
BUNTES Raynaud and
Runge
Jae Hyung Sim
16 March 2020

Raynaud’s theory of formalR-schemes is one branch of ex-
panding rigid analytic geometry. The other is Berkovich’s
theory. Conrad puts it as Raynaud’s theory focuses on
more algebraic aspects whereas Berkovich’s theory allows
more point-wise intuition and cohomological techniques.
For example, Berkovich’s spaces actually carry a classical
topology instead of a G-topology. Today, we focus on Ray-
naud’s perspective.

We’ve developed rigid analytic spaces, its coherent modules,
and their cohomology. One di�culty of the current set-up
is that there is no natural way to associate a rigid space to
some kind of reduction to its residue �eld. As one would
expect, having access to this kind of reduction reveals more
algebraic aspects of our space and might even allow us to
translate geometric facts regarding a rigid space over a local
�eld to some corresponding space over a residue �eld (Ab-
hyankar). The tool that allows this kind of reduction is Ray-
naud’s formal schemes.

1 Formal Schemes

We start with R a complete valuation ring with quotient
�eld K and residue �eld k. We denote by Rn the space
R/(πn) whereπ ∈ R is some element such that 0 < |π| <
1 (ifR is a dvr, then π can be taken as a uniformizer).

The main idea of Raynaud’s framework is to shift our fo-
cus fromK-algebras toR-algebras. One can think of this as
shifting our focus from Qp to Zp. But to make this theory
more rich, we want to have rings that are complete with re-
spect to our norms. The analogy would be taking the com-
pletion of Z with respect to the p-adic norm to get Zp.

Our rigid analytic spaces locally look like an a�noid space,
i.e. the Max spec of an a�noid algebra of the form

K{X1, . . . , Xn}/I

where K{X1, . . . , Xn} = {
∑
aiX

i | |ai| →
0 as ‖i‖ → ∞}. As one would expect, working over the
�eldK doesn’t naturally allow us to create a reduction mod
π where π is a uniformizer. However, we can try to create
a corresponding modle over R which does allow such a re-
duction.

De�nition 1.1. A topologically �nitely presented (tfp)R-
algebra is of the form

R{X1, . . . , Xn}/I

where we have

R{X1, . . . , Xn} = {
∑

aiX
i | |ai| → 0 as ‖i‖ → ∞}

and I is a �nitely generated ideal.

A tfpR-algebra is called admissible if it isR-�at.

Remark 1.2. In our given scenario, an R-module is �at if
and only if it is torsion-free.

Notice that we have

K⊗RR{X1, . . . , Xn} = R{X1, . . . , Xn}[1/π] ∼= Tn(K).

In fact, we have in general that if A is a tfpR-algebra, then
A = K ⊗R A is an a�noid algebra.

Remark 1.3. One thing to notice about theseR-algebras is
that ifR is a discrete valuation ring, thenR{X1, . . . , Xn}
is in fact the inverse limit

lim←−
n

Rn[X1, . . . , Xn].

It is important to note that if R is not a discrete valuation
ring, then taking m to be the maximal ideal gives m2 = m,
so the inverse limit

lim←−
n

R/mn[X1, . . . , Xn]

actually produces k[X1, . . . , Xn]. This is why the general
construction that follows uses a choice of π.

Proposition 1.4. Let A be a tfp R-algebra. Then we have
the following for any π ∈ R such that 0 < |π| < 1:

(a) A is π-adically complete.

(b) A [π∞], the π-power torsion of A , is finitely generated
as an ideal.

(c) If I is an ideal of Tn(K), then the intersection I ∩
R{X1, . . . , Xn} is finitely generated.

(d) Since R-modules are flat i� they are torsion-free, every
K-affinoid algebraA is of the formK⊗RA for some
admissibleR-algebra A .

Notice that part (c) of the above proposition allows us to
create an admissible R-algebra from any tfp R-algebra by
quotienting out the π-power torsion ideal.

This is a suitable algebra to consider as a model overRwhen
considering an a�noid space overK . However, just taking
the Max Spec will be insu�cient since we will be getting
points over k with little relation toK . Instead, we take the
space

Spf A := lim−→
n

Spec An
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where An = A /(πn). The corresponding structure sheaf
is the projective limit

OSpf A = lim←−
n

OAn
.

Before we proceed, it is good to notice that the projective
system of rings that gives rise to the above direct limit are
the maps

A /mA → A /(πn).

Notice that even if R is not a discrete valuation ring, the
spectrum of the rings are in bijection. In fact, the under-
lying set of our topological space is really an a�ne space
over k. The distinction of our construction from this a�ne
space arises from the structure sheaf.

To see the contrast in the structure sheaf, we can observe a
principle open set D(f) for some f ∈ A . Let Let D(f)
be the non-vanishing locus of f . Then we get that the ring
of section Γ(OSpf A , D(f)) is precisely A{f}, the π-adic
completion of the localizationAf .
Remark 1.5. A consequence of this identi�cation of the ac-
tual topological space is that even if R is not Noetherian
(e.g. the ring of integers of Cp), the resulting formal R-
scheme is a Noetherian space.

We can then extend this approach to global pictures to get
formal schemes.

De�nition 1.6. A formalR-schemeX∞ is a locally topo-
logically ringed space which has a �nite open cover by tfp
a�ne formalR-schemes.

Example 1.7. Let A = R{x, y}/(π, xy − π) and X =
Spf A. As a topological space,X is Spec k[x, y]/(xy−π).
The structure sheaf, however, contains richer data since it
contains elements such as

∑∞
i=0 π

ixi.

De�nition 1.8. The special �ber X0 of an a�ne for-
mal R-scheme X = Spf A is the k-scheme X0 =
Spec A /mA .

Our construction above shows that the special �ber X0 is
topologically identical to the formal R-scheme X . As one
might expect, this means that some topological aspects of
our theory depends solely on the special �ber.

For example, a formalR-schemeX is separated if eachXn

is separated. This is the case if and only ifX0 is separated.

On the other hand, the generic �ber of anR-scheme recov-
ers the corresponding rigid space. Speci�cally, for a�ne for-
mal schemesX = Spf A , taking the generic �berXη gives
theK-a�noid space Sp(A ⊗R K).

This highlights the strength of formal R-schemes: the
scheme carries the information of its corresponding rigid

analytic space as its generic �ber while also containing a re-
duction of the rigid analytic space as its special �ber. This
relation is more explicitly given as Raynaud’s generic �ber
functor.

Theorem 1.9. The assignment Spf A to Sp(K ⊗R A )
from the category of tfp formal affine schemes to affinoid
rigid analytic spaces overK is functorial and carries Zariski-
open immersions to quasi-compact admissible opens.

This functor extends uniquely while preserving fiber products
and mapping open immersions to admissible opens so that we
get a functor between tfp formal R-schemes and rigid spaces
overK .

Proposition 1.10. Raynaud’s generic fiber functor maps
admissible formal blowups of admissible formal R-schemes
to isomorphisms of rigid analytic spaces.

The idea here is that blow-ups do not a�ect the generic
�ber.

1.1 Projective Line

Start with the a�ne lineX = SpecR[x] overR. We have
XK = SpecK[x] and the analyti�cation is (Xk)an =
(A1

K)an.

The π-adic completion is X̂ = Spf R{x} and its generic
�ber X̂η is the closed unit disc SpK{x}. The canonical
open immersion X̂η → (XK)an is an isomorphism onto
the a�noid domain in (XK)an consisting of points z such
that
∣∣x(z)

∣∣ ≤ 1.

Removing the origin O from X gives a scheme X ′ where
X ′
K = XK . The formal completion of X ′, however, is

X̂ ′ = Spf R{x, T}/(xT −1). Its generic �ber is then the
complement ]O[ in X̂η .

For the projective line, P1
R = ProjR[x, y], the analytic

projective line (P1
K)an can be realized in di�erent ways.

First, consider the usual a�ne cover of P1
K by the charts

U1 = SpecK[x/y] and U2 = SpecK[y/x]. Their
analyti�cations (U1)an and (U2)an are in�nite unions of
closed discs (see Example 6) centered at 0, resp. ∞. (The
idea here is that (A1

K)an is the direct limit of the system
D → D → D → · · · where the maps are multiplication
by some a ∈ K where |a| < 1. The image of each map
isD(0,|a|) which produces a rigidK space.) Gluing along
the admissible opens (U1)an−{0} and (U2)an−{∞} in
the obvious way, we obtain (P1

K)an.

On the other hand, we can look at the formal comple-
tion P̂1

R. Is generic �ber is canonically isomorphic to
(P1
K)an by Raynaud’s generic �ber functor. The sep-

arated topologically of �nite type formal R-scheme P1
R
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is covered by the a�ne charts V1 = Spf R{x/y} and
V2 = Spf R{y/x} whose intersection is given by V0 =
Spf R{x/y, y/x}/((x/y)(y/x) − 1). The generic �bers
of V1 and V2 are closed unit discs around x/y = 0, resp.
y/x = 0, and (V0)η coincides with their boundaries. So
in this way, (P1

K)an is realized as the Riemann sphere ob-
tained by gluing two closed unit discs along their bound-
aries.
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