex, feel free to email me at alex.j.best@gmail.com to report
typos/suggest improvements, I’ll be forever grateful.

6.1 An Overview of Gross-Zagier and Related Ob-
jects / Formulas of interest (Sachi)

Goal today is to motivate and give some high level overview of the objects
in Gross-Zagier. It involves many things !-functions, elliptic curves, modular
forms.

Main reference: [106].

6.1.1 A big example
Today we will study

� : H2 + H = G3 + G2

LMFDB label 43.a1, http://lmfdb.xyz/EllipticCurve/Q/43.a1/.

139

http://math.bu.edu/people/svh/GrossZagier.html
mailto:alex.j.best@gmail.com
http://lmfdb.xyz/EllipticCurve/Q/43.a1/
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Figure 6.1.1
One fundamental invariant we can compute is the conductor, in this case

43, we only have bad reduction at 43 and no other prime.
To compute the real period we can transform to short Weierstrass form.

H2 = G3 − 432G + 15120

then we have invariant differential

dG
2H =

dG
2
√
G3 − 432G + 15120

.

Real period is then

$1 =

∫
�(R)

dG
2H ≈ 5.4687 . . . .

For �/C fix a complex conjugate root of �, 
, and � = real root.

$2 =

∫ �




dG
2H

= 2.73434476498379 + 1.363182418170438

We can look at �/F? for various ?. Obtained by looking at the equation
H2 + H = G3 + G2 (mod ?) for various ?.

At 43 we have non-split multiplicative reduction, which means that we
have a singular curve with tangent slopes not defined over F43.
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Figure 6.1.2

#? = #�(F?)

!� =

(
1

1 + 43−B

) ∏
?≠43

1
1 − (#? − ? − 1)?−B + ??−2B

=

∑
=≥1

0=

=B

We can tabulate the 0=
Table 6.1.3 0=s

= 1 2 3 4 5 6 7 8 9
0= 1 -2 -2 2 -4 4 0 0 1

As we have �/Q we can determine that

�(Q) ' Z · %︸︷︷︸
=(0,0)

.

Next up the Néron-Tate canonical height:

ℎ̂(%) = lim
=→∞

log(ℎnaive(2=%))
4=

naive height is the max of the absolute values of the numerator and denomi-
nator of the G-coordinate. In our case this is

ℎ̂(%) ≈ 0.0628165070875.

We have the Hasse-Weil bound:

|#? − ? + 1| < 2√?
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so the !-function converges for<(B) > 3/2. So modularity implies that !�(B)
extends to an entire function !̃� satisfying a functional equation

!̃�(B) = −!̃�(2 − B)

in particular !̃�(B) vanishes at B = 1.
BSD for rank 1 then says:

1.
ordB=1 !̃�(B) = rank�(Q) = 1

2.
d
dB !̃�(B)|B=1 = ℎ̂(%)$1︸  ︷︷  ︸

≈0.34352397

| III |

| III | is predicted to be finite (in which case the order is a square). the
LHS can be computed using

2
∞∑
==1

0=

∫ ∞

1
log C exp

(
−−2=�C√

43

)
dC.

Modularity. Goal: Verify � is modular. Two definitions today:

1. There exists a newform 5 ∈ (2(Γ0(#)) with fourier coefficients the same
as the !-series:

0?( 5 ) = 0?(�)
for all ? - # .

2. There exists -0(#) → � finite defined over Q.

Consider
-0(43)

themodular curve for the congruence subgroup generated by Γ0(43) =
(
0 1

2 3

)
with 2 ≡ 0 (mod 43).

F43 =

(
0 −1√

43√
43 0

)
Γ0(43)+\H ' genus 1 curve

which is potentially equal to �.
Strategy: Find �, � s.t.

�(�)2 + �(�) = �(�)3 + �(�)2

and
d�

2� + 1 = 5 (@)
d@
@

� 5 2 , � 5 3

should be holomorphic modular forms in "4(Γ0(43)) and "6(Γ0(43)). we can
compute @-series expansions and use modular symbols to prove they exist.
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Quadratic twists of �. Let Δ < 0 be a fundamental discriminant.

� : H2 = 5 (G)

then
�Δ : ΔH2 = 5 (G)

these are not isomorphic over Q.
The !-function of �Δ. For any Δ coprime to 43

!�Δ(B) =
∑
=≥1

(
Δ

=

)
0=

=B

can prove that for ? - 6 · 43 · Δ.

0?(�) ↔ 0?(�Δ)

are related by considering
� : H2 = 5 (G)
�Δ : ΔH2 = 5 (G)

mod ?, so if Δ is a square we have isomorphisms locally and the 0? are equal,
otherwise all non-square and squares are swapped.

BSD says
!�,Δ(1) = Ω+�,Δ

∏
?

2?�Δ

if rank = 0.
Waldspurger’s implies that �Δ is a square.

Theorem 6.1.4 Gross-Zagier. If Δ < 0 is a fundamental discriminant which is a
square mod 43, then

ℎ̂(%Δ) =
√
|Δ|

8�2‖ 5 ‖ !
′
�(1)!�Δ(1),

where %Δ is the Heegner point on � associated to the discriminant Δ.
Adding in Waldspurger we get

�(Δ) = 22
Δ

ℎ̂(%Δ) = ℎ̂(1Δ%) = 12
Δ
ℎ̂(%)

but also

ℎ̂(%Δ) =
√
|Δ|

8�2‖ 5 ‖ !
′
�(1)Ω

+
�,Δ

∏
?

2?2
2
Δ

as Ω+
�,Δ

= Ω−
�
/
√
Δwe have cancellation and 22

Δ
= 12

Δ
for all Δ.

6.2 Modular Curves Background I (John)
Main references are lecture notes by Darmon and Weinstein “introduction to
modular forms”.
Definition 6.2.1 Let

Γ(#) =
{(
0 1

2 3

)
∈ SL2(Z) :

(
0 1

2 3

)
≡

(
1 0
0 1

)
(mod #)

}
.
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Γ ⊆ SL2(Z) is a congruence subgroup if it contains Γ(#) for some # . Some
important examples are

Γ1(#) =
{(
0 1

2 3

)
∈ SL2(Z) :

(
0 1

2 3

)
≡

(
1 ∗
0 1

)
(mod #)

}
Γ0(#) =

{(
0 1

2 3

)
∈ SL2(Z) :

(
0 1

2 3

)
≡

(
∗ ∗
0 ∗

)
(mod #)

}
♦

Definition 6.2.2
5 : H→ C

is a modular form of weight 2: for Γ (with character &) if
1. 5 is holomorphic on H.

2. 5 is holomorphic at infinity.

3.
5 |2:�(I) = 5 (I) ∀� ∈ Γ

where
5 |2:�(I) = (2I + 3)−2: 5 (�I)&(3)

♦

Example 6.2.3 For Γ = SL2(Z) from now on.

5 (I + 1) = 5 (I)

5

(
−1
I

)
= I2: 5 (I)

�
Using this we can write

5 (I) = 5 (@), @ = 42�8I ,

where @ is a parameter at infinity.

5 (@) =
∞∑
==0

0=@
= .

Definition 6.2.4 A modular form is a cusp form if 00 = 0. ♦

Definition 6.2.5 ":(Γ) is the space of weight : modular forms. (:(Γ) is the
space of weight : cusp forms. ♦

Example 6.2.6

�2:(I) =
′∑

<,=∈Z

1
(<I + =)2:

62 = �4(I)/2�(4)
63 = �6(I)/2�(6)

then

Δ =
63

2 − 62
3

1728
is a cusp form of weight 12. �
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Theorem 6.2.7
� : ": → (:+12

5 ↦→ Δ 5

is an isomorphism of vector spaces.

∀: < 0, ": = 0

: = 2, ": = 0

: odd, ": = 0.
": = (: + �:C, ∀: ∈ 2Z+

Proof.
( 5Δ)(−1/I) = (2I + 3)−: 5 (I)(2I + 3)−12Δ(I)

= (2I + 3)−(:+12)( 5Δ)(I).
If : < 0 , 5 ∈ ": have 5 12Δ: ∈ (0 = 0. "0 = C corresponds to holomorphic
functions on SL2(Z)\H.

": → C

5 (@) = 00 + 01@ + · · · ↦→ 00

dim(":/ker) ≤ 1

": = (: + �:C

we get
Table 6.2.8 dimensions

= dim": dim (:
< 0 0 0
0 1 0
2 0 0
4 1 0
6 1 0
8 1 0
10 1 0
12 2 1
14 1 0
16 2 1
18 2 1
20 2 1
22 2 1

�

Hecke operators. Definition 6.2.9Λ is a lattice if it is a rank 2 Z-module in C s.t.
C/Λ is compact.

Λ = �1Z + �2Z
dimR(�1R + �2R) = 2
=(�2/�1) > 0

� is a homogeneous lattice function of weight : if it is

� : '→ C

where ' is the set of lattices, such that

�(�Λ) = �−:�(Λ)
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� is holomorphic if 5 : H→ C

5 (�) = �(Z + �Z)

is holomorphic on H.

{holo. homog. wt. : lattice fns.} ↔ {wt. : mod. fms.}

� ↦→ 5� : � ↦→ �(Z + �Z)
� 5 ← � 5

� 5 (�1Z + �2Z) = 5 (�2/�1).
♦

Definition 6.2.10 � is a homogeneous holomorphic weight : lattice function
then

)=,:�(Δ) = =:−1
∑

Λ′⊆Λ, [Λ:Λ′]==
�(Λ′)

)=,: 5 = 5)=,: (� 5 )

)=,: 5 (I) = =:−1
∑

�∈SL2(Z)\"=

5 (�I)(2I + 3)−:

where "= ⊆ "2(Z) is the set of integer matrices of determinant =.

5 |
� = ( 5 |
)|�.

The fourier expansions of these are given by

5 (@) = 00 + 01@ + · · ·

)=,: 5 (@) =
∞∑
<=0

∑
3 |(<,=)

3:−10=</32 @<

fixing : we have if (0, 1) = 1
)0)1 = )01

for ? prime
)?)?C = )?:+1 + ?:−1)?C−1 .

♦

-2.0 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 6.2.11 The fundamental domain
These )=,: operate on ":(SL2(Z)) and we can define:
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Definition 6.2.12 Let 5 ∈ ":(SL2(Z)) is an eigenform if it is a simultaneous
eigenvector for {)=}∞==1. We have

〈−,−〉 : (: × (: → C〈
5 , 6

〉
=

∫
�

5 (I)6(I)H:
dG dH
H2 .

♦

Proposition 6.2.13 )= is self-adjoint in (:〈
)= 5 , 6

〉
=

〈
5 , )= 6

〉
(: =

⊕
58C

an orthogonal basis of eigenforms. �: is an eigenform and

": = �:C +
⊕

58C.

Definition 6.2.14 5 is a normalized eigenform if

01( 5 ) = 1

0=( 5 ) = 01()= 5 ) = 01(�= 5 ) = �=01( 5 ) = �= .

♦

Proposition 6.2.15 If 5 ∈ (: is a normalized eigenform then

Q(01( 5 ), 02( 5 ), . . .)

is a finite totally real extension of Q with degree ≤ dim (: = 3.

Proof. �:/�(:) and Δ have rational coefficients.

":(Q) = 51Q + · · · + 53Q

)= operates on ":(Q) so
)= ↩→Mat3(Q)

T: = Q[)1 , )2 , . . .] ↩→Mat3(Q)
∀) ∈ Hom(T: ,Q) have im()) lies in a degree ≤ 3 extension. this is totally real
because )= are self adjoint w.r.t. a Hermitian inner product. �

Generalisation. If Γ is any congruence subgroup

":(Γ) = Eis:(Γ) + (:(Γ)

":(SL2(Z)) ⊆ ":(Γ)
Given 3 |# we have

5 ∈ ":(Γ(3))
can define dilation

6(I) = 5 (#/3I) ∈ ":(Γ)
for large enough : we can find a basis of ":(Γ(#)) by taking dilations of
products of "0(Γ(#)) for 0 < : and Hecke operators.
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For (=, #) = 1, 5 ∈ ":(Γ(#)).

)=,: 5 = =
:−1

∑
�∈Γ(#)\"=

( 5 |�)(I)

"= is integer upper triangular with determinant =. For primes ;

; - #, ); 5 (@) =
∑

0= ;@
= + ;:−1

∑
0= 〈;〉 5 @=;

; |#, ); 5 (@) =
∑

0=;@
=

〈;〉 5 (I) =
(
5 |:

(
; 0
0 ;−1

))
(I).

Definition 6.2.16
6 ∈ (:(Γ(#))

s.t.
6(I) = 5 (3I)

for some 5 ∈ (:(Γ(#/3)) is called an oldform. Newforms are 5 ∈ (:(Γ(#)) s.t.〈
5 , 6

〉
= 0

for all 6 ∈ (:(Γ(#))>;3. ♦

6.3 Modular Curves and Heegner Points (Ricky)

6.3.1 CM theory
Let �/C be an elliptic curve so �(C) = C/Λ�, where Λ = Z + Z�, writing
� = � + �, � ∈ H.

Recall that

End(�) =
{

Z
O ⊆  ,  /Q im. quad.

Lemma 6.3.1
Hom(C/Λ,C/Λ′) = {
 ∈ C : 
Λ ⊆ Λ′}

Proof. Lift ) : C/Λ→ C/Λ′ to

) : C→ C

to see )(I) = 
I for some 
 ∈ C×. �

So End(��) = {
 ∈ C : 
Λ� ⊆ Λ�}. If 
 · 1 = <1 + <2� and


 · � = =1 + =2�

then
<2�

2 + (<1 − =1)� − =1 = 0
call these coefficients �, �, � ∈ Z. And Δ = �2 − 4��, so Δ = − 5 23 < 0 where
5 is the conductor of � and 3 is the discriminant of �.

Then if End(��) ≠ Z we have

End(��) = Z ⊕ 5Z
[
−3 +

√
−3

2

]
= OΔ ⊆ OQ(

√
−3)

We say � has CM by OΔ.
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Remark 6.3.2We can create elliptic curves with CM by O by creating C/O. In
fact, all elliptic curves with CM by O are isomorphic to C/a for a a fractional
ideal of O.
Theorem 6.3.3 Let �/C be an elliptic curve with CM by O for  /Q imaginary
quadratic. Then 9(�) ∈ O� . Where � is the hilbert class field of  , so � admits a
model over a number field.

Theorem 6.3.4 Let � = Gal(� / ) then we have an isomorphism

B : Pic(O ) → �

b ↦→ B(b)
9(a)B(b) = 9(b−1a).

(The 9-invariants generate O� , this characterises � as a Galois group).

6.3.2 Modular curves
Let

Γ0(#) =
{(
0 1

2 3

)
∈ SL2(Z) :

(
0 1

2 3

)
≡

(
∗ ∗
0 ∗

)
(mod #)

}
degine .0(#) = Γ0(#)\H , -0(#) = Γ0(#)\H. Then -0(#) can be given the
structure of a projective algebraic variety /Q.

The for !/Q a field we have the modular interpretation,

.0(#)(!) = {(�, �′, )) : �, �′/! ell. curves, ) : �→ �′/! cyclic isog. degree #}

i.e. ) for which ker) ' Z/# .

Atkin-Lehner involutions. Let 3 |# , (3, #/3) = 1. We get an involution

F3 : -0(#) → -0(#)

such that
F# (& : �→ �′) = ()̂ : �′→ �)

(and it swaps the two cusps.????????????)
These generate a group, ⊆ Aut(-0(#))with the relation

F3F3′ = F33′/(3,3′)2 .

So, ' (Z/2)B where B is the number of primes dividing # .

6.4 Archimedean Local Heights I (Aash)
Breuil-Conrad-Diamond-Taylor proved modularity of elliptic curves over Q.
Gross-Zagier assume this so we can now state results unconditionally.

Theorem 6.4.1
6�(I) =

∑
<≥1
〈2, )<2�〉 42�8<I

is a cusp form of weight 2 on Γ0(#) and satisfies

( 5 , 6�) =
D2 |� | 12 !′

�
( 5 , 1)

8�2
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for all 5 in the space of newforms of weight 2 in Γ0(#).

�; ↔ Gal(�/ )
�↔ �

the artin map.
2 = (G) − (∞) ∈ �(�)

G a Heegner point and 〈·, ·〉 is the global height pairing on �(�) ⊗ C.
� is the Jacobian of -0(#),  = Q(

√
�), class number ℎ.

�/ is the hilbert class field and 2D is the number of roots of unity in  .
Where !� is a twisted !-function related to a component theta function,

i.e.
A�(=) = #integral ideals in � of norm =.

Also
Theorem 6.4.2

!′( 5 , ", 1) =
8�2( 5 , 5 )ℎ̂(2G, 5 )

ℎD2 |� | 12
.

2G =
∑

�∈Gal(�/ )
G−1(�)2�

G a character of Gal(�/ ). 2G, 5 is the projection to the 5 -isotypical component.

6.4.1 Height Pairings
| · |E : �×E → R×+
|
 |E = 

̄

if �E � C or @−E(
)E if E is non-archimidean.
Neron’s theory gives us a unique symbol on relatively primes divisors

(divisors whose supports are disjoint). This pairing when defined splits up as

〈0, 1〉 =
∑
E

〈0, 1〉E

6�(I) =
∑
<≥1
〈2, )<2�〉 42�8<I

2 = (G) − (∞)
3 = (G) − (0)

(0) − (∞) is of finite order in �(Q).

〈2, )<2�〉 = 〈2, )<3�〉
Remark 6.4.3

A�(<) = 0, # > 1

implies 2, )<3� are relatively prime.
If ( is a compact Riemann surface then there exists a partially defined

〈·, ·〉 : Div0(() ×Div0(() → R

which satisfies
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1. 〈0, 1〉 is defined when 0, 1 have disjoint support.

2. 〈·, ·〉 is bi-additive and symmetric whenever it is defined.

3. If 5 is meromorphic on ( and

0 =
∑
8

=8G8

〈
div( 5 ), 0

〉
=

∑
=8 log | 5 (G8)|2

4. 〈
0,

∑
9

< 9(H 9)
〉

is continuous on ( r |0 | w.r.t each H 9 . Where

|0 |

is the support of 0.

Uniqueness. Considering the difference of two symbols satisfying this then
then it descends to the Jacobian as the values on div( 5 ) cancel.

Therefore
� → R

1 ↦→ 〈1, 0〉
is a continuous homorphism. Therefore the image is 0 (as 0 is the only compact
function).

Existence. Fix G0 , H0 ∈ (

�(G, H) =
〈
(G) − (G0), (H) − (H0)

〉
where G ≠ H, H ≠ G0 , G ≠ H0, � is a Green’s function

Biadditivity
=⇒ 〈0, 1〉 =

∑
8 , 9

=8< 9�(G8 , H9)

0 =
∑
=8(G8), 1 =

∑
< 9(H 9), H0 ∉ |0 |, G0 ∉ |1 |.

Conversely given �(G, H) we can define a symbol 〈·, ·〉 if for fixed G ≠ H0
the function

H ↦→ �(G, H)
on ( r {G, G0} is:

1. continuous

2. harmonic, i.e.
Δ2
H�(G, H) = 0.

3. has logarithmic singularities of residue +1,−1 at H = G, H = G0 , G = H0.

Remark 6.4.4 5 has logarithmic singularities at I0 if

5 (I) − 
 log |�(I)|2

is continuous near I0, � is holomorphic near I0 and vanishing to order 1 at I0.
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 is called the residue of this singularity. � is the uniformizing parameter
near I0. Same symmetric condition on G.
So this is well defined, continuous and bi-additive if

(|0 | ∪ {G0}) ∩ (|1 | ∪ {H + 0}) = ∅

we want to extend to |0 | ∩ |1 | = ∅.
Sufficient to show

�(G1 , H) − �(G2 , H)
makes sense as H → H0, G1 , G2 ⊄ |1 | ∪ {H0}.

�(G8 , H) = − log |�|2 + 28 + $(�(H))

therefore
�(G1 , H) − �(G2 , H) → 21 − 22

as H → G0. Therefore this is well defined and continuous by hypothesis 3. on
�(G, H).
〈·, ·〉 is defined and continuous and bi-additive now, consider

( 5 ) =
:∑
9=1

< 9(H 9)

a principal divisor, G0 ∉ |( 5 )|

� : G ↦→
〈
(G) − (G0), 5

〉
−

(
log | 5 (G)|2 − log | 5 (G0)|2

)
=

∑
< 9�(G, H9) −

(
log | 5 (G)|2 − log | 5 (G0)|2

)
is harmonic for G ∈ ( − {D0 , H:} and continuous everywhere so the difference
is constant. 〈∑

=8(G8), ( 5 )
〉
−

∑
=8 log | 5 (G8)|2

=

∑
=8�(G8) =

∑
=8� = 0.

If we take � with the given hypothesis as 〈·, ·〉. ( = -0(#)(C), G0 = ∞,
H0 = 0. Conditions on � needed:

• G1 , � is a real valued continuous harmonic function on

� = {(I, I′) ∈ H2 : I ∉ Γ0(#)I′}

such that �(�I, �′I′) = �(I, I′) for all

(I, I′) ∈ �, �, �′ ∈ Γ0(#).

• G2 , Fix I ∈ H
�(I, I′) = 4I log |I − I′ |2 + $(1)

as I′→ I, where 4I is the order of the stabilizer in Γ0(#).

• G3 , For I ∈ H fixed
�(I, I′) = 4�H′ + $(1)

as I′ = G′ + 8H′→∞ and �(I, I′) = $(1) at other cusps.
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• G4 , For I′ ∈ H fixed

�(I, I′) = 4�H/# |I |2 + $(1)

as I = G + 8H → 0 and �(I, I′) = $(1) at other cusps.

G2,G3,G4 come from uniformizing parameters , at∞ 42�8I ↔ �, non-cusp
: |I′− I |4I ↔ � , at 0 4−2�8I/|I |2. applies the logarithmic singularity hypothesis
on �.

�(I, I′) = lim
B→1

(
�#,B(I, I′) + 4��# (F# I, B) + 4��# (I′, B) +

 #

B − 1

)
+ 2

6.5 Archimedean Local Heights II (Stevan)

Last time: 〈·, ·〉 : Div0(() ×Div0(() → R. It is bi-additive and symmetric

1 = div( 5 ), 0 =
∑

=8G8

〈0, 1〉 =
∑
9

= 9 log | 5 (G8)|2

if G0 ≠ H0 ∈ (
�(G, H) =

〈
G − G0 , H − H0

〉
if

0 =
∑

=8G8 , 1 =
∑

< 9H 9

then
〈0, 1〉 =

∑
=8< 9�(G8 , H9).

� is continuous, harmonic, has residue+1 at ,−1 at G0. Andhas logarithmic
singularities.

Now we pass to modular curves, ( = -0(#) = H∗/Γ0(#).

�(�I, �I′) = �(I, I′) ∀�, �′ ∈ Γ0(#).

Continuous and harmonic when I ∉ �I′, � ∈ Γ0(#).

�(I, I′) = 4I log |I − I′ |2 + $(1)
I′→ I, Ifixed
4I = # StabI Γ0(#)

�(I, I′) = 4�H + $(1) as I →∞
�(I, I′) = 4�H/# |I |2 + $(1) as I → 0

Want �.
6(�I, �I′) = 6(I, I′), � ∈ SL2(Z)

with 6(I, I′) continuous and harmonic in I, I′.

6(I, I′) = log |I − I′ |2 + $(1), I′→ I.

A natural guess is

6(I, I′) = log
���� I − I′Ī − I′

����2
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�(I, I′) =
∑

�∈Γ0(#)
6(I, �I′)

however this does not converge.
Instead of asking for harmonic Δ26 = 0 we instead ask that Δ26 = &6 and

let &→ 0. This gives us a differential equation to solve.
6 is a function only of the hyperbolic distance between the points,

C = 1 + |I − I
′ |2

2HH′

((1 − C2) d2

dC2
− 2C d

dC + &)&(C) = 0

&B−1(C) =
Γ(B)2

2Γ(2B)

(
2

1 + C

)2

�(B, B; 2B, 2
1 + C ), C > 1, & = B(B − 1), B > 1

where
�(0, 1; 2, I) =

∑
=≥0

(0)=(1)=
(2)=

I=

=!

where

(F)= =


F(F + 1) · · · (F + = − 1), = > 0,
1
0<?= = 0

.

So
&B−1(C) = −

1
2 log(C − 1) + $(1), C → 1

&B−1(C) = $(C−B), C →∞
and so we may now set

6B(I, I′) = −2&B−1(C) = −2&B−1

(
1 + |I − I

′ |2
2HH′

)
�#,B(I, I′) =

∑
�∈Γ0(#)

6B(I, �I′)

And our final Green’s function is

�(I, I′) = lim
B→1
(�#,B(I, I′) + 4��# (F# I, B) + 2��# (I′, B) +

 #

B − 1 ) + �

�# (I, B) =
∑

�∈©­«∗ ∗0 ∗
ª®¬\Γ0(#)

=(�I)B , I ∈ H, <(B) > 1

 # = −
12

[SL2(Z) : Γ0(#)]
= a residue of �#,B at B = 1, �# (I) = −

1
#

= �#

log# + 2 log 2 − 2� + 2�
′

�
(2) − 2

∑
? |#

? log ?
?2 − 1


�# (I, B) = #−B

∏
? |#

(
1 − ?−2B )−1 ·

∑
3 |#

�(3)
3B

�

(
#

3
I, B

)
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Asymptotics

�(I, B) = HB + )(B)H1−B + $ (4−H) (H = Im(I) → ∞)

where

)(B) =
Γ

( 1
2
)
Γ

(
B − 1

2
)

Γ(B)
�(2B − 1)
�(2B)

and importantly
� (I, I′) = � (F# I′, F# I) .

Proposition 6.5.1 Let G, G′ ∈ -0(#) be non-cuspidal

〈(G) −(∞), (G′) − (0)〉C
= lim
B→1

[
�#,B (I, I′) + 4��# (F# I, B) + 4��# (I′, B) +

�#
B − 1

]
+ �.

This can be re-stated as

〈(G) − (∞), )< ((G′) − (0))〉C
= lim
B→1

[
�<#,B (I, I

′) + 4��1(<)�# (F# I, B)

+4�<B�1−2B(<)�# (I′, B) +
�1(<)�#
B − 1

]
− �1(<)�# + 2�1(<)�#

Now let G be a Heegner point and take

2 = (G) − (∞)

3 = (G) − (0)
then � ∈ Gal(�/ ) ↔ A ∈ Cl . If gcd(", #) = 1 then

AA (<) = 0 =⇒ |2 | ∩ |)<(3)| = ∅.

What we want:
( = 〈2, )<3〉∞ =

∑
E |∞
〈2, )<3�〉E

sum goes over ℎ archimidean places of  .

( =
∑

A1 ,A2∈Cl ,A1A
−1
2 =A ,A1A2[n]−1=B

�<#.B (�A1 ,n , �A2 ,n)

we will compute ( using the above

〈2, )<3�〉∞ = lim
B→1

[
�<#,B(A ) + 4��1(<)

∑
A1∈Cl 

�# (F#�A1 ,n , ()

+4�<B�1−2B(<)
∑

A2∈Cl 

�# (�A2 ,n , () +
ℎ �1(<)�#

( − 1

]
− ℎ �1(<)�̂# + 2ℎ �1(<)�#

and apply∑
A ∈Cl 

�# (F#�A ,w , B) =
∑

A ∈Cl  

�# (�A ,n , B)

= #−B
∏
? |#

(
1 − ?−2B )−1 ∑

3\#

�(3)
3B

∑
A ∈Cl 

�

(
#

3
�A ,n , B

)
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so we must only compute ∑
A ∈Cl 

�

(
#

3
�A ,n , B

)
.

�A ,n is a solution of
0�2 + 1� + 2 = 0

of discriminant� = 12−402. So all other #3 �A ,n is a solution of some quadratic
equation of discriminant � = 12 − 402. From analytic number theory we have
the formula

� (�A , B) = 2−B |� |B/2D�(2B)−1� (A , B)
with D half the number of units in  .

� (A , B) =
∑

a integral , [a]=A

1
#(a)B

as we also have ∑
A

� (A , B) = � (B).

we then get

〈2, )<3�〉∞ = lim
B→1

[
�<#,B(A ) +

22−B |� |B/2�D
# B

∏
? |#

(
1 + ?−B

) (�1(<) + <B�1−2B(<))
� (B)
�(2B)

+ ℎ �1(<)�#
B − 1

]
− ℎ �1(<)�# + 2ℎ �1(<)�#

where we may substitute

� (B) = �(B)!(B, �)

=

(
1

B − 1 + � + $(B − 1)
) (
!(1, �) + !′(1, �)(B − 1) + $(B − 1)2

)
to finally obtain

〈2, )<3�〉∞ = lim
B→1

[
�<#,B(A ) −

ℎ �1(<)�#
B − 1

]
+ ℎ �#

�1(<)
©­«log #

|� | + 2
∑
? |#

log ?
?2 − 1

+ 2 + 2�
′

�
(2) − 2!

′

!
(1, �)ª®¬

+
∑
3 |<

3 log <

32


.

To compute the archimidean local heightwhen the supports are not disjoint
(i.e. AA (<) ≠ 0) We consider the simplified case of

{G} = |0 | ∩ |1 |

then
〈0, 1〉E,6 = lim

H→G
(
〈
0H , 1

〉
− ordG(0) ordG(1) log |6(H)|E)
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where 6 is a uniformizer at G i.e. ordG(6) = 1. and 0H is the divisor 0 with H in
place of G.

0 = =GG + · · ·
0H = =GH + · · ·

so |0H | ∩ |1 | = ∅. If 6′ is another uniformizer at G then∑
E

〈0, 1〉E,6 − 〈0, 1〉E,6′ = ordG(0) ordG(1) log |6′/6(G)|E

so this gives a well defined global height by the product formula.
In our setting we have

2 = (G) − (∞), 3 = (G) − (0)
and ordG(2) = 1, ordG()<(3�)) = AA (<) so under this definition

〈2, )<3�〉 = lim
H→G

〈
2H , )<3

�
〉
− AA (<) log(|6(H)|E)

$ = �4(I)
3@

@
= 2�8�4(I)3I

with
�(I) = @1/24

∏
=

(
1 − @=

)
the Dedekind eta-function.

So for E a complex places

log |6(H)|E − D log
��2�8�4(I)(F − I)

��
E
→ 0

as H → G.

6.6 Deuring’s theory of lifts (Angus)
Notations: - = -0(#)/Q, G = (� → �′) a heegner point of discriminant �,
with CM by O . � the Hilbert class field of  , E a place of ?.

2 = (G) − (∞), 3 = (G) − (0)
Art : Cl → Gal(�/ )

A → �

AA (<) = #integral ideals of O in the class of A of norm <

ΛE = ring of integers in the completion �E

, = (Λ=AE )∧

�E , :E , @E

X/ΛE
a model of - over ΛE .

Meta-Goal
Understand

6A (I) =
∞∑
<=1
〈2, )<3�〉 42�8<I

strategy is to decompose
〈0, 1〉 =

∑
E

〈0, 1〉E

so far, seen the archimidean E case. Today, nonarchimidean.
Following GZ and Michigan seminar.
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6.6.1 Generalities on nonarchimidean local heights

Theorem 6.6.1 Let 0, 1 ∈ Div0(- ⊗ �E) be relatively prime divisors. Let �, � be
extensions of these to divisors on X such that

(�.Y) = (�.Y) = 0

for all irreducible componentsY of X ⊗ :E . Then

〈0, 1〉E = −(�.�) log @E .

Remark 6.6.2 X is an arithmetic surface.
Theorem 6.6.3 G-Z III.3.3. Let < ≥ 1 s.t. (<, #) = 1 and AA (<) = 0. Then

〈2, )<3�〉E = −(G.)<G�) log(@E)

where G ∈ X(ΛE) corresponding to G.

Proposition 6.6.4 G-Z III.4.4. Assumptions as above, then

(G.)<G�) =
1
2

∞∑
==1

# Hom,/�=E (G
� , G)deg<

where for G = (�1 → �′1) and H = (�2 → �′2). An element ( 5 , 5 ′) ∈ Hom(G, H) is

�1 //

5

��

�′1

5 ′

��
�2 // �′2

.

Today we will begin the proof of this proposition in the case that ? is split
in  . In this case LHS and RHS are both 0.

6.6.2 Deuring’s theory of lifts
Let �/� be an elliptic curve over a number field with CM by  , (End(�) = O ).
We’ll begin by studying the reductions � (mod ?).

Definition 6.6.5Let�/F@ be an elliptic curve. We say� is ordinary if�[?](�@) =
Z/?, supersingular if this group is 0. ♦

Theorem 6.6.6 TFAE
1.

�[?](F@) = 0

2.
[?] : �→ �

is purely inseparable and 9(�) ∈ F?2 .

3. End(�) is an order in a quaternion algebra.

Remark 6.6.7 One criterion for ) : �1 → �2 to be separable is that

)∗ : Ω�2 → Ω�1

is nonzero.
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Proposition 6.6.8 Let �/� be an elliptic curve over a number field with CM by  
(End(�) = O ). let ℘ |? be a prime of � s.t. � has good reduction � mod ℘ ∩ O� .
Then

� is ordinary ⇐⇒ ? splits in  

Proof. ?O = pp′, sat ℘/p. Let < be the order of p in Cl , so that

p< = (�), (p′)< = (�′)

change by units if necessary so that

��′ = ?<

then
[�′] ∈ End(�)

Let $ ∈ Ω� and note
[�′]∗$ = �′$

since �′ ∉ p, [�′]∗$ . 0 (mod p). So [�′] ∈ End(�) is separable and of ?-power
degree. This implies

[?]

is not purely inseparable so � is ordinary.
Consider � ordinary,

O ⊗ Z? ' End(�) ⊗ Z? → EndZ? ()?(�)) ' Z?

tensoring with Q gives,
 ⊗ Q? → Q?

the LHS is 2-dimensional over Q? , so this map cannot be an injection. So
 ⊗ Q? cannot be a field so ? splits in  . �

Definition 6.6.9 Let �/ be an ordinary elliptic curve over a perfect field of
characteristic ?. A canonical lift is an elliptic curve

E /,( )

s.t. the connected-etale sequence

0→ E [?∞]0 → E [?∞] → E [?∞]4C → 0

splits. ♦

Theorem 6.6.10 Let
�0/F?

be an elliptic curve and 
0 ∈ End(�0). Then there exists an elliptic �/� over a number
field and 
 ∈ End(�) and p/? of O� s.t.

(�, 
) ≡ (�0 , 
0) (mod p).

Proof. First note that if we have a lift then we can trivially lift 
0 = [=]. So we
can reduce to the case

1. ker(
0) is cyclic.

2. ? - deg(
0).
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now let = = deg(
0). Let 9 be transcendental over Q and

�(9)/Q(9)

and elliptic curve with that 9-invariant. Let �1 , . . . , �#(=) be the cyclic order =
subgroups of �(9) and consider the isogenies

�(9) → �(9)/�8 = �(98)

(# is the Dedekind # function #(=) = =∏
? |=(1+1/?)). Fact: Each 98 is integral

over Z[9]/ Consider Z[9 , 91 , . . . , 9=] and its integral closure ' in Q(9 , 91 , . . . , 9=).
We have a map

Z[9] → F?
9 ↦→ 9(�0)

which can be extended to
'

)
−→ F?

and let
m = ker())

we have �(9) � �0 (mod m). Consider the reductions

� 8 , �(98).

Since ? - = the reduction is injective on =-torsion. So � 8 cover all the cyclic
order = subgroups of �0. This for some 8 we have ker(
0) = � 8 , so

�(9) → �(98)

reduces to 
0. Note:

�(9) � �(98) =⇒ (?, 9 − 98) ⊆ m.

Pick a minimal prime over (9 − 98) in ' and let q be an extension to ' (the
integral closure of ' in Q(9).) Note q ∩ Z = 0 else q|@ and thus be height ≥ 2.
So �/q is an integral extension of Z and

�(9)q ' �(98)q

Let � = Frac('/q), � = �(9)q, p = m/q, let 
 be the composition


 : �(9)q → �(98)q
∼−→ �(9)q.

So 
 ≡ 
0 ◦ � for � ∈ Aut(�0). We can lift automorphisms because ±1 lift
trivially and the only other possibilities are 9(�0) = 0, 1728 and these lift as
� : H2 = G3 − 1, � : H2 = G3 − G respectively. �

If �0 is ordinary End(�0) = O = Z + �0Z then applying Deuring lifting to
(�0 , �0) gives (�, �) i.e.

End(�) = Z + �Z ' O .
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6.6.3 Beginning of the proof of the Prop
Proposition 6.6.11

(G.)<G�) =
1
2

∞∑
==1

# Hom,/�=E (G
� , G)deg<

Fact 6.6.12
1.

Hom,/�=+1
E
(G� , G) ↩→ Hom,/�=E (G

� , G)
(4.5) in Gross-Zagier

2.
Hom, (G� , G) =

⋂
=

Hom,/�=E (G
� , G)

(4.5) in Gross-Zagier

3.
# Hom,/�=E (G

� , G)deg< = AA (<)
Deuring lifting implies that End, (G) ' End,/�E (G). Serre-Tate gives that

Deuring lifting implies that Hom, (G� , G) ' Hom,/�E (G� , G). The LHS is then
zero via computing the intersection.

6.7 Serre-Tate theory (Alex)

6.7.1 Intro/background
Wewill work in generality following Katz’s Serre-Tate LocalModuli [64]. Note
that Hida [61] also has a modernized exposition of the same. The original
“source” material is Woods hole notes, sketchy at best.

Recall that one thing we will try and do is to prove the following formula

(G.)<G�) =
1
2

∞∑
==1

# Hom,/�=E (G
� , G)deg<

To do thiswewant to understandmore about the special nature ofHeegner
points, representing pairs of CM elliptic curves. Angus told us last time about
how to lift curves together with an endomorphism from F@ to a number field.
The set of all lifts to positive characteristic of a given curve over a finite field,
can be thought of as deformations of the given curve. The aim is to describe
these deformations in terms of a simpler object.

We will work in generality, because it isn’t really any harder, and makes it
a bit clearer in some cases. That is we will work with abelian schemeswhich are
higher dimensional generalizations of elliptic curves (e.g. products of elliptic
curves, weil restrictions, or jacobians of higher genus curves). You can replace
abelian scheme with elliptic curve if you like and restrict to dimension 6 = 1.
. We let ' be a ring, and define the category

AbSch(') = {abelian schemes over'}.
We will fix, a complete DVR with residue field F? (i.e. , could be the

Witt vectors of F?). Complete means that

, =,∞ = lim←−−
<

,/?<︸ ︷︷ ︸
=,<
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The for < = 1, 2, . . . ,∞ we let ' be a base ring Given ' ring we can reduce to
the residue field, but this map is many to one, what is the smallest amount of
data needed to recover �/' an abelian scheme from �0/'0?

Our rings today will probably all be complete local '-algebras.
Given any abelian scheme �/' over any ring we can form its ?-divisible

group, also known as a Barsotti-Tate group

�[?∞]

this is “p-divisible” as given any ?-power torsion point on � its division by ?
is also ?-power torsion. Formally the definition is

Definition 6.7.1A ?-divisible group� over' of height ℎ is an inductive system

� = (�E , 8E), E ≥ 0

where each � is a finite group scheme over ' of order ?Eℎ and for each E ≥ 0

0→ �E
8E−→ �E+1

?E

−→ �E+1

is exact, so 8E is the kernel of ?E . ♦

Example 6.7.2 For normal abelian groups (i.e. constant group schemes) we
must have

�E = (Z/?E)ℎ

with
lim�E = (Q?/Z?)ℎ .

�

Example 6.7.3 For abelian varieties � of dimension 3 we have

(�[?E], 8E : �[?E] ↩→ �[?E+1])

of height ℎ = 23. Note this is true even in the supersingular case! �

Given a map of rings '→ '0 let the category of deformations be

Def(', '0) = {(�0 , �, &) : �0/'0 abelian scheme, �/' a ?-divisible group, & : �0 → �0[?∞]}

& an isom of ?-divisible groups ove '0. So these are abelian schemes over the
“small” ring and a choice of compatible ?-divisible group over the big ring.

With this setting we have a nice map as follows If ' is a ring with ?
nilpotent, � ⊆ ' a nilpotent ideal and '0 = '/� then

AbSch(') → Def(', '0)

� ↦→ (�0 , �[?∞], �[?∞] ⊗ '0 ' �0[?∞]).
Theorem 6.7.4 Serre-Tate. This functor is an equivalence of categories.

Thus the set of deformations of a fixed �0 corresponds to deformations of
�0[?∞].

This is a kinda ridiculous theorem, it tells us that all the information in an
abelian variety over ' is contained in the reduction to '0 except the ?∞ torsion
and the information of how this fits together.

Hence to study the abelian varieties over ' reducing to a given �'0/'0
we can just study the ?-divisible groups over ' with an isomorphism to
�'0[?∞].
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6.7.2 Drinfeld’s proof of Serre-Tate
Drinfeld’s proof cleverly extracts the content common to both things we are
lifting, the abelian scheme and the ?-divisible group.

Let ' be a local,<-alg. � ⊆ ' a nilpotent ideal with nilpotency index �+1,
let '0 = '/�. # = ?C an integer s.t. #� = 0. Given an '-algebra � we might
consider

�/�� = � ⊗ '0

and also
�/m�.

So given a functor from '-algebras to an arbitrary abelian category

� : '-alg→ �

we have two natural subfunctors

�� : � ↦→ ker(�(�) → �(� ⊗ '0))

�̂(�) : � ↦→ ker(�(�) → �(�/m�)),
note that

�� ⊆ �̂.
What are formal groups?

Definition 6.7.5 Formal groups. A =-dimensional formal group over a ring
' is a power series

�(G, H) = (G1 , . . . , G=)+(H1 , . . . , H=)+$(degree 2 terms) ∈ ('[[G1 , . . . , G= , H1 , . . . , H=]])=

that is associative in the sense that

�(�(G, H), I) = �(G, �(H, I)).

The formal group is commutative if �(G, H) = �(H, G). ♦

Given an abelian variety we can get a 1-dimensional formal group by
completing at the origin. E.g. for an elliptic curve

H2 = G3 + 0G + 1

we can express G = G(C) = C−2 + · · ·, H = −C−3 + · · ·

1
C2
−0C2−1C4−02C6−301C8+

(
−203 − 212) C10−10021C12+

(
−504 − 15012) C14+

(
−35031 − 713) C16+

(
−1405 − 840212) C18+$(C20)

−1
C3
+0C+1C3+02C5+301C7+

(
203 + 212) C9+10021C11+

(
504 + 15012) C13+

(
35031 + 713) C15+

(
1405 + 840212) C17+

(
126041 + 84013) C19+$(C20)

then the group law in terms of C is

C1+C2+(−20) C41 C2+(−40) C31 C
2
2+(−40) C21 C32+(−20) C1C42+(−31) C61 C2+(−91) C51 C

2
2+(−151) C41 C32+(−151) C31 C

4
2+(−91) C21 C52+(−31) C1C62+

(
−202) C81 C2+(802) C61 C32+(1602) C51 C42+(1602) C41 C52+(802) C31 C62+(−202) C1C82+$(C1 , C2)10.

In general an =-dimensional abelian variety gives an =-dimensional formal
group.

Given a complete local ring'we can evaluate by substituting C for anything
in the maximal ideal. So a formal group � defines a functor

� : complete local '-algebras→ AbGrp

�(�) = (m�)=with multiplication by �.
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Lemma 6.7.6 Let � be a commutative formal group over ', so �� , �̂ are now sub-
group functors. �� is #� torsion.

Proof. We need to show that [#]0 = 0 for any 0 ∈ ��(�) ⊆ �(�) for which
08 ∈ � for all 8. An element of ��(�) has coordinates in �� and #' = 0 so we
have

([#]0)8 = #08 + h.o.t. ∈ #(��) + (��)2 = (��)2

as ' and hence � is # torsion, this gives inductively that

([#�]0)8 ∈ (��)2� = 0

as ��+1 = 0. �

Definition 6.7.7 Given a covariant functor

� : complete local' − 0;6 → AbGrp

which for any faithfully flat finite type � ↩→ � we have

�(�) ↩→ �(�)

and “the sheaf condition” w.r.t � ↩→ �. Is called an fppf abelian sheaf. ♦

Example 6.7.8
�(�) = �(�)

for � an abelian variety. �

Lemma 6.7.9 Let �, � be fppf abelian sheaves. And set �0 , �0 the corresponding
objects restricted to '0. Suppose

1. � is ?-divisible.

2. �̂ is formal.

3. �(') → �('/�) surjective for any nilpotent � (this is known as formal smooth-
ness of �)

then

1. Both
Hom(�, �), Hom(�0 , �0)

are ?-torsion free.

2. The reduction mod �

Hom(�, �) → Hom(�0 , �0)

is injective.

3. For 50 ∈ Hom(�0 , �0), there is a unique Φ(�, �) with

Φ ≡ #� 50 mod �

denote Φ = #̃� 5 ∈ Hom(�, �) ⊗ Q

4. we get

5 =
#̃� 5

#� ∈ Hom(�, �)
⇐⇒

#̃�(�[#�]) = 0
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Proof.
1. ?-divisibility implies that if ? 5 = 0 so ? 5 (G) = 0 for all G then if ?H = G

we have
5 (G) = ? 5 (H) = 0

so 5 = 0.

2. We can write
0→ �� → � → �0 → 0

so that by left exactness of hom

0→ Hom(�, ��) → Hom(�, �) → Hom(�, �0) = Hom(�0 , �0)

so the second map is what we want so we want

im(Hom(�, ��) → Hom(�, �)) = 0

rhs p-tors free, and �� is killed by #� (using formality of �̂ here and
another lemma I didn’t really state).

3. Uniqueness follows from 2. so we just lift

50 ∈ Hom(�0 , �0)

to H ∈ �(�).

�
Proof of serre tate:
As above # is a p-power killing �, � an integer such that ��+1 = 0. We can

apply Drinfeld to each of �, �′, �[?∞], �′[?∞], �0[?∞], �′0[?∞].
We show our functor is fully faithful ie.

HomA (�, �′) → Hom���

( (
�0 , �

[
?∞

]
, id �0

)
,
(
�′0 , �

′ [?∞]
, id �′0

))
part 2. with � = �, � = �′ gives inj as an abvar is a p-div abelian fppf sheaf.

To show surjectivity apply part 3. of drinfeld with � = �, � = �′ to get a
lift from each 50 ∈ Hom(�0 , �

′
0) of #� 50 to

6 = “#� 5 ′′ ∈ Hom(�, �′)

to satisfy part 4 we need that 6 kills �[#�]. We have #� 5 = 6 on �[?∞] and
as # is a ?-power in fact �[#�] ⊆ �[?∞] is killed by #� 5 .

To prove essential surjectivity onto (�0 , �, )), we lift �0 to - arbitrarily,
and must match up the ?-divisible group and iso. We have an isom 
0[?∞] →
�0[?∞]. And so a lift

6 : -[?∞] → �

#�
0 applying the lemma to � = -0[?∞], � = �. So we get an isogeny 6 and
we quotient by the kernel.

6.8 Non-archimidean local heights and intersection
theory (Oana)

See Oana’s notes
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6.9 WrapUpofNon-ArchimedeanLocalHeights (Sachi)
This will be a reminder / recap / overview of where we are at.

6.9.1 Recap of Initial Motivation
Big motivation, finding infinite order points on elliptic curves, leads us to
Gross-Zagier.

If � is the Jacobian of -0(#), Δ < 0 a fundamental discriminant of an
imaginary quadratic field  .

B : Cl 
∼−→ Gal(�/ ).

For anyA ∈ Cl , we define the partial theta series

�A(I) =
1

2D +
∑

0⊆O ,0∈A
@Norm(0) =

1
2D +

∑
=≥1

AA(=)@= .

AA(=) = #integral ideals inA of norm =.
This series defines a modular form of weight 1 and level Γ1(Δ)with character

&(=) =
(
Δ

=

)
: Z→ {±1}.

For any 5 ∈ ∑
0=@

= ∈ (2(Γ0(#))new we define

!A( 5 , B) =
∑

=≥1,(=,Δ# 5 )=1

(
Δ

=

)1−2B ∑
=≥1

0=AA(=)=−B .

Theorem 6.9.1 Gross-Zagier. The series

6A(I) =
∑
<≥0

〈
2, )<2

B(�)〉 @<
is a modular form of weight 2 and level Γ0(#) and

( 5 , 6A) =
D2
√
Δ

8�2 !′A( 5 , 1)

where 〈·, ·〉 is the Néron-Tate height pairing on

�(�) × �(�) → R.

2 = (G) − (∞)
G a Heegner point over �.

Recall?: The Shimura correspondence

Theorem 6.9.2 Kohnen-Shimura. Let & ∈ {±1} then

dim (&
:+ 1

2
(Γ0(4#)) = dim (&2:(Γ0(#))

and for each Hecke eigenform

5 =
∑
=≥1

0=@
= ∈ (&2:(Γ0(#))
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there is a 1-dimensional space of forms 6 ∈ (&
:+1/2(Γ0(4#)) whose fourier coefficients

2< are related by
0=2< =

∑
3 |=

(−<
3

)
3:−12<=2/32 .

Remark 6.9.3 If 5 is a modular form attached to � an elliptic curve then 6 is
weight 3/2.

Recall: To compute 〈0, 1〉 compute as a sumof local height pairings. Néron-
Tate local height for E a place of � has properties

• bi-additive, symmetric, continuous

•
0 =

∑
%

<%%, 1 = div 5

with disjoint support then

〈0, 1〉E =
∑
%

<% | log | 5 (%)| |E .

6.9.2 Heights
Let E be a non-archimidean place, assume < is prime to # . If E |? a place of �
then �E the completion ΛE ring of integers and � uniformizer, ΛE/� residue
field of cardinality @. , the completion of the maximal unramified extension
of ΛE .

〈0, 1〉E = −(�.�)E log @

where �, � are divisors on some regular model of - over a DVR (like ΛE) and
� is fibral.

Working with 2 = (G) − (∞) 3 = (G) − (0).

〈2, )<3�〉E = (G.)<G�) log @.

So we need to compute a regular model for -0(#)/Z. We need to identify
components of )<G�. Need to compute RHS explicitly to show

=
1
2

∑
=≥1

# Hom,/�= (G, G�)deg< .

6.9.3 Brief sketch of regular model
Recall pts on -0(#) correspond to cyclic isogenies

# : �→ �′

of degree # . The Heegner points have End(�) = End(�′) = O an order in  .
Similarly consider generalized elliptic curves and cyclic isogenies of degree # .

These components are isomorphic to -0(") ⊗ Z/?. They intersect at su-

persingular points �
)
−→ �′ where both are supersingular. We have a good

understanding of where the cusps are.
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6.9.4 Homomorphsims
( complete local ring, : algebraically closed field

G = () : �→ �′)

H = (# : �→ �′)

points on -0(#)(() then homomorphisms G → H are 5 : � → �, 5 ′ : �′ → �′

such that 5 ′) = 5#. The set of such has a group structure inherited from �, �′.
This is a right module under End((G) by composition.

End((G) = Z, order in im quad , order in indef. quat. alg.

deg( 5 , 5 ′) = deg 5 = deg 5 ′.

To show above

(2.)<3�) = (G.)<G�) − (G.)<0) − (∞.)<G�) + (∞.)<0)

3 terms on right are 0.
Main difficulty. < prime to # and AA(<) = 0.

(G.)<G�) =
1
2

∑
=≥1

# Hom,/�= (G� , G)deg<

Remark 6.9.4 This is a finite sum as G, )<G� are relatively prime divisors there
are no degree < isogenies from G� to G. For large = therefore Hom,/�= ,deg< =
∅.

we denote by ℎ= this RHS summand.
Proof. When ?-splits Deuring lifting gives

Hom, (G� , G) = Hom,/�= (G� , G)

for all =. As AA(<) = 0 we have no elements of degree <.
If ? is non-split

End, (G) = O
an order in a quaternion algebra.

ℎ=(G� , G)deg< =
∑
H∈)<G

ℎ=(H, G)deg 1

�
Moral, can compute the fourier coefficients of 6A .

6.10 Rankin-Selberg (Aash)
Notation:

 imaginary quadratic field.
A ideal class of  
� discriminant  
&(=) =

(
�
=

)
associated Dirichlet character.

ℎ = # Cl .
F = 2D twice number of units.
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5 ∈ (=4F2: (Γ0(#)) for : ≥ 1. (#, �) = 1 write

5 (I) =
∑
=≥1

0(=)42�8=I

!( 5 , B) =
∑

0==
B

define

!A ( 5 , B) = !(#)(2B − 2: + 1, &) ·
∞∑
==1

0(=)AA (=)=−B

!(#) =
∑
(=,#)=1

&(=)=−2B+2:−1.

6.10.1 Rankin’s method

�A (I) =
∞∑
==1

AA (=)@= ∈ (1(|� |, &)

Γ(B + 2: − 1)
(4�)B+2:−1 ·

∞∑
==1

0(=)AA (=)
=B+2:−1

=

∫ ∞

0

∞∑
==1

0(=)AA (=)4−4�=HHB+2:−2 dH

=

∫ ∞

0

∫ 1

0
5 (G + 8H)�A (G + 8H)dGHB+2:−2 dH

=

∫ ∫
Γ∞\H

5 (I)�A (I)dG dH/H2

=?????

Chooseℱ to be a fundamental domain forΓ0(")where" = # |� | consider⋃
�∈Γ∞\Γ0(")

�ℱ

have ∑
�∈Γ
\Γ0(")

∫
∈�ℱ 5 (I)�A (I)HB+2: dG dH

H2

=

∫ ∫
ℱ
5 (�I)�A (�I)(=�I)B+2: dG dH

H2∑
�=±©­«• •

2 3
ª®¬∈Γ∞\Γ0(")

∫ ∫
ℱ
5 (I)�A (I)

More formulae

Γ(B + 2: − 1)
(4�)B+2:−1 !A ( 5 , B + 2: − 1)
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=

∫ ∫
ℱ
5 (I)�A (I)�B(I)H2: dG dH

H2

= ( 5 , �A 5 )Γ0(#)

�B(I) =
1
2

∑
2,3∈Z, 2≡0 (mod ")

&(3)
(2I + 3)2:−1

HB

|2I + 3 |2B

want to take (3, ") = 1 to (3, #) = 1 .
we resolve this by letting

tr"# : "̃2:(Γ0(")) ↩→ "̃2:(Γ0(#))

6 ↦→
∑

�∈Γ0(")\Γ0(#)
6 |2:�

( 5 , 6)Γ0(") = ( 5 , tr"# 5 )Γ0(#)

so
(4�)−B−2:+1Γ(B + 2: − 1)!A ( 5 , B + 2: − 1) = ( 5 , tr"# �A �B)

Proposition 6.10.1 � a fundamental discriminant

# ≥ 1

prime to �.
)̃B(I) = tr�##

Then for 5 ∈ (=4F2: (Γ0(#))

(4�)−B−2:+1# BΓ(B + 2: − 1)!A ( 5 , B + 2: − 1) = ( 5 , )̃B)

Computing the trace

)̃B = &B(#I)�A (I)*|� |???

where

&B =

∑
�=�1 ·�2 &�1(#)"�1�2(A )�

(�1)
B (|�2 |I)

�(�1)|�1 |B+2:−1

� odd≡ 1 (mod 4)�1 , �2 funddisc. "�1 ,�2 genus character"(0) = &�1(#(0)) =
&�2(#(0)) for ideal prime to � with � = 1, �1 > 0, � = 8 �2 < 0.

�
(�1)
B (I) =

1
2

∑
<,=∈Z, �2 |<

&1(<)&2(=)HB

(<I + =)2:−1 |<I + = |2B

*= : 5 (I) ↦→ 1
=

∑
9 (mod =)

5

(
I + 9
=

)
on a function 5 of period 1.

Fourier coefficients. Consider

&B(I) =
∑
=∈Z

4B(=, H)4(=G)
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6.11 A gallimaufry of applications (of Gross-Zagier)
I (Alex)

6.11.1 Heegner points on rank 1 curves
The fun of the subject seems to me to be in the examples.

—Gross - Letter to Birch 1982

So let’s do some examples of Heegner point computations, and see howGross-
Zagier gives us important information in a few ways.

Following the algorithm in Cohen, Number theory part I.
Fix an elliptic curve �(Q) of conductor# , we are interested in finding �(Q).

All elliptic curves over Q are now known to be modular and hence we may
make use of the parameterisation

)# : -0(#) ↩→ �0(#)� �.

Over C the modular curve is classically

ℋ/Γ0(#)
and if � = � 5 for 5 =

∑
0=@

= we have ΦF : C/Λ� → �(C). Then the modular
parameterisation comes down to

)(�) = )F(I�) = )F

(
2

∫ �

8∞
2�8 5 (I)dI

)
︸                  ︷︷                  ︸

2
∑∞
==1

0=
= @

=

) : -0(#) → C/Λ.
So integrating the @-expansion of a modular form and plugging in � gives

us the correspondingpoint in the complex uniformization of the curve because
the Abel-Jacobi map is defined by integration.

Definition 6.11.1 We have � ∈ H CM points if they satisfy an equation

��2 + �′� + � = 0

�, �, � ∈ Z

Δ(�) = �2 − 4�� < 0

when we choose
� > 0

(�, �, �) = 1

then
�G2 + �GH + �H2

is the associated quadratic form. AHeegner point of level # is one for which

Δ(#�) = Δ(�).

♦
Proposition 8.6.3. Let � ∈ ℋ be a quadratic irrationality and let (�, �, �)

be the quadratic form with discriminant � associated with �. Then � is a
Heegner point of level# if and only if# |� and one of the following equivalent
conditions is satisfied:
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1.
gcd(�/#, �, �#) = 1

2.
gcd(#, �, ��/#) = 1

3. There exists � ∈ Z such that �2 − 4#� = � with gcd(#, �, �) = 1

Corollary 6.11.2 If � is heegner level # disc � so is

,(�) = −1/(#�).
Proposition 8.6.6. There is a one-to-one correspondence between on the one
hand classes modulo Γ0(#) of Heegner points of discriminant � and level
#, and on the other hand, pairs (�, [a)] where � ∈ Z/2#Z is such that 12 ≡
�(mod4#) for any lift 1 of � to Z, and [a \in \Cl(K)] is an ideal class. The
correspondence is as follows: if (�, [a)] is as above, there exists a primitive
quadratic form (�, �, �) whose class is equal to [a] and such that # |� and
� ≡ �(mod 2#), and the corresponding Heegner point is � = (−�+

√
�)/(2�).

Conversely, if (�, �, �) is the quadratic form associated with a Heegner point
� we take � = � mod 2# and a = Z + �Z.

The action of Galois (via the main theorem of CM) shows that the image
)(�) is defined over � the hilbert class field of  . To get back down to  we
take traces

% =
∑

�∈Gal(�/ )
!((�, [a]))� =

∑
[b]∈Cl( )

!
( (
�,

[
ab−1] ) ) = ∑

[b]∈Cl( )
!((�, [b]))

Lemma 8.6.8. If � = −1, then in fact % ∈ �(Q) Proof. Indeed, it is easy to
see that � = −1 is equivalent to saying that ! ◦, = !, so that

!((�, [b])) = !(,(�, [b])) = !
( (
−�, [bn−1]

) )
= !

( (
�,

[
b−1n

] ) )
hence

%̄ =
∑

[b]∈Cl( )
!

( (
�,

[
b−1n

] ) )
=

∑
[b]∈�;( )

!((�, [b])) = %

so by Galois theory once again we deduce that % ∈ �(Q)
Similarly if & = 1 then % + % is torsion.
We have the Gross-Zagier formula

ℎ̂(%) =
√
|� |

4 Vol(�)!
′(�, 1)! (�� , 1)

which tells us the height of Heegner
In rank 1 % = ℓ� for some generator � of mordell-weil then GZ + BSD

ℓ 2

| III(�)| = $1(�)
2(�)

√
|� |

4 Vol(�) |�C(Q)|2
! (�� , 1)

To compute we evaluations of )((−� + �)/(2�)) for the |�;( )| classes of
quadratic forms (�, �, �).

the convergence of the series for )(�) is essentially that of a geometric series
with ratio exp(−2�=(�)) = exp(−2�

√
|� |/(2�))

We can use
!((�, [a])) = !

( (
�,

[
a−1n

] ) )
to halve the work we do.

So the heegner point method is
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1. via BSD find

| III(�)|'(�) = |�C(Q)|
2 !′(�, 1)

2(�)$1(�)

2. find�� theheightdifferenceboundbetween canonical andnaiveheights

�� = ℎ(9(�))/12 + �(�) + 1.946

3.
3 = 2(| III(�)|'(�) + ��)
33 = d3/log(10)e + 10

this is the number of decimal digits we will work with

4. Run through fundamental discs � for each. Check � square mod 4# all
primes split and

! (�� , 1) = 2
∑
=≥1

0=

=

(
�

=

)
exp

(
−2�=√

#�2/gcd(�, #)

)
not too close to zero if this is not satisfied, choose the next fundamental
discriminant. Otherwise fix � ∈ Z/(2#)Z such that � ≡ �2(mod4#)
and compute < > 0 such that

<2 = $1(�)
2(�)

√
|� |(F(�)/2)2

4 Vol(�) |�C(Q)|2
2$(gcd(�,#))! (�� , 1)

This m should be very close to an integer, or at least to a rational number
with small denominator.

5. Find List of Forms below, compute a list ! of |Cl( )| representatives
(�, �, �) of classes of positive definite quadratic forms of discrimi-
nant �, where � must be chosen divisible by # and minimal, and
� ≡ �(mod2#) (this is always possible). Whenever possible pair ele-
ments (�, �, �) and (�′, �′, �′) of this list such that (�′, �′, �′) is equiv-
alent to (�#, �, �/#) by computing the unique canonical reduced form
equivalent to each.

6.

I =
∑

(�,�,�)∈ℒ
)

(
−� +

√
�

2�

)
∈ C

taking a few more than �3/(�
√
|� |) terms for ).

7. Find Rational Point Let 4 be the exponent of the group �C(Q), let ℓ =
gcd (4 , <∞) = gcd

(
4 , <3) , and <′ = <ℓ . For each pair (D, E) ∈ [0, <′−

1^{2},] set ID,E = (ℓ I + D$1(�) + E$2(�)) /<′. Compute G = ℘ (ID,E) ,
where (℘, ℘′) is the isomorphism from C/Λ to �(C). For each (D, E) such
that the corresponding point (G, H) ∈ �(C) has real coordinates.

Algorithm choice of D
Recall a congruent number is a number which appears as the area of a

right triangle with rational side lengths. this reduces to finding non-torsion
points on the congruent number curves

�= : H2 = G3 − =2G.
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E.g. for = = 157 BSDpredicts rank 1, but howdowefind the point? Using stan-
dard techniques can compute real period, periodvolume (0.2092629744399792)
and torsionorder (4), conductor (788768outsideLMFDBrange) andTamagawa
product (8). Together we get

| III(�)|'(�) ≈ 54.6

�� = 10.6
3 ≈ 130.4

need 67 decimal digits.
Up to � = −40 we have � = −31,−39 are squares modulo 4# .
For both of these � we try to compute <2(�). When we take −31 we get a

number close to 0. For −39 we get ≈ 16 so fix � = −39 and < = 4.
A square root 1 of � mod 4# is

1 = 1275547.

The class group of
Q(
√
−39)

is
Z/4.

I = 2<()(G1) + )(G2))
for

G8 = (−1 +
√
−39)/(29#)

So we have four classes of quadratic forms, of these the largest value of � is
2# . So we need

≈ 10500000
terms of the series

)(�) =
∞∑
==1

0=

=
@= , @ = exp(2�8�)

applying this we get

I = −5.63911127500831766007696166307316036323562406574706 . . .

we can add multiples of the period lattice to make it smaller, as

I/$ ≈ −26.9469552131277

we find that
I′ = I + 27$ ≈ 0.0111003098794358

so that

℘(Λ, (2I′+2$)/8) ≈ 344.99665832468973990799841297983141563953148876481

this we can recognise as

95732359354501581258364453
5267710957612

(using the fact we are looking for something with square denominator) and
compute the point(

95732359354501581258364453
5267710957612 : 834062764128948944072857085701103222940

5267710957613 : 1
)

which is quite a big triangle. This is saturated and of height 54.6008892940170.



CHAPTER 6. GROSS-ZAGIER 175

Remark 6.11.3 Calling the sage function gens() fails on this example!

6.12 A gallimaufry of applications (of Gross-Zagier)
II (Alex)

6.12.1 More on computation
A more advanced trick: We have the standard Heegner point outlined above,
there are several speedups possible:

1. Use Atkin-Lehner involutions to reduce the size of � in (�, �, �).

2. Use faster algorithms for point counting, e.g. on CM curves we have
a simpler expression for 0? ’s which can be computed with Cornichias
algorithm.

3. Cremona-Silverman: Want to reduce the precision needed, how? What
information do we know after running the method, an approximation
of & ≈ % ∈ �(R). We also know by Gross-Zagier

ℎ̂(%).

If
G(%) = =

32

then
2 log(3) = ℎ̂(%) − ℎ̂∞(%) −

∑
? |#
?-3

?2 | disc(�)

ℎ̂?(%).

Using & we can compute
ℎ̂∞(%).

For each ℎ̂? there are only finitely many possibilities, and so in total we
have finitely many possible values of

ℎ̂(%) − ℎ̂∞(%) −
∑
? |#
?-3

?2 | disc(�)

ℎ̂?(%)

giving finitely many possible 3 values, from which

=D<4A0C>A(G(%)) = A>D=3(G(%)32)

can be found. In all this allowsus towork aswewanted,with an accuracy
slightly more than half.

These speed ups are in PARI/GP and Remarks. as � in last times example
is a CM curve, the computation time of the above example can be reduced
from a couple of minutes to 7 seconds (factor of 20).

Gotta get height:

Example 6.12.1 A big example. Let

� : H2 = G3 + 25 · 33 · 55 · 73 · 115 · 134︸                        ︷︷                        ︸
=4259854045547100000
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be a Mordell curve. We can compute that the analytic rank is 1 and that

!(�, 1) ≈ 28.43512495

We need an imaginary number field in which 2, 3, 5, 7, 11, 13 all split, the
smallest such is

 = Q(
√
−1559).

So this � = � = −1559 is the smallest possible Heegner discriminant fol-
lowed by −2999,−3071,−5711,−6431,−6551,−8399,−8711,−9071,−9239. We
can also compute that the twist �� has analytic rank 0 and

!(�� , 1) ≈ 0.34784

We can ask Pari/GP for a Heegner point and we obtain

% = (2673768366314301463225804132167786458743211296161665928714089443034915780624646102119694052638661139083614147052130407079631451208185292430763007319638022105825501399385761185566630883388394680375240310954529690758647194911112230527266639143771344809007916379476769393746579657952261851411688268671539912820072222763224027388823804772192104547803223898847305487037661307828748844799602593905135066916765339004127610241/14711766058713677663384943791747898516946843571332438782108054674511943585256352373257820891021633925632603928846607462754678923049647017632180676816464079929265454994902080754858496848491578669209122991110372607577751981118650453474461080043444438030297579085121835217242209089550661820106126782163015526489468149613211400477191028795214873959696995779238660836093943085146259968306971312571346641475392784100 : 138256584957437413549697979638187560540459292802582866047104251079871173001665466386110481033185180290975183359260945144859657131458366183036141245306630348292671101486345526463132664316934927829557544796041549654148869945306252397609306930530983551604764354393433405906021719607528424338682185259543058868693501829232087760637049066670461122157567207439393246729072214062375989571116431670132631712767339509965920423129094613543923419661857943413970492292794841174646487317425335124224816154049239888798416706708946385513743341645910420176133057435782209340663561195089350700342411480965751945453146090192411927796854564432961/56428332331562671615794363625451656023382470684636509020204202990180688177696621616970962649738545712542796767776584129330909917100366186924013354291641329738822701259890430806380424060475365542745244595324918343297529518263108027693527497847179482876257977247331950705161864795745543796461954042373098284699960118594562408063763160815610542420513488629513957169549566241725330887507912166227023322296844673603178204516200038314906488548391012692454233921581644355608983371337760875769764741031620675341450340457565846005848812354464193992153964872086150518588699778897808812845613993026309040085527357183723889000 : 1)

this has naïve height 2.67× 10417 (numerator of the G-coord) and (logarithmic)
canonical height ≈ 956.282209515622.

By saturating we find that in fact % = 2 · & where & has canonical height

956.282209515622/4 ≈ 239.070552378906.

And

& = (8868405892624209482831543296890050376591681305386772268723757017948071928478387800757391866726575892769529/12199065318293186020638466216615329130692308979647554152111639302853625564281014711694611565598225 : 835157422328503915572710156100004478252440344488413901374204905998433900560826559924171903629096959304261439875564863428904842353573598701320904439166984417667/42607871079159903759545082718655204271158039869031410587066955866681866212965161047419746875287012910440605581735106219437475107311541956522410375 : 1).

�

6.12.2 Gauss’s class number problem
Gauss was interested in binary quadratic forms and did a lot of computations
with them. He in particular conjectured that

Conjecture 6.12.2 Gauss. As � → −∞ runs through fundamental discriminants
the class numbers of imaginary quadratic fields

ℎ(�) = ℎ(Q(
√
�)) → ∞

also. (i.e. there are only finitely many imaginary quadratic fields of any given class
number).

ℎ(�) 1 2 3 4 5
# of fields 9 18 16 54 25
largest |� | 163 427 907 1555 2683

The most famous instance of this being the first column. The Gauss class
number 1 problem (Section 303 of hisDisquisitionesArithmeticae (1798)) there
are only 9 imaginary quadratic fields of class number 1. This was first proved
by Heegner, where he introduced analytic techniques into the field of elliptic
curves, hence the name Heegner points. Warning: this is somewhat distinct
and not exactly what we will mention now

The first instances of the small class number phenomenon go back to Euler
who noted that

G2 − G + 41
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was prime for 0 ≤ G ≤ 40 (the maximum possible), Euler called such numbers
lucky and could not find more.

We now know that this is due to Q(
√
−163) having class number one,

hence all small primes remaining inert. If a small prime split we would have
an element of small prime norm, but the norm form shows this is not possible.
Explicitly all primes less than

1 + |� |
4

are inert.
Even when ℎ(�) > 1 we still observe a similar phenomenon.
For Q(

√
−427) as above we have of the primes up to (1 + 427)/4 = 107 only

17, 31, 59, 89, 101 are split (7, 61 ramified).
Why am I telling you this? Because it leads to the following theorem:

Theorem 6.12.3 Goldfeld. Let � be a fundamental discriminant of an imaginary
quadratic field. If there exists a modular elliptic curve � (defined over Q) whose
associated base change Hasse-Weil !-function

!
�/Q(

√
�)(B)

has a zero of order ≥ 4 at B = 1 then for every & > 0, there exists an effective computable
constant 2&(�) > 0, depending only on &, � such that

ℎ(�) > 2&(�)(log |� |)1−&.
Here

!
�/Q(

√
�)(B)

has !� as a factor so Goldfeld needed an elliptic curve �/Q with

ordB=1 !�(B) = 3

that is analytic rank 3, to obtain the order 4 vanishing of

!
�/Q(

√
�)(B).

The bounds in this proof can be completely explicit, leading to lists of all
imaginary quadratic fields with class number below 100.

If "� =
(
�
•
)
is the associated character to Q(

√
�) of small class number we

therefore have

!(B, "�) =
∏
?

(
1 −

"�(?)
?B

)−1

∼
∏
?

(
1 + 1

?B

)−1

=
�(2B)
�(B) .

(mumble mumble approximate functional equation).

How to obtain an � with proven analytic rank 3. Gross-Zagier showed that
for

� = 3713: H2 = G3 + 10G2 − 20G + 8

of conductor 37 and rank 0,we can twist by 3 = −139 to get a curve of conductor
714877.

�−139 : − 139H2 = G3 + 10G2 − 20G + 8
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where
!�(B, "3) = !�3 (B).

Doing a single Heegner point computation we find that %3 is zero and
hence ℎ(2%3) = 0. Using Gross-Zagier we have

!�(1)!′�3 (1) = 2Ω3Ωℎ�3 (2%3)

This implies that
!�3 (1)!′�(1) = 0

we have
!′�3 (1) = 0

and as !�3 (B) has odd functional equation we can calculate

!′′′�3 (1) ≠ 0

hence the analytic rank is 3.
So �−139 can be used for Goldfeld’s technique.
We now let �/Q be our twisted curve forgetting that it came from 3713.
The !-function of this curve has functional equation(√

#

2�

)1+B

Γ(1 + B)!�(1 + B) = −
(√
#

2�

)1−B

Γ(1 − B)!�(1 − B)

if � is a fundamental discriminant of class number 1 with |� | > 163 we can
define

Λ�(B) =
(
# |� |
4�2

) B
Γ(1 + B)2!�(B)!� (B, "�)

so that
Λ�(1 + B) = F · Λ�(1 − B)

with F = "�(−37 · 1392) = 1.
The function

!
�/Q(

√
�)(B) = !�(B)!�(B, "�)

therefore has a zero of even order at B = 1, given that !�(B) has an order 3 zero
by construction

!
�/Q(

√
�)(B)

has an order 4 zero.
To give a flavour of the class number one problem assume � sufficiently

large with ℎ(�) = 1 still, then consider

�� =
1

2�8

∫ 2+8∞

2−8∞
Λ�(1 + B)

dB
B3 .

�� =
1

2�8

∫ −2+8∞

−2−8∞
Λ�(1 + B)

3B

B3

= − 1
2�8

∫ 2+8∞

2−8∞
Λ�(1 + B)

3B

B3

= −��

.

We now want to show that
�� ≠ 0

under the same assumptions on �.
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Have euler products

!�(B) =
∏

?

(
1 − 
?

?B

)−1 (
1 − �?

?B

)−1

!� (B, "�) =
∏

?

(
1 − 
?"� (?)

?B

)−1 (
1 − �?"� (?)

?B

)−1

and once again many small primes splitting means that !�(B)!�(B, "�) is ana-
lytically like

)(B) :=
∏
?

(
1 −


2
?

?2B

)−1 (
1 −

�2
?

?2B

)−1

Goldfeld then uses

�∗� =
1

2�8

∫ 2+8∞

2−8∞

(
37 · 1392 |� |

4�2

)1+B
Γ(1 + B)2)(1 + B)3B

B3

and
0 = �� = �∗� + Error

to get the final contradiction.

Remark 6.12.4 There is also work by Mestre and Buhler-Gross-Zagier on

H2 + H = G3 − 7G + 6

the smallest conductor rank 3 curve 5077, where they verify BSD explicitly,
giving one the first example in rank 3. (To this day, it is not possible, even in
principle, to establish BSD for any curve of rank 4 or greater since there is no
knownmethod for rigorously establishing the value of the analytic rank when
it is greater than 3.) Once again Gross-Zagier is used, if !′

�
(1) is calculated to

be small but possibly non-zero it must be a multiple of the height of a small
point, but we can look and find no small points, hence we obtain vanishing of
the derivative at B = 1. This implies, for parity reasons that !�(B) has analytic
rank 3 or more. The third derivative can then be calculated and seen to be
non-zero.

This smaller curve gives better bounds in Goldfelds method.
Using work of Oesterle they obtain

ℎ(�) > 1
55 log |� |

for prime �.
It’s super effective?!
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Abhyankar’s conjecture

What is the goal of the seminar?
It’s up to everyone, we can obviously be flexible as we go, but:
Understand: the meaning of Abhyankar’s conjecture, get some insight on

the geometric perspective on Galois groups, statements of some useful tools
and theories that come up in the proof and are generally useful to know
(smattering of rigid geometry, some theorems about etale maps, general stuff
on char pgeometry), and learn something of theproof, howcan rigid geometry
tell us about characteristic p geometry?

In particular we won’t go into detail on proofs of fancy things like Rigid
GAGA, but we will spend the last few lectures on various stages of the proof.

7.1 What is Abhyankar’s conjecture? (Alex)
One reference is Abhyankar’s Conjectures In Galois Theory: Current Status
And Future Directions by David Harbater, Andrew Obus, Rachel Pries, And
Katherine Stevenson. Also: A survey of Galois theory of curves in character-
istic ? - Rachel Pries and Katherine Stevenson and Fundamental Groups in
Characteristic ? - Pete L. Clark.

Consider the humble line,A1, itsC orRpointswith the “classical”/analytic
topology are simply connected. Therefore there are no nontrivial finite covers.

What happens in characteristic ??
First we need to make the question precise, we need to define “covers” in a

way that makes sense and try to define “topology” in a way that is non-trivial.
It would be good to define a notion of topology that is defined algebraically,

and recovers the usual fundamental group of the C-points for a curve over C.
But first are there any “topological” covers of the affine line in characteristic

?. We can easily make covers, just take any curve � ⊆ A2 → A1.
In general though these will be ramified, i.e. there will be points where

the tangent line is perpendicular to the projection, this messes things up as
Bezouts theorem will give us less geometric points. So not topological, like a
parabola:

+(H2 − H = G − 1) G−→ A1

To see where a cover is ramified algebraically we take the derivative

2H − 1 = 0

hence H = 1/2 and so G = 3/4 is a ramified point. So this is ramified at
(3/4, 1/2) above 3/4. Not a topological cover!

180

https://arxiv.org/abs/1408.0859
https://arxiv.org/abs/1408.0859
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Hence +(H = G3423 + 12G + 1) G−→ A1 is an unramified cover, but it is trivial.
In characteristic ? though weirdness ensues, take characteristic 2. The

derivative above
2H − 1 = 1

never vanishes! Hence there is no ramification locus.
This can of course be generalised, anArtin-Schreier cover in characteristic

? is
H? − H − G = 0

it is an unramified ?-to-one cover.
Given a topological cover the group of deck transformations of the cover

gives a quotient of the fundamental group of the base.
In the Artin-Schreier example we have a transformation of the cover given

by
H ↦→ H + 1

as in characteristic ? we have.

(H + 1)? − (H + 1) − G = H? + 1 − 1 − H − G = 0.

We can iterate this, giving a cyclic group of order ? as the group of deck
transformations.

This says that the “fundamental group of the affine line in characteristic p
contains the cyclic group of order p!” The line has non-trivial fundamental
group.

More generally note that

H@ − H − G = 0

for @ = ?= has the same property, but now we can add any element of F@ to H
so the group of deck transformations is

F@ ' (Z/?)=

we can do this for all =. This shows that the fundamental group of the
affine line in characteristic ? is not even topologically finitely generated! So
even the affine line in characteristic ? is wilder than any punctured curve in
characteristic 0.

Clearly there characteristic ? gave us a ?-group in the fundamental group.
Can we ever get anything other than a ?-group?

Example 7.1.1 Abhyankar. The curve

H= − 0GBHC + 1 = 0
G−→ A1

with 0 ≠ 0 ∈ :, = = ? + C, C . 0 (mod ?). Is ramified where

=H=−1 − 0GB CHC−1 = 0,

but
CH=−1 − 0GB CHC−1 = 0

H=−1 − 0GBHC−1 = 0

but in that case
(H=−1 − 0GBHC−1)H = 0

which gives 0 = 1! For general values of C , ? this cover has automorphism
group �= . �
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Wewill define our fundamental group using these coverings, . A topologi-
cal coveringmap is one that locally looks like a homeomorphism. For instance
we can define a topological cover of C r {0} by itself using the algebraic map

I ↦→ I2

or even
I ↦→ I= .

This works nicely as this map is locally a diffeomorphism.

Definition 7.1.2 An étale map is one which is flat and unramified. ♦

How is this number theoretic?
There is a strong analogy between curves over finite fields, and dedekind

rings, suchas ringsof integers of numberfieldsBothgive examples ofdedekind
schemes, dimension 1,... PICTURE. Back to Weil.

On the side of function fields we have

F?((C)) ↔ Q

the function field of A1
F? and the function field of Spec Z.

Covers of curves give us extensions of function fields. E.g. the Artin-
Schreier covers on the left

Spec of quadratic field like a hyperelliptic covering map.
So the question of what covers we can have is like what field extensions

can we have.
More intriguingly the automorphisms of the cover, the covering group

corresponds to galois automorphisms.
On a hyperelliptic curve H =

√
G3 + 1↔ −H and

√
2↔ −

√
2.

So what covering groups translates into what Galois groups. So the ques-
tion, what are the galois groups of covers of A1

F? and how do they fit together
is like what are the possible galois groups of Galois extensions  /Q.

To get a handle onwhat Galois groups can occur, wemight take inspiration
from number theory where we add conditions to get a quotient group, i.e. it
is known the Galois groups of abelian extensions of Q.

Definition 7.1.3 Decomposition and Inertia groups. Given a galois cover of
curves

) : � → �′

we can fix a
% ∈ �′, & ∈ )−1(%)

then define the decomposition group

�& = { 5 ∈ Gal(�/�′) : 5 (&) = &}.

We also define the inertia group to be the subgroup

�& ⊆ �&

that fixes the residue field. For nowwe work over an algebraically closed field
and so these are equal. ♦

Example 7.1.4 Consider curves over Q

+(H2 = G) G−→ A1

this is a (ramified at 0) double cover, with Galois group �2 given by H ↦→ −H.
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Given 2 ∈ A1, the preimage is the set of closed point

{(H2 − 2)}

so there is only one preimage and the decomposition group is everything,
however the morphism on the residue field

Q(
√

2)

is nontrivial, so the inertia group is trivial. �

Note that our maps are etale covers of A1, but this allows the ramification
to still be at infinity. We complete an affine curve to obtain a proper one with
the same function field. In this case

A1 ⊆ P1 .

In general denote this as
� { �

and call the points of
� r �

“at infinity”.

Definition 7.1.5When over a field of characteristic ?, ramification at a point %
is called tamewhen

? - |�% |,
in characteristic 0 we say it is ?-tame if the same holds. ♦

We then define

�
?−C0<4
1 (�) = lim←−−

�′→�tame ram. abv. �−�

Gal(�′/�)

and likewise
�C1.

Theorem 7.1.6 Let - be curve over : and X a lift to characteristic 0 then

�
?−C0<4
1 (X − S)� �C1(- − ()

and their quotients by the unions of their ?-Sylows

�
?−C0<4
1 (X − S) ' �C1(- − ().

Seeing as we “understand” fundamental groups of curves in characteristic
zero, punctured riemann surfaces so generated by

26 + |( | − 1

loops. This result implies that after we get rid of ?-Sylow stuff we should end
up with just those generators.

Theorem 7.1.7 Abhyankar’s conjecture for A1. Let � be such that �/?(�) (the
quotient by the subgroup generated by its ?-Sylow subgroups) is trivial (we say � a
quasi-? group). Then there exists an étale cover of A1 with Galois group �.

What does it mean to be generated by ?-Sylow? Its complicated, but for
instance

(=
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is generated by transpositions and

�=

is generated by 3-cycles. So (= is quasi-2, and �= is quasi-3.
Meanwhile (= is not solvable for = ≥ 5 (hence the general quintic isn’t,

Abel-Ruffini).
More generally we can generate �= for = ≥ 5 with the subgroup of ?-cycles

for any ? ≤ = as it is simple and the subgroup is normal.
Another example is SL=(F?)which is quasi-? (as it is generated by elemen-

tary matrices?), PSL=(F?) is simple for large enough parameters. TODOWhat
about swapping????

Even more generally any finite simple group for which ? divides the order
is a quasi-?-group.

For instance therefore we should be able to find a monster group cover of
the affine line when

? ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71},

(these are the super famous so called supersingular primes).
What can we not do then?

Example 7.1.8 The group
Z/? × Z/@

for primes ? ≠ @ is not quasi-? or quasi-@, thus even though it is abelian,
solvable and easy to make as a Galois group over Q we cannot obtain it here.

�

Theorem 7.1.9 Abhyankar’s conjecture. Let � be a finite group such that
�/?(�) (the quotient by the subgroup generated by its Sylow subgroups) is generated
by C elements. Let -/F? be a smooth projective curve of genus 6, ( ⊂ - a finite set of
points with

26 + |( | − 1 ≥ C.
Then there exists an etale cover of - r ( with Galois group �.

Remark 7.1.10 This conjecture implies the first, taking C = 0 we have 6 = 0,
( = {∞} and

0 + 1 − 1 = 0.

Note that it is tight also we cannot remove C > 0 points.

Example 7.1.11Over a once-punctured affine linewe can nowmake non-quasi-
?-groups as long as they aren’t too far. For instance we can make Z/ℓ for any
ℓ ≠ ? as

+(Hℓ − G) G−→ A1 .

This has the right Galois group and is ramified only at 0,∞. �

Example 7.1.12 Butwe can’t getZ/ℓ ×Z/ℓ without adding another ramification
point. �

Example 7.1.13 We can stack an Artin-Schreier extension on a Kummer

Gℓ1 = G

H? − H = G31
with ℓ |(? − 1), ? - 3, ℓ - 3. Giving a degree ℓ ? cover. We then have automor-
phisms

� : G1 ↦→ G1 , H ↦→ H + 1
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� : G1 ↦→ �ℓ G1 , H ↦→ �3ℓ H

but
���−1(H) = H + �−3ℓ ≠ �(H)

so the Galois group is the semidirect product

Z/? o Z/ℓ .

Above ∞ this is totally ramified, so �∞ = �. Is a non-cyclic decomposition
group! �

Why might you care? Spiritual connection to (one of the) most important
questions in number theory, what is

Gal(Q/Q)

conjectured that every finite group appears as a quotient, the inverse Galois
problem.

This is proved for solvable groups by Shafarevich, and many other inst
resting examples of simple groups.

Here the analogous question is what is

lim←−−
(

�1(P1 r() ' Gal
(
:(P1)sep/:(P1)

)
?

Where we allow more and more ramification.
Or changing base for - a proper curve

lim←−−
(

�1(- r () ' Gal (:(-)sep/:(-)) ?

That of what is
�et

1 (A
1)

is more like what is
Gal(Q{2}/Q).

Where Q{2} is the maximal extension of Q ramified at 2 only.

Conjecture 7.1.14 Abhyankar’s Inertia Conjecture. Let � be a finite quasi-?
group. Let �0 be a subgroup of � which is an extension of a cyclic group of order
prime-to-p by a p-group �1. Then �0 occurs as an inertia group for a � - Galois cover
of the projective line branched only at∞ if and only if the conjugates of �1 generate �

The motivation for this comes from the fact that in characteristic 0 the
inertia groups generate the Galois group.

If is a finite field, then its algebraic closure  ̄ is an infiniteGalois extension
of  whose finite subextensions all have cyclic Galois groups over  . This
suggests that replacing the algebraically closed field of constants : by a finite
subfield  adds a generator to the fundamental group of an affine curve,
somewhat like the effect of deleting a point. This perspective motivated:

Conjecture 7.1.15 Abhyankar’sAffineArithmeticalConjecture. Afinite group
� occurs as the Galois group of an unramified cover of the affine line over F? if and
only if it occurs as the Galois group of an unramified cover of A1

:
−{0} (in other words,

if and only if �/?(�) is cyclic).
Both of these last two conjectures remain open I believe. Some examples for

the former in Muskat, Jeremy, and Rachel Pries. “Alternating Group Covers
of the Affine Line.” Israel Journal of Mathematics 187, no. 1 (January 2012):
117–39. https://doi.org/10.1007/s11856-011-0165-7.]
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7.2 Ramification of curves (John)
Two main references: P. A. Castillejo, Grothendieck-Ogg-Shafarevich for-
mula for ℓ -adic sheaves, Master Thesis (2016). http://www.mi.fu-berlin.de/
users/castillejo/docs/160429_Master_GOS_formula_l-adic_sheaves.pdf. Lars
Kindler, Kay Rülling Introductory course on ℓ -adic sheaves and their ramifi-
cation theory on curves. https://arxiv.org/pdf/1409.6899.pdf Also: Funda-
mental Groups in Characteristic ? - Pete L. Clark. Takashi Saito: Intro to wild
ramification of schemes and sheaves.

Interested in ramification of A1 in characteristic ?. This is interesting
because of wild ramification, which we will talk about today.

Theorem 7.2.1 Grothendieck. There exists a canonical surjection

B? : �1(��̄)C0<4 → �1(�/:)C0<4

where
��

is the generic fibre for a lift of �/: over a complete local noetherian ring with residue
field :.

Theorem7.2.2Forℱ a lisseQℓ -sheaf on* (a curve over a perfect field of characteristic
? ≠ ℓ ).

"2(*, ℱ ) = rk(ℱ )"2(*,Qℓ ) −
∑

G∈�r*
[:(G) : :]] SwanG(ℱ )

� is the compactification of* .
* = * ⊗: :

"2(*, ℱ ) =
2∑
8=0
(−1)8 dim� 8

2(*et , ℱ ).

Let  be a complete local field.

Definition 7.2.3 Let !/ be a finite Galois ext. let

� = Gal(!/ )

and for 8 ≥ −1

�8 = {� ∈ � : � acts trivially on �/m!8+1}

where � = O!, and m! is the maximal ideal. ♦
Problem: this numbering only behaveswell w.r.t. subgroups not quotients.

Proposition 7.2.4 If � ⊂ �, then

�8 = � ∩ �8 .
Proposition 7.2.5

�−1 = �

�0 = inertia
�0/�1 = tamely ramified part

�1 ≠ 0 ⇐⇒ !/ is wildly ramified
8 ≥ 1, �8 are ?-groups

http://www.mi.fu-berlin.de/users/castillejo/docs/160429_Master_GOS_formula_l-adic_sheaves.pdf
http://www.mi.fu-berlin.de/users/castillejo/docs/160429_Master_GOS_formula_l-adic_sheaves.pdf
https://arxiv.org/pdf/1409.6899.pdf
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Definition 7.2.6 Herbrand function. Let �D = �dDe then we define

)!/ : [−1,∞) → [−1,∞)

)!/ (D) =
∫ D

0

dC
(�0 : �C)

if C ∈ (−1, 0) let (�0 : �C) = 1, if C = −1 let (�0 : �C) = 1/ 5 , in particular D ∈ Z≥0

1 + )!/ (D) =
1
|�0 |

D∑
8=0
|�8 |

the formula arises from computing the image of �8 in �/� for

� ⊳ �.

♦

Proposition 7.2.7
� ⊳ �

for all D ∈ R≥−1
�D�/� = (�/�))

!/!�
(D).

Definition 7.2.8 Let #!/ = )−1
!/ for D ∈ R≥−1

�D = �#!/ (D).

♦

Example 7.2.9 Artin-Schreier.

! =  [C]/(C?= − C − G−<)

with (<, ?) = 1 where  = :((G)), lower numbering

Z/?= = �0 = · · · = �< ) �<+1 = 0

)!/ (D) =
{
D if 0 ≤ D ≤ <
< + D−<

? if D > <

so

#!/ (E) =
{
E if 0 ≤ E ≤ <
?(E − <) + < if E > <

.

�

Theorem 7.2.10 Hasse-Arf. If � is abelian, then the jumps in the upper numbering
filtration are all at integers.

The point being:

Proposition 7.2.11 If � ⊳ � we have

�D/(� ∩ �D) = (�/�)D .
!/ , G a uniformizer

8� : �→ Z≥0 ∪ {∞}

� ↦→ E!(�(G) − G).
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Theorem 7.2.12

0�(6) =
{
− 5 8�(6) if 6 ≠ 1
5
∑
6′≠1 8�(6′) if 6 = 1

is a character of a �-representation over C.

Definition 7.2.13
sw� = 0� − (A� − A�/�0)

where A� is the character of the regular representation of � If !/ is totally
ramified then

sw� = 0� − D�
where

D� = A� − triv�.

♦

Theorem 7.2.14 If ℓ is a prime not equal to the residue characteristic of  , then
1. 0� and sw� are realisable over Qℓ

2. There exists a f.g. projective left Zℓ [�]-module Sw� unique up to iso. such that

Sw� ⊗Zℓ Qℓ

is isomorphic to the Swan representation.

reference: Serre, Linear representations of finite groups.
Fix  B4?/ with  having residue field : and char(:) = ? > 0. : perfect,

ℓ ≠ ? prime.
�/Qℓ finite extension and

� : � → GL(+)
for + fin. dim. vector space /�.

Definition 7.2.15
% ⊂ � = Gal( sep/ )

the wild ramification subgroup is the closed pro-?-group

lim←−−
!/ 

Gal(!/ )1.

♦

Definition 7.2.16 Let ' be a commutative ring and

� : � → GL=(')

a group homomorphism, then we say:
1. � is unramified if

�0
 ︸︷︷︸

lim←−Gal(!/ )0

⊆ ker �.

2. � is tamely ramified if
% ⊆ ker �.

3. � is wildly ramified otherwise.

♦
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Lemma 7.2.17 Let � be a compact group

� : �→ GL(+)

a continuous representation over �, then there exists a free O�-moduleV ⊆ + s.t.

+ =V ⊗ �

and � factors as
� : �→ GL(V) → GL(+).

Definition 7.2.18 If � is a local parameter of O� and

� : � → GL(V)

is a representation over O�. The composition

�̄ : � → GL(V) → GL(+)

where + =V/�V is the reduction modulo � of �. �̄ is a F� = O�/�-rep. ♦

Lemma 7.2.19 If % is a pro-?-group and

� : % → GLA(O�)

is a continuous representation. Then the image of � is finite and

�(%) ∩ ker(GLA(O�)� GLA(F�)) = {1}.
Corollary 7.2.20 � is tame if and only if �̄ is tame.

Wild ramification. Definition 7.2.21

� : � → GL(V)

be a continuous representation where V is a free O�-module. Let � =

� /ker(�̄) correspond to !/ . Consider the swan representation over Zℓ
of �

1(�) = 1(V) = dimF� HomF�[�](Sw� ⊗Zℓ F� , �̄).
♦

Remark 7.2.22 1(V) depends only on the class ofV in the Grothendieck ring
'F� (�).
Remark 7.2.23 If � factors through a finite quotient then

1(�) = dimF� HomF�[�](Sw� ⊗Zℓ F� , �̄)

= dim� Hom�[�](Sw� ⊗Zℓ �, � ⊗ �)

Proposition 7.2.24
� = � /ker(�̄)

then

1(V) =
∞∑
8=1

|�8 |
|�0 |

dimF� (V/V
�8 )�.

Proposition 7.2.25 If � : � → GLA(O�) is a continuous representation then TFAE:
1. � ⊗ � : � → GLA(O�) ↩→ GLA(�)is tame
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2. � is tame

3. �̄ is tame

4. 1(V) = 0
Swan conductor.
Break decomposition

Lemma 7.2.26 � ∈ R≥0,
��+
 =

⋃
�′>�

��′
 

then the upper numbering filtration satisfies
1. ⋂

�>0
��
 = {1}

2.
� > 0, ��

 =

⋂
0<�′<�

��′
 

3.
% = �

0+
 

Definition 7.2.27 % -modules are Z[1/?]-modules " with a morphism

� : % → AutZ(")

which factors through a finite discrete quotient. Morphisms are Z[1/?]-
module morphisms that respect the factoring. ♦

Proposition 7.2.28 " is a % -module. Then There is a unique decomposition

" =

⊕
G∈R≥0

"(-)

of % -modules s.t.
"(0) = "% 

"(G)�G ) = 0

for G > 0, and for G, H ∈ R≥0

"(G)�H = "(G)

for G > H,
"(G) = 0

for all but fin many G.
" → "(G)

is an exact endofunctor on % -modules.

Corollary 7.2.29 Let � be a Z-algebra, " be an �-module, with a % -action, that
factors through a finite quotient: Then

• for a break decomposition of ", "(G) is an �-module.

• for � an �-algebra a break decomposition of " ⊕ � is
⊕
("(G) ⊕ �).

• if � is local noetherian and " is a free �-module of finite rank, then "(G) is
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also free of finite rank for all G.

Definition 7.2.30 Swan conductors. A local noetherian Z[1/?]-algebra " as
above. The Swan conductor is

Swan(") =
∑
G≥0

G rank�("(G))

for representations over fields

Swan(+) =
∑
G≥0

G dim�("(G)).

♦

Proposition 7.2.31
•

Swan(") = 0

iff % acts trivially on ".

• For + =V ⊗ � we get +(G) =V(G) ⊗ � and Swan(+) = Swan(V)

• Similarly
Swan(V) = Swan(V).

7.3 A cohomological interlude (Ricky)
Overview:

1. Introduction

2. Etale cohomology

3. Artin-Schreier covers and consequences

7.3.1 Introduction

: = :̄ field of char ?.

Conjecture 7.3.1 Abhyankar. Let � be a finite group, and

?(�)

the subgroup generated by ?-Sylows. Then
1. � is a quotient of

�1(A1 , 0)
iff

� = ?(�).

2. � is a quotient of
�1(G< , 1)

iff
�/?(�)

is cyclic of order prime to ?.
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Let � be a profinite group, and �(?) the maximal closed quotient of �
which is pro-?.

Goal. Let  = :((C−1)), then there is an isomorphism

� (?)
∼−→ �1(A1 , 0)(?).

7.3.2 Etale cohomology and �et
1 (for curves)

Definition 7.3.2 Covers. Say a morphism of schemes

. → -

is a cover if it is finite etale. We say that it isGaloiswith group � if it is locally
of the form ⊔

�∈�
*� → *

with*� ' * . ♦
Normally we study

-/0A = {* → - open immersion}

where the morphisms are commuting triangles of such maps.
“Classical” sheaves on - are

ℱ =4F(* → -) = ℱ >;3(*).

We can create more “exotic” topologies on - by changing this category

-et = {* → - etale}.

We have sheaves on this topology as before.
Still study sheaf cohomology in this context,

'8Γet ℱ = � 8
et(-, ℱ )

morally:
� 8

et(-, ℱ )
is made to mimic

� 8
sing(-(C)C>? , ℱ ).

We have as usual

�1
et(-, F?) ' Hom2CB(�et

1 (-, Ḡ), F?).

Here �et
1 (-, Ḡ) classifies connected covers of -: start with{

[(-8 , G8)
58−→ (-, Ḡ)]8∈� Galois etale covers

}
then

�et
1 (-, Ḡ) = lim←−−

8∈�
Aut(-,Ḡ)(-8 , G8).
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Elements of
Hom2CB(�et

1 (-, Ḡ), F?)
are either zero (trivial cover) or an isomorphism of a finite quotient of�et

1 (-, Ḡ)
with F? (a Galois cover with group F?).

Given a SES of sheaves on -et

0→ ℱ 1 → ℱ 2 → ℱ 3 → 0

we get a LES

0→ �0
et(-, ℱ 1) → �0

et(-, ℱ 2) → �0
et(-, ℱ 3) → �1

et(-, ℱ 1) → �1
et(-, ℱ 2) → �1

et(-, ℱ 3) → · · · .

7.3.3 Artin-Schreier covers and consequences
7.3.3.1 Cohomological computations

We have a map
℘ : A1

:
→ A1

;

C ↦→ C? − C
since

℘′(C) = −1

this is a cover.
The kernel of this map (of group varieties) is then

Spec(:[C]/(C? − 1)) ' (Spec :)?

' (F?): .
We can upgrade this to a SES of sheaves on any -/:

0→ (F?): → G0,:

℘−→ G0,: → 0.

Lemma 7.3.3 1.3.
1. -/: finite type scheme then there exists a short exact sequence

0→ Γ(-,O-)/℘Γ(-,O-) → �1
et(-, F?) → ker(�1

/0A(-,O-)
℘−→ �1

/0A(-,O-)) → 0

2. If - = Spec�/: then

(a)
�0

et(-, F?) = ker(� ℘−→ �)

(b)
�1

et(-, F?) = �/℘�

(c)
�
@

et(-, F?) = 0 for @ ≥ 2

3. For -/: a projective curve

�
@

et(-, F?) = 0 for @ ≥ 2.



CHAPTER 7. ABHYANKAR’S CONJECTURE 194

Proof.
1. Use fact from SGA 1

�
@

/0A
(-,O-) = �@

et(-,G0)

use the LES associated to Artin-Schreier sequence

0→ �0
et(-, F?) → �0

et(-,G0) → �0
et(-,G0) → �1

et(-, F?) → �1
et(-,G0) → �1

et(-,G0) → · · ·

swap et for /0A.

2. Follows from first part using

�
@

/0A
(Spec�,OSpec�) =

{
� if @ = 0
0 otw

.

�
For instance

�1
et(A1

:
, F?) = :[C]/℘:[C]

we have
:[C] ↩→ :((C−1)) =  

Lemma 7.3.4 This induces an isomorphism on

�1
et(A1

:
, F?)

∼−→ �1
et(Spec , F?).

Proof. View  as
:[C] ↩→  = :[C] ⊕ C−1:[[C−1]]

check that ℘ preserves this decomposition and using Hensel’s lemma

℘(C−1:[[C−1]]) = C−1:[[C−1]]

so we get
�1

et = :[C]/℘:[C].
�

Cohomological dimension of �1.

Definition 7.3.5 Let ? be prime and � profinite then

23?(�) = sup[= : ∃discrete finite �-module � killed by ? s.t. �=(�, �) ≠ 0}.

♦

Fact 7.3.6 � a ?-adic analytic group, compact of dimension = then

23?(�) = =.

Lemma 7.3.7
23?(�) ≤ 1 =⇒ 23?(�(?)) ≤ 1.

Proposition 7.3.8 - = Spec�/: connected (or projective) then

�1(�1(-, Ḡ), F?)
∼−→ �

@

et(-, F?)

23?(�1(-, Ḡ)) ≤ 1 =⇒ 23?(�1(-, Ḡ)(?)) ≤ 1

also �1(-, Ḡ)(?) is a free pro-?-group.
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Proposition 7.3.9 Let 5 : �1 → �2 be a continuous map of pro-? groups which are
free. Then

5 is an isomorphism↔ 5 ∗ : �1(�2 , F?) → �1(�1 , F?)

is an isomorphism.

Proposition 7.3.10  = :((C−1)), the map

�et
1 (Spec ) = � → �et

1 (A
1 , 0)

induces an isomorphism
� (?)

∼−→ �et
1 (A

1 , 0)(?).

Proof. We have an isomorphism

�1
et(A1

:
, F?)

∼−→ �1
et(Spec , F?)

which descends to

�1(�et
1 (A

1
:
)(?), F?)

∼−→ �1(� (?), F?)

so use above theorem. �

7.4 Serre’s proof in the solvable case (Angus)

: = :̄ field of char ? > 0.

Definition 7.4.1 A quasi ?-group is a group that is generated by its Sylow-?
subgroups. ♦

Let Π(A1) be the set of groups occurring as Galois groups of covers

- → A1 .

Theorem 7.4.2 Abhyankar. � ∈ Π(A1) =⇒ � is a quasi-? group.

Conjecture 7.4.3 Abhyankar. � is a quasi-? group =⇒ � ∈ Π(A1).
Today we will prove this when � is solvable.

Definition 7.4.4 Solvable groups. A group � is called solvable if there exists
a series

� = �: ⊲ �:−1 ⊲ · · · ⊲ �0 = 1

such that each �:/�:−1 is abelian. ♦

Reminders/background:

{covers - → A1 w/ gal. gp. �}

l
{!/:()) : Gal. extn. w/ gp. � unram. outside∞}

l
{surjections �et

1 (0 5 5
1)� �}.

Fixing Ḡ ∈ - we have an equivalence of categories

{loc. const. Fℓ -sheaves on - w/ finite stalks}
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l
{finite dim. �et

1 (-, Ḡ) reps over Fℓ }
given by

ℱ ↦→ ℱ Ḡ .

Etale cohomology satisfies:
Exactness axiom: Let / ⊆ - a closed subscheme with* = - r /. Let

Γ/(-, ℱ ) = ker(Γ(-, ℱ ) → Γ(*, ℱ ))

the right derived functor of
Γ/(-,−)

is
�∗/(-,−)

the cohomology with support on /. Then we have a LES

· · · → � 8
/(-, ℱ ) → � 8(-, ℱ ) → � 8(*, ℱ ) → � 8+1

/ (-, ℱ ) → · · · .

For - an affine curve, �1(-) has cohomological dimension ≤ 1. In partic-
ular given a surjection

�1(-)� �/�
we can lift to a map

�1(-) → �.

Theorem 7.4.5 Serre. Let �̃ be a quasi-? group and # a normal subgroup with
� = �̃/# , if � ∈ Π(A1) and # is solvable, then �̃ ∈ Π(A1).
Corollary 7.4.6 Abhyankar’s conjecture in the solvable case.

Proof. Let �̃ = # . �

The advantage of this is the following:

Lemma 7.4.7 It is sufficient to prove the theorem in the case

# = (Z/ℓ )=

and
� � #

is irreducible.
Proof. Consider a SES

1→  → # → � → 1

where
� = �̃/# = (�̃/ )/(#/ ) = (�̃/ )/�.

Since # is solvable, given a sequence of subgroups with abelian quotients we
can reduce to the abelian case, which can then be reduced to (Z/ℓ )= . Further
can be reduced to the irreducible �-module case. �

�̃ is an extension of � by # which gives a class

4 ∈ �2(�, #)

we have cases

1.
4 ≠ 0 essential extension
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2.
4 = 0, �̃ = # o �

Proof of the theorem in case 1:

� ∈ Π(A1){ ) : �→ �

by the cohomological dimension argument there exists a lift

)̃ : �→ �̃

with � = im()̃) so #� = �̃ and # ∩� is a sub-�-module of # . If # ∩� = 1
then �̃ = # o �, a contradiction with the fact we are in case 1.

Then by irreducibility of # , # ∩ � = # and

# ⊆ � =⇒ � = #� = �̃.

In case 2. Choose a surjection

) : �� �

this endows # with a �-module structure, #) we get a corresponding sheaf
N) on A1. We have

�1(�, #) ↩→ �1(�, #))
∼−→ �1(A1 ,N)).

Proposition 7.4.8 There exists a surjection

)̃ : �→ �̃

lifting ) iff
�1(�, #) ( �1(�, #)).

Proof. We only need (⇐) today. Let (0 : � → #)) ∈ �1(�, #)) r �1(�, #).
Then, combined with ) with we construct a morphism

)̃ : �→ # · � = �̃.

Assume that
im()̃) = � ( �̃

then
# ∩ � = 1, #� = �̃.

Given this, 0 arises from a cocycle in �1(�, #) a contradiction. �

We are reduced to finding

) : �→ �

such that
dimFℓ �

1(�, #) < dimFℓ �
1(�, #))

two cases, ℓ ≠ ? and ℓ = ?.
In the ℓ ≠ ? case we must have

� � #

non-trivial else
�̃ = # × �
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is not quasi-?.
Let � ⊆ � be the inertia group at∞, consider the ramification groups

� ⊇ �1 ⊇ �2 ⊇ �3 ⊇ · · ·

we have the swan conductor of #) is

Swan∞(#)) =
∑
=≥1

1
[� : �=]

dim(#/# �= ).

Proposition 7.4.9

dim�1(�, #)) = Swan∞(#)) − dim#

Proof. Note
�0(�, #)) = 0

since nontrivial irreducible

� 8≥2(�, #)) = 0

by cohomological dimension. Then

dim�1(�, #)) = −"(�∗(�, #))) = −"(�∗(A1 ,N)))

let
8 : A1 ↩→ P1

then exactness gives

"(�∗(A1 ,N))) = "(�∗(P1 , 8∗N))) − "(�∗∞(P1 , 8∗N)))

now
"(�∗∞(P1 , 8∗N))) = dim# � .

Grothendieck-Ogg-Shafarevich gives

"(�∗(P1 , 8∗N))) = dim# + dim# � − Swan∞(#)).

�
We are reduced to

dimFℓ �
1(�, #) < Swan∞(#)) − dimAℓ #

there exists ) forwhich this can be an equality (Artin-Schreier). We can always
introduce extra ramification. Consider

(<) : A1 → A1

) ↦→ )<

and write # : . → A1 the cover corresponding to ). Take the pullback to get
#< : .< → A1 a Galois cover with group �. { )< : � � �. One can show
that

Swan∞(#)< ) = < Swan∞(#))
so choosing < > 1 forces the inequality to be strict.

In this case we show
dim�1(�, #)) = ∞
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exactness gives

�1(�, #)) = �1(A1 ,N)) → �2
∞(P1 , 8∗N)) → �2(P1 , 8∗N)) = 0

�2
∞(P1 , 8∗N)) = �2

∞(Spec :[[C−1]], 8∗N)) = �1(:(()−1)), #)).
Proposition 7.4.10 Let � = :((C)) and �� = Gal(�sep/�). Then let + be a finite
dimensional ��-representation over F? . then

�1(�� , +) = ∞.

Proof. We can take
�� � +

irreducible, then if �1 is the pro-?-Sylow subgroup of �� then the action of

�1 � +

is trivial so the action factors through the tame quotient

�C = ��/�1.

Choosing an identification of + with

F@/F?
then

�C � +

is determined by a character
# : �C → F×@

let < = order(#), C< = C1/< and �< = :((C<)). The Galois group

�< = Gal(�</�)

is identified with the group of <-th roots of unity by a character

" : �< → :×.

Choosing F@ ↩→ : gives
# = "8

for some 8 ∈ (Z/<)×, then

�1(�� , +) ' �0(�< , �1(�< , +)) = �0(�< ,Hom(�< , F?) ⊗ +

when �< = Gal(�sep/�<). We have

Hom(�< , F?) = �</℘�<
for ℘ the Artin-Schreier map, so it is sufficient to show that any character of
�< occurs in the �<-representation

�</℘�<) ⊗ F?

infinitely often. The group �</℘�< has representatives Laurent series∑
0 9C

9
<

for 0 9 ∈ :, 9 > 0, (9 , ?) = 1. Consider the subgroup

:{C−9< }

on which �< acts by "−9 . Since [: : F@] = ∞, "−9 occurs infinitely often. �
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So
dim�1(�, #)) = ∞

and the desired inequality is satisfied and we have a surjective lift

�→ �̃

in all cases giving the original theorem.

7.5 Rigid analytic spaces (Aash)
References.

1. Several approaches to non-archimidean geomeetry - Conrad

2. Lectures on formal and rigid geometry - Bosch

3. Non-Archimidean geometry - Matt Baker

4. Rigid geometry and applications - Fresnel, van der Put

Usual geomeetry involves polynomial rings over fields, we switsch to tate
algebras. Fix a non-archimidean field :, ' a valuation ring and :̃ its residue
field.

Tate algebras over :.

)= = )=(:) =
{∑

0�G
� : |0� | → 0 as |� | → ∞

}
� = { 91 , . . . , 9=}

G� =
∏

G
98
8

5 converges on
B=(:) ⇐⇒ 5 ∈ :〈G1 , . . . , G=〉 = )=(:)

The Gauss norm / sup norm

|
∑

0�G
� | = max

�
|0� | ≥ 0

properties

1.
| 5 | = 0 ⇐⇒ 5 = 0

2.
|2 5 | = |2 |: | 5 |

3.
| 5 + 6 | ≤ max{| 5 |, |6 |}

4.
| 5 6 | = | 5 | |6 |

Theorem 7.5.1 The maximum principle.

∃G0 ∈ B=(:)

s.t.
| 5 (G0)| = | 5 |.
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Proof.
| 5 (G)| ≤ | 5 |, ∀G ∈ B=(:)

consider
� : '〈G1 , . . . , G=〉 → :̃[G1 , . . . , G=]

let 5̃ = �( 5 ) be non-trivial (| 5 | = 1), then there exists

G̃ ∈ :̃
=

s.t.
5̃ (G̃) ≠ 0.

Have
'[G1 , . . . , G=] //

��

:̃[G1 , . . . , G=]

��

' // :̃

so lift G̃ to G ∈ '= . Since
5 (G) ↦→ 5̃ (G̃)

and 5̃ (G̃) ≠ 0 and | 5 (G)| = 1. �

Algebraic properties of )= .

1. )= is noetherian, regular and a UFD, for every maximal ideal m of )= ,
)=/m has finite degree over :.

2. )= is Jacobson: G ∈ )=/� is nilpotent iff G lies in all maximal ideals of
)=/�.

3. � is closed w.r.t. the Gauss norm for all ideals.
Definition 7.5.2 Affinoid algebras. A :-affinoid algebra is a :-algebra �
admitting an isomorphism � ' )=/� as :-algebras � ⊆ )= . The set Max(�) for
maximal ideals is denoted "(�). ♦

Properties

1. ANoetherian, Jacobson, finite Krull dimension, �/m is a finite extension
of :, where m ∈ "(�).

2. :(G) = �/mG for mG ∈ "(�) then 0 is nilpotent iff 0(G) = 0 for all
G ∈ "(�).

3. "(�) is functorial with pullback. if ) : �→ �′ then

)−1(G) ∈ "(�)

for all G ∈ "(�′) as
) : �→ �′

�/)−1(G) ↩→ �′/G
�/)−1(G)

is a finite extension of : hence a field, so )−1(G) is maximal.

4. Noether normalization: For � affinoid, then ∃3 = dim(�) s.t.

)3(:) ↩→ �

then �/)3(:) is a finite module extension.
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5. Maximum modulus

‖ 5 ‖sup = max
G∈"(�)

| 5 (G)| < ∞.

Topology on "(�).
Fact 7.5.3

"(�) ↔ �(:)/Aut(:/:)

where �(:) is :-algebra homomorphisms from � → : which have image in a finite
extension of :. Consider sets

{G ∈ �(:) : | 58(G)| ≥ &8 , |69(G)| ≤ = 9 , for 8 , 9}

this is a basis for a topology on �(:). Endow "(�) with quotient topology, this is
Hausdorff and totally disconnected and functorial.

Example 7.5.4
"()=)

is disconnected
* = {|G1 | = · · · = |G= | = 1}

+ = * 2 .

�

Definition 7.5.5 Tate algebras over :-Banach algebrasA

A〈.1 , . . . , .=〉 = {
∑

0�.
� : |0� | → 0 as |� | → ∞}

♦
Universal property

Hom(A〈-1 , . . . , -=〉, �) → (�0)=

is bĳective.
) ↦→ ()(-1), . . . , )(-=))

�

is an
A

algebra, �0 are powerbounded elements.
Given 0′, 01 , . . . , 0= with no common zeroes.

�〈01/0′, . . . , 0=/0′〉 = �〈-〉/〈0′-1 − 01 , . . .〉.

Lemma 7.5.6 For any ) : � → � there exists at most one way to fill in �〈...〉 → �
such that the diagram commutes. This one way exists iff ∃"()) : "(�) → "(�)
factors through

{G ∈ "(�) : |08(G)| ≤ |0′(G)|∀1 ≤ 8 ≤ =}
Proof. By universal property we have

11 , . . . , 1= ∈ �0

s.t. )(0′)1 9 = )(0 9)l, )(0′) is a unit otherwise there is H s.t. )(0′)(H) = 0 so
)(0 9)(H) = 0∀9 so common zero. Hence 1 9 ’s are unique

|)(0 9)(H)|/|)(0′)(H)| = |1 9(H)| ≤ 1
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for all H ∈ "(�) .
Conversely if |)(0 9)| ≤ |)(0′)|, )(0′) a unit else common zero, let

1 9 = )(0 9)/)(0′)

want |1 9(H)| ≤ 1 for all H ∈ "(�) but

|)(0 9)(H)| ≤ |)(0′)(H)|

for all H ∈ "(�). �

Call
{G ∈ "(�) : |0 9(G)| ≤ |0′(G)|}

a rationaldomain: this canonicallydetermines�〈01/0′, . . . , 0=/′〉. Let�〈0, 0′−1〉
a laurent domain, if they are equal a weierstrass domain.

Affinoid subdomains: a :-affinoid subalgebra * ⊆ "(�) is called an affi-
noid subdomain if ∃8 : �→ �′ such that

"(8) : "(�′) → "(�)

lands in* and is universal. This diagram commutes iff "())("(�)) ⊆ * .
Completed tensor products

�⊗̂:�′

give us intersection and pullback.
Gerritzen-Grauert

7.6 Rigid GAGA (Aash)

Definition 7.6.1 Let (/,O/) be a :-scheme of locally finite type. A rigid
analytification is a rigid space (/A86 ,O/A86 ) togetherwith amorphism of locally
ringed �-spaces

(8 , 8∗) : (/A86 ,O/A86 ) → (/,O/)
satisfying: Given (.,O.) a rigid :-space and a morphism

(.,O.) → (/,O/)

this factors through (8 , 8∗) via a unique morphism (.,O.) → (/A86 ,O/A86 ). ♦
Example 7.6.2 Affine space. Recall we had maps

)=,9+1︷                   ︸︸                   ︷
:〈�1, 9+1 , . . . , �=,9+1〉 → :〈�1, 9 , . . . , �=,9〉

�8 , 9+1 ↦→ 2�8 , 9

for some |2 | < 1. Glue along these maps

� 9 ⊆ � 9+1

as larger balls. This is an admissible covering so we have

A:,A86 =

∞⋃
9=0

� 9 .
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Consider :[�1 , . . . , �=] mapping to each of )9 compatibly. This induces an
inclusion of max specs

Sp()=,0) ⊆ Sp()=,1) ⊆ · · ·Max :[�]

claim that for
m ⊆ :〈�〉

a maximal ideal, then
m′m ∩ :[�]

s.t.
m = m′:〈�〉.

Additionally claim given m′ ⊂ :[�], there exists 80 ∈ N s.t. ∀8 ≥ 80 ,m′:〈G 8�〉
is maximal in :〈2 8�〉 = )=,8 . So all )=,8

)
−→ :[�]/m′ and the maximal spectra of

:[�] equals ⋃
�8 . �

More generally given an affine scheme / = Spec :[�]/0 and glue

)=,0/(0) ← )=,1/(0) ← · · ·

and :[�]/0 maps to each. Giving Spm()=,0/0) ↩→ Spm()=,1/0) ↩→

Spm(:[�]/0) =
∞⋃
9=0

Spm()=,9/0)

In order to check the properties of this construction, we note that

/A86 → /

via
:[�]/0 → )=,8/0

locally, giving
O/(/) → O/A86 (/A86).

Fact 7.6.3 / affine :-scheme of finite type, . a rigid :-space.

(.,O.) → (/,O/)

l
:-alg. homs. O/(/) → O.(.).

So we have
(8 , 8∗) : (/A86 ,O/A86 ) → (/,O/)

need to check universal property: WLOG let (.,O.) be an affinoid space

(.,O.) → (/,O/)

gives
:[�]/0 �−→ �

wts
:[�]/0 → )=,8/0 → �

choose 8 big enough s.t.

|�(�̄ 9)| ≤
1
|2 | 8



CHAPTER 7. ABHYANKAR’S CONJECTURE 205

� will extend uniquely though
)=,8/0.

We get morphisms and hence a functor for rigidification by universality.
Call this the GAGA functor.

It respects fibre products.
O/A86 ,I is the completion at I ∈ /A86 is the same as the completion of O/,I

at I.
GAGA is faithful but not full.

Definition 7.6.4 We have a sheaf ℱ associated to �modules "

ℱ = " ⊗� O-

this functor is fully faithful commutes with kernels, cokernels, images and
tensor products. ♦

Theorem 7.6.5 Coherent modules are the images of this functor for f.g. ".
A coherent module has finite type, in that there exists a covering with

OB8
-
|-8 → ℱ |-8 → 0

and also the kernel here is finite type.
Cohomology, we have a section functor

Γ(-,−) : ℱ → ℱ (-)

and
) : - → .

)∗ : ℱ → )∗ ℱ
is left exact, need an injective resolution.

An object ℱ is injective if given

0→ ℰ′→ ℰ → ℰ′′→ 0

0→ Hom(ℰ′, ℱ ) → Hom(ℰ , ℱ ) → Hom(ℰ′′, ℱ ) → 0
Theorem 7.6.6 Grothendieck. The category of O- -modules has enough injectives,
consider injective resolution for O- -module ℱ

0→ �0

0−→ �1


1−→ · · ·

and consider
0→ Γ(-, �0)

Γ(
0)−−−→ Γ(-, �1) → · · ·
�@(-, ℱ ) = kerΓ(
@)/imΓ(
@−1) = '@Γ(-, ℱ )

the @th cohomology group of - with values in ℱ .
Cech cohomology lim−−→*

�(*, ℱ ) the limit over admissible coverings, or-
dered by refinement.

�@(*, ℱ ) =
∏

80 ,...,8@∈�
ℱ (

⋂
:

*8: )

have a coboundary map which makes this a complex.

Theorem 7.6.7 Tate’s acyclicity theorem. If* is a finite covering of- by affinoids
then* is acyclic w.r.t. presheaf O- (or any coherent module).
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Definition 7.6.8 ) : - → . is called a closed immersion if there exists an
admissible affinoid covering (+9)9 s.t. for all 9 ∈ �

) 9 : )−1(+9) → +9

is a morphism of affinoid spaces with corresponding algebra map

� 9 � � 9 .

♦

Definition 7.6.9 ) : - → . is called a separated if

Δ : - → - ×- -

is a closed immersion. ♦

Fact 7.6.10 ) : Spm(�) → Spm(�) is always separated.
In rigid geometry we do not have that for ) : - → . with Δ : - → - ×. -

locally closed then sep iff closed immer.

Definition 7.6.11 Properness. Amap 5 : - → . of rigid spaces is proper if it
is separated and quasi-compact and there exists an admissible affinoid open
covering {*8} of . and a pair of finite (necessarily admissible) affinoid open
coverings

{
+8 9

}
9∈�8 and

{
+′
8 9

}
9∈�8

(same index set �8 of 9′ s! of 5 −1 (*8) such that

two conditions hold: +8 9 ⊆ +′8 9 for all 9 , and for all 9 ∈ �8 there is an = ≥ 1 and a
closed immersion+′

8 9
↩→ *8×B= over*8 such that+8 9 ⊆ *8×

{
|C1 | , . . . ,

��C=8 �� ≤ A}
for some 0 < A < 1 with A ∈

√
|:
×
|. (Equivalently, by the Maximum Modulus

Principle, we can replace ∗ ≤ A” with ∗ < 1 ".) ♦

Theorem 7.6.12 If 5 : - → . is a proper map of rigid spaces and F is a coherent
sheaf on - then the higher direct image sheaves R8

(
5∗
)
(F ) on . are coherent. In

particular, if - is proper over Sp(:) then H8(-,F ) is finite-dimensional over : for
all coherent sheaves F on - and all 8.
Theorem 7.6.13 GAGA applications.

�@(-, ℱ ) → �@(- A86 , ℱ A86)

are isoms for - proper, ℱ coherent O- -module. Also for, the A86 functor on sheaves
is fully faithful. Also gives essential surj of A86 on coherent rigid sheaves.

7.7 Raynaud 3) example?
This is just me (Alex) experimenting with the feasibility of doing an example
of the case 3) of Raynauds proof.

As explained in my notes for raynaud2 the group�2ℓ for prime ℓ is quasi-2
and satisfies �(() ≠ � and has no normal 2-subgroup. So it lands in the third
case of Raynaud’s proof.

The first step is to find tuple of generators for the group whose product
is one but we defer this because in Introduction to Branched Galois Covers
Hiroo Tokunang http://www.math.ac.vn/publications/vjm/VJM_33/Pdf_files_
DB_2005/Bai7_Tokunaga.pdf the following model is given for a �2= cover in

http://www.math.ac.vn/publications/vjm/VJM_33/Pdf_files_DB_2005/Bai7_Tokunaga.pdf
http://www.math.ac.vn/publications/vjm/VJM_33/Pdf_files_DB_2005/Bai7_Tokunaga.pdf
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characteristic 0
B0C

2=
1 − 2B1C=1 C

=
0 + B1C

2=
0︸                       ︷︷                       ︸

�

= 0 ⊆ P1 ×P1

this maps to P1 via projection onto the the first factor.
Letting G = B1/B0, H = C0/C1 this becomes

1 − 2GH= + GH2=

or
1 = G(2H= − H2=)
G(2H= − 1) = H2=

so

G =
H2=

2H= − 1 =
H2=

2H= − 1
so the partial derivative is

=H=−1(2 − H=) − =H=H=−1 = 2=H=−1(1 − H=)

this has zeroes when H = 0 or H= = 1. In the first case G = 0. In the second
G = 1.

The branch points are

(1 : 1), (−1 : 1), (0 : 1)

as we can take the partial derivative w.r.t C0 and C1 giving

% 5

%C0
= −2=B1C=1 C

=−1
0 + 2=B1C2=−1

0 = 2=B1(C=0 − C
=
1 )C

=−1
0

% 5

%C1
= 2=B0C2=−1

1 − 2=B1C=−1
1 C=0 = 2=(B0C=1 − B1C

=
0 )C

=−1
1

I don’t understand these equations, but I do understand this one

G = H= + 1
H=

as this clearly has a�2= worth of automorphisms, from H ↔ 1/H and H ↦→ �=H.
This can be rewritten as

GH= = H2= + 1
but for the purposes of the ramification locus take the first equation and take
partials.

=H=−1 − =H−=−1 = =
H2= − 1
H−=−1

which is ramified for H2= = 1 so H= = ±1. Hence

G = 1 + 1 or G = −1 − 1

giving ramification when G = ±2, or infinity.

GH= = H2= + 1
=GH=−1 − 2=H2=−1 = =H=−1(G − 2H=)

ramified if H = 0 or G = 2H= . First case G = 0 + 1/0 = ∞, second G =

G/2 + 2/G =⇒ G/2 = 2/G, G = ±2.
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8.1 CM abelian varieties
Let : be a field.

Recall that an abelian variety is a proper group variety over :. Let �/: be
an abelian variety.

Definition 8.1.1 Endomorphism algebra. The endomorphism ring of � is the
ring of all isogenies �→ �

End(�) = Hom:−8B>6(�, �)

the endomorphism algebra is

End0(�) = End(�) ⊗ Q

this is a possibly non-commutative semisimple Q-alg. ♦

for a semisimple algebra the reduced degree is defined by decomposing

� =
∏

�8

simple algebras with center :8 .

[� : :]red =
∑
8

[�8 : :8]1/2 · [:8 : :]

We can bound the dimension of this algebra by observing that it acts
faithfully on the homology / tate module for ℓ ≠ char :, these are dimension
2 dim�). With Artin-Wedderburn this gives

2 dim� ≥ [End0(�) : Q]A43 ≥ [� : Q]

for any etale algebra � in End0(�).
If the first inequality is an equality they both are and we say that � has

CM. In this case End0(�) is a product of matrix algebras over fields.

Example 8.1.2 Elliptic curves. We have several possibilities
1.

� : H2 + H = G3 − G2/Q

has End0(�) = Q, dim
√

1 · 1 ≤ 2 no CM
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2.
� : H2 = G3 + 1/Q(�3)

has End0(�) = Q(�3), dim
√

1 · 2 ≤ 2, CM, own maximal etale.

3.
� : H2 + H = G3 + G2 + G + 1/F4

we can find 24 automorphisms, that make the group SL2(F3). And
End0(�) is the quaternion algebra Q ramified at 2,∞. So

[End0(�) : Q]A43 =
√

4 · 1 = 2

here themaximal etale algebras inside are the imaginary quadratic fields
contained in this quaternion algebra.(

−1,−1
Q

)
4. The same example over F2, of the 24 automorphisms only 2 are defined

over F2, and we have
End0(�) = Q(

√
−2)

[End0(�) : Q]A43 =
√

1 · 2 = 2

so CM again with one of the same etale algebras � as before.

5. Given a CM elliptic curve �/Q with CM by � can take the product

� × �/:

this has dimension two and

End0(�) = Mat2×2(�)

this is a 4-dim algebra over its center of dim 2
√

4 · 2 = 4 = 2 dim�

etale algebra
� = � × �.

6. Given non-isogenous CM elliptic curves �, �′/Q with CM by �, �′ can
take the product

� × �′/:
this has dimension two and

End0(�) = � × �′

this is a product of two 1-dimensional algebras over their centers
√

1 · 2 +
√

1 · 2 = 4 = 2 dim�

etale algebra
� = � × �′.

�
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8.1.1 Construction over C
We can construct many examples over C as follows.

Definition 8.1.3 CM-pairs. A CM-pair is a pair

�,Φ

where � is a product of CM fields (aka a CM-algebra). Such an algebra has an
involution

�� : �→ �

non-trivial on each field such that for any embedding

) ∈ Hom(�,C)

) ◦ �� = ·̄ ◦ ).
Φ is a CM-type

Φ ⊂ Hom(�,C)
of cardinality dim�/2 s.t

��Φ ∪Φ = Hom(�,C).

♦
Given such a CM-pair and a choice of lattice

Λ ⊆ �

we can form a complex torus
CΦ/Φ(Λ).

To make this into an abelian variety we need the existence of a polarization.
The relevant Riemann forms are given by

� × �→ Q

(G, H) ↦→ Tr�/Q(
G��(H))
for 
 ∈ �× satisfying

��
 = −

im()(
)) > 0, ∀) ∈ Φ.

So we can make a choice of 
 and obtain an abelian variety in this way.
Such abelian varieties have CM as

End0(�)

contains etale algebra � which has dimension 2 · #Φ = 2 dim�.

Theorem 8.1.4 Tate. Every abelian variety over a finite field has CM.

Theorem 8.1.5 Grothendieck. Every abelian variety with CM over an algebraically
closed field  of characteristic ? is isogenous to a CM abelian variety over a finite field.

OverC: A simple abelian variety has CM iff End0(�) is a field of dimension
2 dim�, moreover such a field is necessarily a CM field.

Proposition 8.1.6 Let : ⊆ C be algebraically closed them

{abvar /:} → {abvar /:}
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is fully faithful and the essential image contains all CM abelian varieties.

Proof. (Sketch) Full faithfulness follows from: The torsion points are algebraic
and Zariski dense. For essential image take�we can find�′/:with same CM-
type by spreading out type stuff, so �′C is isogenous to the original. Now the
kernel of the isogeny is algebraic again so can quotient by it in both categories.

�
So CM abvars /: are equivalent to CM abvars /C.
Using Neron(-Ogg-Shafarevich) we get

Proposition 8.1.7 Let � be an abelian variety over a number field : with complex
multiplication. Then � has potential good reduction at all finite primes of :.

Let � be an abelian variety with complex multiplication by $E$ over a
field $k,$ and let $\mathfrak{a}$ be a lattice ideal in $R .$ A surjective homo-
morphism $\lambda^{\mathfrak{a}}: A \rightarrowA^{\mathfrak{a}}$ is an
a-multiplication if every homomorphism $a: A \rightarrow A$ with $a \in
\mathfrak{a}$ factors through$\lambda^{\mathfrak{a}},$ and$\lambda^{\mathfrak{a}}$
is universal for this property, in the sense that, for every surjective homomor-
phism $\lambda^{\prime}: A \rightarrow A^{\prime}$
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