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Outline
1. Elliptic curves and their ranks

(a) Background
i. Mordell Weil theorem (state and prove) (ANT and cohomolog-
ical proof)
ii. Non-effectivity
iii. Computing the rank (descent)
(b) The Birch and Swinnerton-Dyer conjecture
i. Heuristic via counting points omn the reduced curve
ii. L-functions
iii. BSD-1
iv. Local arithmetic invariants and BSD-2
(c) Parity of ranks

i. Isogeny invariants of BSD 2
ii. Galois representations and local root numbers
iii. The parity conjecture

2. Abelian surfaces

(a) Background on genus 2 curves and their Jacobians
(b) BSD in this case

(c) Computability of local arithmetic invariants

(d) Parity conjecture

Evaluation, none, when not around will give exercise/project, if you come
regularly and do a computation you pass.
Main references that we will be following;:

1. Vladimir Dokchitser - Lecture course
2. Silverman - Arithmetic of Elliptic Curves

3. Milne - Abelian Varieties?


https://sites.google.com/view/cmaistret/teaching#h.p_BYGoPzU848FJ
https://sites.google.com/view/cmaistret/teaching#h.p_BYGoPzU848FJ

1 Elliptic curves and their ranks

Sources: Silverman I, V. Dokchitser’s lectures.

1.1 Mordell-Weil

Let K be a number field and let E/K be an elliptic curve. The group E(K) is
finitely generated.
E(K) = E(K)tors ®Z.

Where E(K)iors is a finite subgroup and r is the rank, a non-negative integer.
Assuming that we can compute the torsion subgroup, computing the rank
would completely determine E(K) and hence solve the associated diophantine
problem.
Plan

1. Understand the proof of Mordell-Weil
2. See where it is non-effective.

3. From the proof, extract a strategy to sometimes compute the rank (define
Selmer groups, Shafarevich-Tate group).

Outline proof of Mordell-Weil. Part 1: Prove that
E(K)/mE(K)

is finite for some m > 2.
Part 2: use a descent argument with heights of points. u

Of these two parts of the proof, part 1 is the challenging/interesting one.
For part 2: Assuming that

E(K)/mE(K)
is finite and that E has a “height function” then E(K) is finitely generated.

Theorem 1.1 Descent theorem (see Thm. VIII 3.1). Let A be an abelian group,
suppose that there exists a function

h:A—R

with the following properties:
1. Let Q € A then there is a constant c1 depending on Q and A such that

h(P + Q) = 2h(P)+ c1, VP € A.

2. There is an integer m > 2 and a constant cp depending on A s.t.

h(mP) > m*h(P) — co, VP € A.

3. For every constant cs, the set
{PeA:h(P)<cs}
is finite.

suppose further that for the m in 2. we have A/mA is finite. Then A is finitely
generated.



Proof. Choose elements Q1, ..., Q, € A torepresent the finitely many cosets in
A/mA. Let P be a point in A. We show that P can be generated by Q1, ..., Q;
plus a set of finitely many points of bounded height.
First write
P =mPy + Qj,

for some 1 < i < r. Repeat this for
P1 = sz + Qiz

Py, = mP; + Qi3

Py,_1=mP, + Qi,,
by property 2. of 1 we have

n(p;) < %(h(ij) +c2)

3 (Py) - Qi) + )

< L @n(Pi) + ¢, + )
m

by 1. Where c] is the maximum of the constants from i for Qin {-Q1, ..., —Q,}.
Note that ¢} and c, do not depend on P and that #(P) > 0. We repeat this
inequality starting from P,, and working back to P.

2\ 1 2 (2 2 \" "\,
h(Pn)S(W) h(P)+W(1+W+(ﬁ) +W+(W) )(c1+cz)

2\" 1 2 2\? 2\"
:(W) h(P)+ﬁ(1+ﬁ+(W) +--~+(ﬁ) )(c1+C2)
ci+cz

m2 -2

n
< (%) h(P) +
1 c;te2
< —
< 2nh(P)+ 5

since m > 2. Hence for n sufficiently large (to make 5 /(P) < 1) we have

h(Py) <1+ %(ci + 02).

Since P is a linear combination of P, and Q;

n
P = mnpn + Z mj_lQij/

=1

it follows that every P € A is a linear combination of points in

{Q1,...,Q,}U{Q € A:h(Q) < 1+%(c1+c2)}.



Remark 1.2 On E/Q the height function
h: E(Q)— Q

=2
p o, Jlogmax{lpl,lql}), x(P)= G, P #0,
0, P=0.

satisfies the conditions of Theorem 1.1.

Remark 1.3 The above proof is effective. To find generators of E(Q) first
compute ¢; = ¢1(Q;) for each i, then compute cp. Find points of bounded
height. Note that we need Qq, ..., Q, to start with.

It remains to show part 1:
Theorem 1.4 Weak Mordell-Weil. Let K be a number field E /K an elliptic curve,

m > 2 then
#E(K)/mE(K) < oo.

We will prove this under the assumption that E[m] C E(K). This is WLOG
since:

Lemma 1.5 Let L/K be a finite Galois extension, if

E(L)/mE(L)
is finite then so is
E(K)/mE(K).
Proof.
0 — ¢ — E(K)/mE(K) 5 E(L)/mE(L) — 0
induced by

E(K) € E(L),
and prove that ¢ is finite. Kernel ¢ is given by
E(K) N mE(L)
mE(K) ’
take P € ¢. We can choose Qp € E(L) such that Qp = P. Define a map of sets
Ap: Grjx — E[m]
o Qp—Qp.
Note that
[m](Qp — Qp) = ([m]Qp)” — [m]Qp = 0.
Now we show that the association
¢ — Map(Gr/x, E[m])
P /\p

isltol.
Suppose that P, P’ € E(K) N mE(L) satisfying Ap = Ap: then

(Qp—=Qp)” =Qp —Qp
forall 0 € Gy jx so Qp — Qps € E(K) and hence
P - P’ =[m]Qp - [m]Qp € mE(K)

hence
P =P (mod mE(K)).

Gr/k and E[m] are both finite, hence so is ¢. [
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Now we will prove the weak Mordell-Weil theorem. Using the above
lemma we can reduce to the case where E[m] C E(K), so we assume this going
forwards.

Definition 1.6 The Kummer pairing. The Kummer pairing is
x: E(K) x GE/K — E[m]
P,o—Q"-Q
where Q is a choice of point in E(K) such that mQ = P. O

Proposition 1.7 « is well defined, bilinear, the kernel in the first arqument is mE(K)
and in the second argument is G L where L = K([m] ™ E(K)) is the compositum of

all fields x(x(Q), y(Q)) as Q ranges over all the points of E(K) s.t. mQ € E(K).
Hence the Kummer pairing induces a perfect bilinear pairing

E(K)/mE(K) x Gr/x — E[m]

i.e. the map
E(K)/mE(K) — Homk(Gy /k, E[m])

P (0~ Q"-Q)
is an isomorphism.

Proof. Of part 4.
Take u
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Remark 1.8 A homomorphism ¢: Gal(K/K) — G for a finite group G is
continuous if it comes from a finite Galois extension, i.e.

JF /K finite Galois , d}: Gal(F/K) —» G
s.t. ¢ is the composition Gal(K/K) — Gal(F/K) i G. So ¢(g) only cares
about what g does to F.
Proposition 1.9 Let E /K be an elliptic curve
v =(x—a)x-p)x-y)
for P € E(K) have 1P € E(K) s.t. 1P @ 3P = P.
1. K(%P)/K is a Galois extension and Gal(K(%P)/K) = Cy X Cy from Lemma 1.

2.
¢p: Gal(K/K) — E(K)[2]

- 1 1
g Q7 -Q=g(3P) - 5P
is well defined and has kernel Gal(K/ K(%P)).

¢: E(K)/2E(K) — Homgs(Gal(K/K), E(K)[2])
P (g qﬁp



is well defined and injective. Now ¢p is continuous by 2. and so
1 1 1
breo(g) =87 (P®Q) - (5P & 5Q)

= 5GP ®8(;Q) - 3P0 70
= ¢r(8) ® Po(g)
a homomorphism.
P0(8) = $(;20) - 32(Q) = (Q) - Q =0

forall g € Gal(K/K) if Q € E(K) so this is well defined. For injectivity:

¢r(g) =0 = g(%P) = %P\v’g € Gal(K/K)

= %P € E(K) = P €2E(K)

which gives injectivity.

n: Homess(Gal(K/K), E(K)[2]) — K*/K*? x K*/K** x K* | K*?

Y Y, lPﬁr Py
¥(g) € {0,(a,00} CE(K) & g € Gal(K/K(y/¢))

then n is an injective homomorphism. It is an isomorphism to the subgroup of
triples a, b, ¢ s.t. abc € K*. Proof:

Homes(Gal(K/K), Ca) = K*/K**
with ¢ s.t. ker ¢ = Gal(K/KVd) < d. It is an isomorphisn:
ker 1h; = Gal(K/K(¥/dy)), i = 1,2

ker ¢1¢2 = Gal(K/K( \Y dle))

Now apply this to E(K)[2] = Ca x Cy to get an isomorphism to K*/K** x
K*/K*2. Record this third homomorphism to get 1.

. If P = (x0, yo) € E(K) then
n(¢p) = (xo — a, x0 — B, x0 — ).

Proof sketch: If
E:y?>=x3+ Ax? + Bx

then for Q = (xo, yo) € E(K).

2Q = (("3;03)2,...)

Hence if 2Q = P = (x1, y1) then 4/x1 € K(%P). So if

E:y?=(x—a)(x-p)x—y)



then
P =(x2,12)

then

Vo —a,\x2—B,\Vx2—y € K(%P)
K(vxz —a), K(+x2 = B), K(vx2 = y) C K(%P)
— K(P) = KN —a, Yo~ B,V 7)

Example 1.10 Let
E: yz =x(x-1D(x+1)

for P € E(Q), Q(%P)/Q can only ramify at 2.
1
Q(;P) € Q(i, V2)

P = (x0,y0) = x0,x0—1,x0+1€ Q*/Q**

is a homomorphism so xg, xo — 1, xg + 1 are +1, 2 up to square.

X0 | xo—1 | xo+1 | rat?
1 1 1) rat
-1 -1 2) non-rat
2 2 1) rat
-2 -2 2) non-rat
-1 1 -1 2) non-rat
-1 ] -1 1 1) rat
-1 2 -1 2) non-rat
-1 ] -2 2 1) rat
2 |1 2 3) non-rat
2 |- -2 2) non-rat
2 |2 1 4) rat
2 |2 -1 2) non-rat
201 -2 ?
2] -1 2 ?
212 -1 ?
2| -2 1 ?

Table 1.11: Images

1) The 2-torsion points P = 0, (0, 0), (1,0), (-1, 0) € E(Q) give us some rows.
2) As we have xg > —1 we get xo +1 > 0 s0 xo(xg — 1) > 0 for the product
to be a square (and hence > 0). 3) xo = 2A%, xo — 1 = B2, xg + 1 = 2C? with

A,B,C € Q\{0}. Let A = m/n so2m?/n®> -1 = B>
2m? — n? = (Bn)?

and
2m? + n* = 2(Cn)?

if m =0(2) = -1=0 (mod 8) a contradiction.

m=1 (mod2) = m?>=1 (mod 8).



So2-n?>=0 (mod 8 = n?>=1 (mod 8)
2+n2=20 (mod8) = n?’=0 (mod 8)
|E(Q)/2E(Q)| = 4
[EQ)2]|=4 = rk=0
E(Q) = E(Q)[2]-
4) Use the group structure! m|

Theorem 1.12 Complete 2-decent. Let K be a field of characteristic 0 and

E: y2 =(x—-a)x-B)x—-y), a, B,y distinct.

The map
P (xo—a,xo—B,x0—7)

replacing xo — a with (xo — B)(xo — ) if 0.

E(K)/2E(K) — (K*/K**)?
Triples (a, b, c) that lie in the image satisfy abc € K*2. Atriplea, b, c withabc € K>
lies in the image iff it is in the image of E(K)[2] or

2 _ 2
czy—a+y =azj

cz%—ﬁ+y:bz%

is soluble with z; € K*. In which case
P = (az% +a, Vabc, z12pz3) > (a, b, c)

iii) If K is a number field and (a, b, ¢) is in the image then

K(Va, Vb, Veo)/K
only ramifies at primes dividing 2(a — B)(a — Y)(B — V).

Exercise 1.13
E: y? = x(x = 5)(x +5).
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Recall:
¢: E(K)/2E(K) — Hom,+s(Gxk, E(K)[2])

PI—)(Pp

where ¢p: 0 — Q% — Q where Q = 2P. Which is well-defined and injective.
Elements of

Hom.+s(Gk, E[2]) © a,b, ¢ € (K*/K*?) s.t. abc € K

(x0, yo) = (xo —a, x0 = B, X0 = ).
Lemma1l.14Letn > 1

1.
¥: E(K)/nE(K) — {K C F C K}

P K(%P,E[n])



is well defined.
2. K(%P, E[n])/K only ramifies at p|nAg.
3. .
Gal(K(ZP,E[n])/K) <Z/nxZ/n
4. There are only finitely many fields satisfying 2. and 3. so im 1 is finite.
To do descent, need more than ¢ (i.e. injection).

Definition 1.15 Let G be a group and M a G-module then let
H%G,M)=M®={meM:gm=mVg e G}

HY(G, M) = {skew homs G — M}/{skew homs G — M of the form g g(t)-t, t e M}.
o
Remark 1.16 If G acts trivially on M then

HYG,M)=M

HYG, M) = Hom(G, M).

When G is profinite then we want that the skew homomorphisms factor
through finite Galois groups. We will prove that

E(K)/nE(K) — H'(Gk, E[n]).

Theorem 1.17 If
0-A—->B—->C—0

is an exact sequence of G-modules then
0 — H%G,A) - H%G,B) - H(G,C) - HY(G,A) - H'(G,B) — H'(G, C).
Lemma 1.18

1. v is finite-to-one (gives Mordell-Weil)

2. Let
(Pp: GK — E[I’Z]
¢r(gh) = ¢p(g) + gpp(h)

is a skew (or crossed) homomorphism. If (LPY is another choice of 1P and Op
is the corresponding skew homomorphism, then

bp = Pp
is of the form
g—TogT
where T € E[n].
3. ¢p factors through
Gal(K(%P, E[n])/K).

¢: E(K)/nE(K) — Z/B
P (g qﬁp



is an injective homomorphism. Where
Z = {skew homs Gx — E[n]}

B = {skew homs Gx — E[n] of the form g —» T © ¢T, T € E[n]}.
Proof.

1. There are finitely many skew homomorphisms
1
Gal(K(EP,E[n])/K) — E[n]

and by 4.
P> (¢, K(-P,E[n])}

is injective. So : P +— K(%P, E[n]) is finite to one by 3.

2.
1 1
1 1 1 1
- (GPesGn)e(sriegnc )
= ¢p ® g(Pp(h)).
Remark: If E[n] € E(K) then ¢p is a homomorphism. Recall for n = 2
1 1
¢r(gh) = 5P © gh(5P)
1 1 1 1
= ¢p(h) ® Pp(g)
since Zh(%P) = h(P) = P. Consider now
lP = lP' eT
n n
for some T € E[n]
(Br©BH)S) = Bp(8) = Ph() = 1 PO P) - [(-P)@T (P @gT]
=Togrl.
|
Take G = Gk - -
B = E(K),A = E[n],C = E(K)
to get

0 — E[n] = E(K) = E(K) > 0

which gives the long exact sequence

0 — E(K)[n] — E(K) 2 E(K) > H'(Gg, E[n]) — H'(Gk, E(K)) —

= E(K)/nE(K) — HY(Gg, E[n]).

10



Problem:
H'(Gk, E[n])

is infinite. What subgroup of
H'(Gx, E[n])

do we land in?

Notation: When v is a place of K we have Gk, € Gk, for any module M
have M®x < M®% and

Res: H'(Gk, E[n]) — H(Gk,, E[n]).
We have from the theorem

0 —— E(K)/nE(K) 0

H'(Gk, E[n]) HY(Gk, E(K))[n] —0

l Res l Res

0 — 1, E(K,)/nE(K,) —2= [T, H'(Gx,, E[n]) — [1, H'(Gk,, E(K))[n] — 0

we want to understand im 6 i.e. the subgroup

ker{H'(Gk, E[n]) — H'(Gk, E(K))}

this is as hard as finding E(K), here is why:

Claim 1.19 i
H'(Gk, E(K))

corresponding to principal homogeneous spaces for E (genus 1 curves whose jacobian
is E)

Finding
ker{H(G, E[n]) = H'(Gk, E(K))}

is equivalent to finding which PHS coming from H ! have a rational point. ???
Hensel’s lemma.
Let C be a curve

Isom(C) & C(K) x Aut(C)
Tp0a < (P,0)
Twist(E/K) < H'(Gg, Isom(C))
C=¢E
PHS < HY(Gk, E(K))
C is a PHS for E iff E is the jacobian of C.
Lecture 6 14/2/2018

0 —— E(K)/nE(K) 0

HY(Gk, E[n]) HY(Gk, E(K))[n] —0

l Res l Res

0 — 1, E(K,)/nE(Ky) —2= [T, H'(Gx,, E[n]) — [1, H'(Gk,, E(K))[n] —0

11



Definition 1.20 Twists of curves. A twist of C/K is a smooth curve C’/K that
is isomorphic to C over K. O

If C1, C; are twists of C/K and C; =g C, then we say that C; and C, are
equivalent modulo K-isomorphism.
We denote Twist(C/K) - the set of twists of C/K modulo K-isomorphism.

Theorem 1.21 The twists of C/K up to K-isomorphism are in 1-1 correspondence
with elements of
HY(Gg, Isom(C))

where -
Isom(C) = {K-isomorphisms C — C}.

Proof. Let C’/K be a twist of C/K then there exists an isomorphism /K
¢:C"—>C
associate the following map
&: Gg — Isom(C)
o ¢l
Check that £ is a cocycle
Eor = (&0)"En

for all 0, 7 € Gk. Denote {&} the associated class in H!. {&} is determined by
the K-isomorphism class of C’ independent of the choice ¢.
The map
Twist(C/K) < H'(Gg, Isom(C))

C'—{&}
is a bijection.
Injective, trace through.
Surjectivity, define the function field using the curve. ]

Remark 1.22 If C is an elliptic curve then Isom(C) is generated by
Aut(C)(fixing 0)

and translations
7pp: C—>C

Q- Q+P.
Example 1.23 E /K elliptic, consider
K(Vd)
a quadratic extension and x the associated character
x: Gk — {£1}

o — a(Vd)/Vd.

The group +1 can be viewed as automorphisms of C. So use x to define the
cocycle
&: Gg — Isom(C)

12



o [x(o)].

Let C/K be the corresponding twist of E/K, we find an equation for C/K.
Choose
y2 = f(x) for E/K

and write _ _
K(E) = K(x,y)

K(C) = K(x/ y)é

since [-1](x, y) = (x, —y) the action of ¢ € Gk on
K(x, y)¢ is given by Vi’ = x(o)Vd

x'=x,y=x(0)y

note that the function x’ = x and y’ = y/Vd are in K(x, y) and are fixed by
Gk. Now x’, y’ satisfy

dy”? = f(x')/K

is defined over K and defines an elliptic curve. Moreover
(x,y) = (', y'Vd)
is an isomorphism over K(Vd). O

Note C/K is not a principal homogeneous space for E/K.

Definition 1.24 Homogenous spaces. Let E/K be an elliptic curve, a principal
homogeneous space for E/K is a smooth curve C/K together with a simply
transitive algebraic group action of E on C defined over K.

u:CxE—C
morphism defined over K satisfying
1.
u(P,0)=PVYP e C
2.
p(p(p, P), Q) = u(p,P+Q)VP e C
3.

Vp,q € C, 3P e€Est.
Hp.P)=q

so we may define a subtraction map
v:CxC—E

p,q—P

as above.

0

Proposition 1.25 Let E/K and C /K be a principal homogeneous space for E /K. Fix
a point pg € C and define a map

0:E—C

13



P—po+P.
N——
(po,P)

1. O is an isomorphism over K(po). In particular C /K is a twist of E/K.

2. Vp,qeC
g-p=06"(q)- 67 (p)

3. 0 is a morphism over K.

Definition 1.26 Two homogeneous space C/K and C’/K for E/K are equivalent
if there is an isomorphism

¢:C—C’

defined over K and is compatible with the action of E on C and C’.

o

The equivalence class of PHS for E/K containing E/K acting on itself via
translation is called the trivial class.
The collection of equivalence classes of PHS for E/K is called the Weil-
Chatelet group, denoted
WC(E/K).
Proposition 1.27 Let C/K be a PHS for E/K then C/K is in the trivial class
— C(K) #0.

Theorem 1.28 Let E /K then there is a natural bijection after fixing po € C

WC(E/K) —» HY(Gk, E(K))
N——
Clsom(E)

{C/K} = {o = pg = po}
Proof. Well-definedness:
g pg = Po

is a cocycle. Suppose that C’/K and C/K are two equivalent PHS then

Py — Po

and
P~ P
are cohomologous.
Injective, suppose that pJ —po and p” - p, corresponding to C/K and C’/K
that are cohomologous and prove that C =g C’.

Surjective: let £&: Gk — E(K) be a cocycle representing an element in
H'(Gk, E). Embed _
E(K) — Isom(E)

Pl—>Tp

and view
& € H'(Gk, IsomE).

14



From the theorem on
Twist(E/K) « H'(Gk, Isom(E))
there exists a curve C/K and a K-isomorphism
¢:C—E
s.t.
Vo € Gk : ¢°¢~! = translation by — &,.
Defineamap y: CXE — C

(P, Q)+ ¢~ (¢(p) + Q).

Show that p is simply transitive.
Show u defined over K. Compute the cohomology class associated to C/K
and show itis €. ]

Remark 1.29 For a given C/K of genus 1 one can define several structures of
PHS.

{C/K u}* ={C/K,po(1xa)}
#p, Q) = ulp, aQ)
for & € Aut(E).

Lecture 721/2/2018

Example 1.30 E/K and K(Vd)/K a quadratic extension. Let T € E(K) be a
non-trivial point of order 2. Then &: Gx — E
o if(Vd) =V,
T if (Vd)° =-Vd.’

We construct the PHS corresponding to {&} € H' (G, E(K)). Since T € E(K)
can choose a Weierstraf$ equation for E/K

E: y?> = x> +ax?+ bx with T = (0,0)
then the translation by T map is given by

b by
P) = 0,0)=(=,-—=
rlP) = 5,9+ 0,0) = (7,25
for
P=(x,y).
Thus if ¢ € Gk is non-trivial, o acts on K(E )¢, which is isomorphic to K(E) but
Gal(K/K) action is twisted by &, i.e. x'¥ - (xd).

(Va)? = -V
xU = k o = _b_y
x’ x2

15



need to find the subfield of K(Vd)(x, y)¢ fixed by ¢. Note:
Vix (x _ 2)
y x
are invariant, take

L

and find relations between z and w to get
C: dw?* = d* — 2adz? + (a* — 4b)z*.
Claim: C/K is the PHS of E/K corresponding to {£}. There is a natural map
¢:E—C
(x,y) = (z,w)
Vdy Vd(x% - b)

X2+ax+b x> +ax+b

(x,y) —

so that

$(0,0) = (0,~Vd)
$(0) = (0, Vd)
¢ Prove that ¢ is an isomorphism so C is a twist.
e ( is the PHS corresponding to {£}. Take p € C and compute
oo p =p =07 (p") - ¢ (p)

for example let p = (0,Vd) € C,if ¢ = id then p” —p =0-0 = 0. If
o=-idthenp’ -p=T-0=T.

O

Back to Selmer, we want to have the image of our weak Mordell-Weil land
in something finite.

3

0 — E(K)/mE(K) HY(Gk, E[m]) WC(E/K)[m] ——= 0

| [ e

0 — [, E(K,)/nE(Ky) —— [1, H(Gk,, E[n]) — [T, WC(E/K,)[m] —=0

Definition 1.31 m-Selmer groups. The m-Selmer group of E/K is the sub-
group of
H'(G, E[m])

defined by

Sel™(E/K) = ker {Hl(GK, E[m]) — ﬂ WC(E/I(v)} .
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Definition 1.32 The Shafarevich-Tate group. The Shafarevich-Tate group of
E/K is the subgroup of
WC(E/K)

defined by
II(E/K) = ker {WC(E /K) — ]_[ WC(E/KU)} .

Theorem 1.33 There is an exact sequence

1.
0 — E(K)/mE(K) — Sel™(E/K) — III(E/K)[m] — 0

2. Sel™(E/K) is finite.

1.2 p™-Selmer and the structure of III

HY(Gg, E(K)) is torsion for general galois cohomological reasons. So
III(E/K) € HY(Gk, E(K))

is torsion.
So we may write

I(E/K) = EP) I, (E/K)
P
where for each prime p
T, (E/K)

denotes the p-primary part of III(E/K). (i.e. the subgroup of elements whose
order is a power of p.) By descent

II(E/K)[m] is finite for all m > 1.

So
I, (E/K) = (Q,/Z,)% & Ty, &y € Zsg

where T}, is a finite abelian p-group.
T, =2Z/p""Z & - ©Z[p*Z, s; € Zso.

The group
@(Qp /Z,)% C (E/K)
p

is called the infinitely divisible subgroup of III denoted I1l4;;,.

The conjecture that IIl is finite implies 6, = 0 for all p. And T, # 0 for only
finitely many p.

There is a pairing called the Cassels-Tate pairing

I(E/K) x III(E/K) — Q/Z

which is bilinear and alternating, and the kernel on either side is the infinitely
divisible group. If III(E/K) is finite then the pairing is non-degenerate and
hence

|II(E/K)| =0 € Z.

17



Definition 1.34 p*-Selmer group. Consider Sel,:(E/K) and take the direct
limit
hi>n Sel,n(E/K)

n

to define the p>-Selmer group. o
One shows that

X, (E/K) = Homg, (lim Sel, (E/K), Q,/Z,)

n

called the Pontyragin dual of the p® Selmer group is a finitely generated Z,-
module. The associated Q,-vector space, denoted X, (E/K) = X,,(E/K) ®z, Qp
has dimension rk;.

Definition 1.35 rk, is called the p*-Selmer rank of E/K and satisfies

tk, = tk(E/K) + 6.

So if Il is finite then 6, = 0 for all p. Use BSD to compute parity of rk,.
Lecture ? 19/3/2018

1.3 Consequences of BSD
Consider E/Q: Mordell-Weil implies that

E(Q) ~ Z™ & torsion

then BSD 1 says that
ords=1 L(E, s) = 1k,
— e
rKan

functional equation for L(E, s).

L*(E,s) = wL*(E,2 - s)
with w € {1} the sign of the functional equation. If w = 1 then L(E,s) is
(essentially) symmetric at s = 1. So ords—1 L(E, s) is even. If w = —1 then
ords—1 L(E, s) is odd.

We get BSD mod 2:

(-1)™* = w(sign of f.e.)
a conjecture based on conjecture is bad so we go one step further.
Theorem 1.36 The sign in the functional equation of L(E, s) is equal to the global
root number of E.

we [T,
p

This is defined by
the local root numbers defined in terms of the local galois representations. Non-trivial
to understand, but manageable.

Conjecture 1.37 Parity conjecture.

(-1 = 1_[ Wy = W.

18



Example 1.38
E/Q:y*+y=x>+x>-7x+5

Ap =-7-13

wy =1if v 4 0713
Weo = —1

(in general —18 where g is dimension of the abelian variety).
wy = -1

w13 = -1

so w = —1 and the rank is odd, hence there is a point of infinite order on this
curve. o

Problem. On the one hand [], w, is computable. On the other hand (—1)™
is precisely unknown.
(_1)rk = l—[ Wy.

Theorem 1.39 Assume 111 is finite, let ¢: E — E’ be an isogeny whose degree is not
divisible by char(K), then

| Mg |RegE Hp CpQE _ |HIEI | REgE, I—[p C;QEr
|Et0rs|2 |E, |2 -

tors
Remark 1.40 In fact this is true for all abelian varieties over K.

Example 1.41 Let
E/Q:y* +xy =x—x

http://www.1lmfdb.org/EllipticCurve/Q/65/a/1. Ag = 5-13, it has a 2-isogenous
curve E’.

Compute
cs=ci3=1
g =13 =2
Qr =2Q¢
then

Regy, |k Efors* TT, cpQe 2 1o
RegE | IHE’ ||Etors|2 Hp C;QEI - 4 ’

So Reg, # 1, Regy, # 150 E has at least one rational point of infinite order,
sork > 1. o

Lemma 1.42 Assume 111 is finite, let
¢:E/JK - E'/K

be a K-rational isogeny of degree d.
Write n = rkg = rkgps. Pick a basis A = (P1,...,Py) for

E(K)/tors

write A’ for a basis of E'(K)/tors. Write ¢¥: E' — E for the dual isogeny s.t.

bp” = [d]
using the following fact

(p(P), Q) = (P, ¢V (Q)),
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Then
d" Regy = det((dPi,Pj>E)i,]‘
= det(<¢v¢Pi,Pj>E) = det(<¢Pir¢P1>E')
= Regp [A: ¢(A)]

Back to the example
Reg

1
Regr 2

O

so by the lemma rk is odd. Here we assumed that III is finite for elliptic curves,
one can drop the assumption of finiteness of III to get unconditional results
on the parity of rk; for all p.

Conjecture 1.43 p-parity.
(D)™ = w.

This is known over Q and totally real fields.

How to compute the parity of rk,(E/K)? Need BSD-invariance for Selmer
groups. (Details T. and V. Dokchitser “On the BSD quotients modulo squares”,
and Milne “Arithmetic duality theorems”)

Definition 1.44 For an isogeny
W:A—B
of abelian varieties over K. Let
Q(W) = | coker(W: A(K)/A(K)tors = B(K)/B(K)tors)|-| ker(y: II(A)giy — HI(B)aiv)l-

o
Recall rk, = rk +6, where

= (P 1,

My~ =~ (Q,/Zy); & T,

My = (H(Qy/Z,).
Strategy, we show that for ¥ an isogeny s.t. WW" = [p]. Then

and

privter 2 QU Mo Qe o2
Q(\P) Hv C;; QE'
Remark 1.45 Let A" be the dual of A. AY = Pic®(A).

So

[Ty cvQE
(_1)rk,,(E/K) — (_1)Ordp(l_[o HQpr )

the parity of rk,(E/K) is computable from local invariants of E and E’.
To prove the p-parity conjecture it remains to prove

) Q2
ordp( [y co E

nc’()/)_l |
v “o*°E = Wy.
0

(-1

Lecture ? 21/3/2018
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Aside: Generalisation of the definition of Sel”(E/Q). Consider
V:A—>B

an isogeny of abelian varieties. We have
0 — AK)[¥] = A(K) - B(K)> H'(Gk, A[W]) — H(Gk, A) — HY(Gx, B)
from which we extract

0 — B(K)/W(A(K)) 5 H'(Gk, Al¥]) > H'(Gk, A)[¥] — 0

0— [ ] BKo)/W(AKL) > H'(Gx,, AI¥]) — [ | H(Gx, W] — 0

we then define

Sel™)(A/K) = ker {Hl(GK/A[‘I’]) -1 Hl(GKwA)}

II(A/K) = ker {Hl(GK,A) - ]_[ Hl(GKv,A)}

SO
0— B(K)/W(AKK) — SelV(A/K) - II(A/K) — 0.

coker(W: A(K)LB(K))
We want to show:

Theorem 1.46 Let E /K be an elliptic curve, K a number field, if W is s.t. WWV = [p]
then

P Q@) e, Op

We will show this in 3 parts, first the left, then the right, then the equality
with the global root number.

Step 1. Proposition 1.47

rky (E/K) = Q(\y) mod KX2
P 0wy )
Proof. Note that

Q¥ o W) = Q(¥)Q(TY)

hence o)
— % x2
o = Q) (mod k%)
=Q([pD
now

| coker([p]: E(K)/E(K)iors = E'(K)/E'(K)tors)| = p™*/X)
Proof of this: For each generator R of E(K)/E(K)ors then
-1
1R,2r,. P Ip R
p P p

are not in the image of [p] which implies the size is p™/X). Also

|ker([p]: TI(E/K)aiy — TII(E’/K)ai)| = p*
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since

M(E/K)aiy = H(Qy/Z,)
P
and since [p] is trivial on all

(Qi/Q)°, 1#p

then look at [p]: (Qp/Zp)éﬂ - (Qp/Zp)‘SP if x € Q,/Z, and ker[p] then px €
Z, = x=a/pfora€F,. so
5

p

Step 2. We show that
QW) _Ilhep Qe
Q(\I]V) l_[v Cv QE’

Theorem 1.48 Let A, B/K be abelian varieties given with a non-zero global exterior
form wa, wp. Suppose

(mod K*?).

Y:A—>B

is an isogeny and
wY:BY - AY

its dual.
Let IIp(A/K) denote III(A /K) mod its divisible part. And

l—[ / |a)A| 2dimA/ wa A WA.
v|oo, real A(Ko) v|oo, complex A(Ko)
Then

Q(\yv) — |B(K)t0rs||Bv(K)tors| Hv CP(A/K)% l_[ |HIO(A)[PDO]|
QW)  |AK)orsAY (K)eors| [T, co(B/K) Qp | o (B)[p>=]I’

pldeg¥
Remark 149 If A = E, B = E' with W s.t. WWV = [p] then
E~EY,E ~E"

and |1l | = O.
QW) _ Iocp Qp
Q(\I’) l_[v Cv QE’
Sketch proof of theorem. We show how to obtain the quotient of Tamagawa
numbers, for a sufficiently large set of places S of K

(mod K*?).

QW) | I[wV]| 1—[ | ker W, |
QW) |tm[w][ | ker WY

where W, is the induced map on E(K;) — E’(Ky). If v 4 o0 and v € S what is

| ker W, | )
| coker W, |
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0 ker W, Hy
0 ——E1(Ky) E(Ky) E(Ky)/E1(Ky) —=0
0 — E{(Ky) — E'(Ky) —— E'(Ky)/E{(Ky) —=0

0 coker W, H>

Snake lemma gives
0—>ker¥V, » H — 0— coker¥V, - H, — 0

= |kerV,| = |Hq|

and
| coker W, | = |Hy|.
Also
E(Kv)/El(Kv) _ E,(Kv)/Ei(Kv)
Hl B Hz )

Moreover since E, E’ are isogenous we have
|Ens(K)] = |Ep(K)|

hence since o
0 — Ei(Ky) = Eo(Ky) = Ens(k) = 0

similarly for E’. We have

|Eo(Ko)/E1(Ko)| = [Eg(Ky)/E}(Ko)]

E/(K)/Ej(Ko)| | |E(K)/EYK)| e,
v 1Ky v 0Ky Cv.
E(K»)/E1(Ky) E(Ky)/Eo(Ky) :
Hence
(bl = () (11|55
o, coker V¥,
ordy ”v”’ll_[ ker ¥,
Voo
————
=(-1) Qp/Qpr

Step 3. We need to show that

(~1)™ER) = p (p-parity)
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i.e. we need to show that

IMycy Qf
(- 1)°fdﬂ(niw 55) = wg

Strategy:

ker Wy
coker Wy

(- 1)ordp Mo iv QE, l_l( 1)orol,7 2 l_[( l)ordp

vfoo v|oco
and relate }
(_ 1)ordp :7“)

to wy, for v ¥ oo and

ker Wy
coker Wy

(_1)ordp

to wy for v | co.
Then take product over all places.

Lecture ? 26/3/2018

Let E/K be an elliptic curve admitting an isogeny W of degree p (defined
over K). Recall that we proved

oy (E/K) _ T So Q8
P 1:[ C;, Qp
v missing p. More precisely

preo(E/K) = 1_[ 1_[

v|poo

ker kery,
coker i, Uy

where 1), is the map induced by 1 on E(Ky).
What about v|p to extract

from

ker i,
coker i,

at finite places we can use a diagram involving

0 — E1(K,) — E{(K,) — coker — 0.

If v ¥ p then |coker| = 1 since then on the level of the formal group ¢
induces a map o A
l,b: E(mK) - E’(mK)
T aT+---

power series rep of ¢ ¢(x, y) = (x’, y’) Silverman IV cor 4.3/ @’ o ¢ = ¢’ o w.
with leading a = ¢*w’/wX unit € Ok.

= aa’ =p € Of = ¢ isom.

If v|p then coker contributes to the snake lemma and at that place

o | P’ CE
Tl T "0
Cy w 4 CE Wy ly

for a particular choice of w.
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Proving p-parity. To prove the p-parity conjecture

(_1)rk,,,(E/K) = we.

We will show that Yo
(_:l)ord;7 I, &0 _ We
by relating
(_1)ordp %D’
and w, at some place v 1 poo
ker o

(_1)0“1;9 (%, — (_1)0“1;7 Coker Yp
and w, at v|co.
We only sketch these steps for v 1 p and E is semistable at v.
The proofs of p-parity for p odd and p = 2 are different.

p odd. The p-parity conjecture is proven for principally polarized abelian
varieties with a p-cyclic isogeny with p > 2¢ +2 or p > 2 and semistable
reduction and some local constraints at v|p. see Root numbers selmer groups
and non-commutative Iwasawa theory, Coates, Fukaya, Kato, Sujatha

Sketch, for an elliptic curve with a p-isogeny 1 we look at v|co where
w, = —1, and

ker ¢y
coker ¢

(_1)0rdp

if v is complex | ker | = p | coker 5| = 1. so

ker ¢p
coker iy

d
(-1)7" = -1 = w,.

If v|oo is real what does E(R) look like? Either there is a real period
and so two real components, and all real p-torsion (if any) is on the identity
component. Or there is no real period and only 1 real component that contains
all real p-tors if any.

1. |ker ¢,| = p (the p-tors in ker ¢ are real)

2. |ker yy| = 1 (the p-tors in ker 1) are not real)

Figure 1.50
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Moreover | coker 1| = 1 always, sgn(Ag) = sgn(Ag’)
More generally if deg WV is odd then

E'(R)/¢(E(R)) — H'(Gal(C/R), E[y]) =0

since [C : R] = 2 is coprime to E[1] (see Atiyah’s book).

In the first case .
er Yy

coker iy

(_1)ordp - 1= w,

In the second case
ker ¢p
coker iy

(_1)ordp —1#w,
For K alocal field let F = K(ker ¢,) noting that

Gal(F/K) — (Z/pZ)*

from its action on points in ker ip = F/K is cyclic.
Consider the composition

local rec.

X — Gal(F/K) — (Z/p)*.

and denote
(-1,F/K)

the image of —1 under the above map.

1 if —1isanorm from F to K,
-1 otw

(-1, F/K) = {
this is the Artin symbol.
This is perfect as they cancel out globally.
If v is complex then F = C, K = Cand (-1, F/K) =1
If visreal and | keri,| = p then F =R, K=Rand (-1,F/K) =1
If visreal and | ker ¢,| = 1then F =R, K =Rand (-1,F/K) = -1

p =2. Note that (-1, F/K) = 1 for all places of K since if E admits a 2-isogeny
1/K then is admits a 2-torsion point over K.
Hence F = K(ker ¢,) = K
set -up
E/K

with a 2-isogeny /K
E: y2 =x(x+ax+Db)

by translating 2-torsion to (0,0)

Y: E— E:y? = x(x* - 2ax +0)

26



where 6 = a%? — 4b = disc(x? + ax + b) if 6 > 0 then E(R) has two connected
components. § < 0 only 1. Have 16b = disc(x? — 2ax + 6) likewise for E’

0
ker 19 ker i, ker ¢,
0 ——=E%(R) E(R) E(R)/E°(R)——=0
0 ——EY(R) E'(R) E'(R)/E®(R) —=0
coker 99 coker coker ¢,

by snakey
| ker || ker ¢ /|| coker i, |

| ker ¢, || coker ¢ || coker /| -
coker | | coker 9| coker ¢|
ker, | | ker 9| ker ¢ |

let n(E), n(E’) be the number of real connected components n = E(R)/E°(R)
By the third column

n(E) lkery)|
n(E) | coker | a

now | coker ¢9| = 1 as the map on identity component is surjective. hence
n(E’)
n(E)| ker |

coker ¢, 3
kerv, |

Lecture ? 28/3/2018
Recall: to prove the 2-parity conjecture for E/K

missed
Notation
E: yz =x(x®>+ax+b)= xq1(x)
E': y? = x(x* = 2ax + 8) = xqa(x), & = a®> —4b
disc(g1(x)) = 6 disc(g2(x)) = 16b
a)If 6 > 0, b > 0 then E, E’ both have two real components, n(E) = n(E’) =
2.

Iker¢8|={

write g1(x) = x>+ ax + b = (x — a)(x — B) then if (0,0) € E°(R), a, B < 0 but
a = —a — p hence in this case a > 0.

1 ifa<0

-1 ifa>0
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so we need some correctionif & > 0,b > 0,a < 0.
b)If 6 > 0,b < 0 E has two real components and E’ only 1 n(E) =2, n(E’) =
1.
| ker 0l = 1

since b < 0and b = ap.

ker ¢
(_1)Ol‘d2 cokerlﬁy — _1
so no correctionif 6 > 0,b < 0.

QIf6<0,b>0,n(E)=1,n(E)=2.
|ker 9| =2

and
ker ¢p
coker iy

(_1)0rd2

need correctionif 6 < 0,b > 0.

d) b < 0,0 < 0 contradiction, 6 = a? — 4b.

So in summary if 6 > 0,b > 0,a < Oor 6 < 0,b > 0 need a correction, if
60>0,b>0,a>00rd>0,b <0no correction.

=1

ker ¢p
coker ¢y

d;
(_1)01' ? =?w,

First guess

(ﬂ, —b)(—ﬂ, 5)
Recall: let K be a local field

K*x K* — {1}

1 if a is a norm from K(Vb) — K,

-1 otw

(a,b) — {

If K is archimidean (a,b) = -1 < a < 0,b < 0. If K is non-archimidean
with odd residue characteristic then

(unit, unit) =1
(unit, n*) = -1
if n odd and unit is not a square.
(a,bc) = (a,b)(a,c).

So guess

(a,-b)(-a, d)

works over R.
v { 200 need to show that

ord, &

(=1 " =(a,=b)(=a,d)w,
if E has good reduction at v.
cp=c, =1
Need to show that
(a,-b)(-a,d) =1.
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Since E, E’ have good reduction at v. then b, 6 are units in K. If a € Of
then (a,—b)(—a,b) = 1ifa = 0 (mod mk) then since a® —4b = 6 then § = —4b
(mod T7tg).

If E has split multiplicative reduction, (multiplicative reduction is when
y% = f(x) and f(x) has a double root mod 7k, any two distinct tangents at the
node, both defined over k (fixed by frob)). so E” also has split multiplicative
reduction as 1 commutes with frobenius.

Need to compute
Lo
€
by Tates algorithm
ce =v(Ag)=n

we show that

2n,
Cpr = U(AEI) = {1
ET‘[
Recall
fe(x)
—_——

E: y? = x(x®> + ax + b) = x(x — a)(x — B) = xq1(x)
Ap = a®B*(a - B)* = b*(a - B)* = b%
fer(x)

———

E': y? = x(x* = 2ax + 6) = x(x — A)(x — B) = xq2(x)
Ay, = A’B*(A - B)* = 6*(A - A)* = 6*16b
if v(0) = n then v(Ag) = nso cg = —n and v(Ag,) = 2n so cpr = 2n in
general if E admits a p-isogeny and E has split multiplicative reduction then
2
CE’

— %l

here w, = —1 and
E
(_1)ord2 & = _1

need to show that
(a,-b)(-a,d) =1

if E has a double root at (0,0) wlog o = 0 (mod 7)x then v(6) = 0, v(b) > 0
and both slopes of tangent at (0, 0) are defined over k.
Taylor expansion at (0, 0)

flx,y) = y? — x> —ax* - bx
= (y —s1x)(y —s2x) + h.o.t.
= yz —xy(s1 +s2) + $150x2 + h.0.t.

50 51 = =5 and 515 = —a implies s% =a.
2
S0 s1 € k* thena € kX

(a,-b)=1 = (-a,0)=1

as both are units.
Now b = af =0 (mod 7g) so

x?=2ax+6=(a-A)? (mod mk)
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same Taylor expansion gives
f(x,y) = y* — x> +2ax? - 6x
= £(x,y) = £(A,0) = (y = s3(x = ANy = sa(x = A)) + ho.t.
S0 s3 = —s4 and s354 = 2a, s§ = —2a hence
(a,-b)(—2a, 6)

split multiplicative
~20 € K2,
So we should use this Hilbert symbol instead, it doesn’t change the real

case.
If E has non-split multiplicative reduction

1, if v(Ag), v(Ap) even
Cc—s =12, ifo(Ap)odd
% if v(Ap) odd
1,
— ()™ =,
-1,

done since a, —2a precisely not squares.
What are these invariants purely in theory?

2 Abelian varieties

Lecture ? 2/4/2018

What about generalising this method to abelian varieties?

For p odd Coates et. al. (ppav with p-cyclic isogenies and local constraints)

Forp = 2.

Recall let X, Y/K be abelian varieties over a number field and suppose that
W: X — Y is an isogeny, then W: YV — XV its dual. Then

QMY) _ [Y(Kwors| V¥ (Ktors| [To c(X/Ko) Qx l—[ | o (X)[p]I
Q(‘I/) |X(K)tors| |XV(K)tors| Hv C(Y/KU) QY . |1110(Y)[P°°]|

2.1)
| degW

on the other hand we showed that if WW" = [p] then
Q(WY)
Q(¥)

note that in this case deg ¢ = p
To be able to use the same method we need to compute the RHS of (2.1).
For E since E ~ EY and |IllH(E)| = O, this only meant computing

= prkf’(X/K) (mod sz)

dim(X) .

l—[ c(E/k) Qp
o C(E'/k) Qp '
First consider a ppav X/K s.t.
[T, ¢(X/Ko) Qx [ Mo()[p]|
[T, c(Y/Ky) Qy [Ho(Y)[p*]]

(2.1) = (mod K*") (2.2)
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1. Can we compute

Mo’ =
Leads us to Jacobians of hyperelliptic curves of genus g
2. Can we compute
ML (O], o

[T [p=1l°
Leads us to Jacobians of hyperelliptic curves of genus g

3. Need an isogeny W of degree 23 s.t.
V:]—=]

i.e. the codomain must be a Jacobian of a hyperelliptic curve otherwise
we cannot compute 1. or 2.

To satisfy 1., 2. and 3. we take g = 2 because of the following:

Theorem 2.1 Gonzilez, Josep, Jordi Guardia, and Victor Rotger. Abelian
surfaces of GL2-type as Jacobians of curves. arXiv preprint math/0409352
(2004). Let A/K be a principally polarized abelian surface defined over a number field.
Then A is one of the following types

A/K =g J(C)

where C /K is a smooth genus 2 curve.

A/K ~r C1 X Cy

where C1, C2/K are elliptic curves defined over K.

A/K =K ResF/K C

where Resyk C is the Weil restriction of an elliptic curve defined over a quadratic
extension F /K.

Remark 2.2 The parity of the rank of A/K in the last two cases can be computed
from that of the underlying elliptic curves.

We will concentrate on A ~g J(C),

C:y*=f(x)

for deg(f) = 6.
The generalisation of a 2-isogeny is called a Richelot isogeny.
Plan:

. Review of hyperelliptic curves and their Jacobians.
. Richelot isogeny

. Compute contribution of the real places

1
2
3
4. Compute Tamagawa numbers/local root numbers
5. Compute |IIIH(J)[2%]| up to squares

6

. Find and prove the right error term
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2.1 Review of hyperelliptic curves and Jacobians

See Stoll’s notes.
By a hyperelliptic curve C over a number field K given my

C/K: y* = f(x)

of genus g where f(x) € K[x] of degree 2¢ +1 or 2¢ +2 with no multiple roots,
we mean the pair of affine patches

Uy: y* = f(x)

1
Ut: UZ = t28+2f (?)
glued together along the maps

v
tg+1'

el
_t’y_

We refer to as the points at oo (i.e. C \ Uy) the points with ¢t = 0 on U;.
Explicitly denote by ¢ the leading term of f(x).
If f(x) is of degree 2g + 1 then

2g+1

Uiy’ =c | [x-r)
i=1

2g+1

U;: v% = te n(tri -1)
i=1
we denote P, = (0, 1) the only point at infinity with ¢ = 0.
Otherwise if f(x) is of degree 2¢ + 2 then

2g+2

U,: y2=cl_[(x—i’i)
i=1

2g+2

Up:v* =c l_l(tri -1)
i=1
we denote P = (0, +v/c) the two points on U; with t = 0.

Divisors and the picard group. Let Gk be the absolute galois group of K,
recall that Gk acts on
C(Ksep)

via its action on coordinates.
Definition 2.3 A divisor D on C is a formal sum

in
PeC(KseP)

where np € Z and np = 0 for all but finitely many P € C(K*P). The integer np

is called the multiplicity of P in D and deg(D) = >.p np is the degree of D.
Divisors on C are elements of the free abelian group on the set of points

P e C(K*®P). Denote by Div(C) the group of divisors on C. o
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Definition 2.4 A divisor

D= Z npP

PeC(F)

for some Galois extension F|K. We say it is K-rational, or defined over K if

D? = D Vo € Gal(F/K).

o
Example 2.5
C:y*=f(x)
a € K
P =(a,vVf(a))
P = (a,—Vf(a))
then .
D=P+P
is a K-rational divisor. m]

Definition 2.6 Let f be a non-zero rational function on C. Define

[f1= ) ordp(f)P

PeC

where the multiplicity of P in [f] is given by the order of vanishing of f at
P. These divisors are called principal divisors, the group of such is denote
Princ(P). Note that these are all of degree 0. 0

Definition 2.7 The picard group of C is defined to be
Pic(C) = Div(C)/Princ(P).
Note that this inherits a notion of degree from Div(C). o

Theorem 2.8 Let C be a smooth, projective, absolutely irreducible curve of genus g
over some field K. Then there exists an abelian variety | of dimension g over K s.t.
for each field

KCcLCK*

J(L) = Pic(L)
Definition 2.9 ] is called the Jacobian variety of C. o

Remark 2.10 | is a projective variety (abelian), thus it can be embedded in
some projective space PN over K. One can show that

N=45-1

always works for hyperelliptic curves.

This is too large to work with an explicit model for | instead we will work
with the curve C.

Lecture ? 4/4/2018

33



Jacobians of genus 2 curves. Let C be a hyperelliptic curve of genus 2 defined
over K.

C: )7 = fx)
with f(x) € K[x] of degree 6.
Points on C(K) and | (K):
A point D on J(K) is given by a divisor on C of the form

D=P+Q-P%-PL
for some P, Q € C(K). For D to be defined over K either P, Q € C(K) or P = Q°
for ¢ € Gal(F/K) where [F : K] = 2.
Remark 2.11If P = (x, y) and P’ = (x, —y) then

D=P+Q-P.L-P

is zero in J(K).

Addition: _
Choose 4 points P, P/, Q, Q" € C(K) (in general position to make it easier).

Figure 2.12

We can find a cubic polynomial y = p(x) through the four points. It also
intersects at two additional points S, S’ so that

ly-px)]=P+P +Q+Q +S+S —-3PL -3P,

(P+P =P -Py)+(Q+Q —PL—Py)=—(S+S -PL - Py)

hence

[P,P]  +[Q,Q1=[R R]
W./
=P+P'-P%-Pg

where [R, R’] = —[S, S’]. Where negation is taking negative of all y-coordinates.
So what is 2-torsion?

Lemma 2.13 Each non-zero element of J(K)[2] may be uniquely represented by the
following pairs of points on C(K), let x1, ..., x¢ be the roots of f(x) then

J@)[2] = {[T:, Te], i # k}, T = (x;,0) € C(K).
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Remark 2.14 For the Richelot isogeny ¢:
¢ , ¢
— ] —]

]

where ¢ o ¢ = [2] and T is a correspondence.

—

r

2.2 Richelot isogenies and the Richelot construction

Richelot isogenies are defined for Jacobians of genus 2 curves, they split mul-
tiplication by 2. Their codomain is the Jacobian of a curve, a model of which
is explicitly given by the Richelot construction.

Definition 2.15 The Richelot operator. Given two polynomials P(x), Q(x) €
K[x] of degree at most 2 we define the Richelot operator [—, —] by

[P(x), Q(x)] = P"(x)Q(x) — Q"(x)P(x).
¢

Definition 2.16 Richelot polynomials. We say that a polynomial G(x) € K[x]
of degree 5 or 6 is a Richelot polynomial over K if we can fix a factorisation

G(x) = Go(x)G1(x)Ga(x)

where each G; is of degree at most 2, defined over K and defined over K as a
set.
Write
Gi(x) = ginx* + ginx + gio = gi(x — a;)(x — Bi)

for its factorisation over K and define
Ac = det((gij)o<i,j<2)-
o

Definition 2.17 Richelot dual polynomials. To a Richelot polynomial G(x)
with a fixed factorisation

G(x) = Go(x)G1(x)G2(x)

such that Ag # 0. We associate its Richelot dual polynomial F(x) given by

3
F@) = [ [, i) = 516 (), Guaal)]
i=1

where we take indices mod 3. Write F;(x) = fi(x — A;)(x — B;) o
A may not be defined over K but A, is.

Definition 2.18 Richelot (dual) curves. We say that a hyperelliptic curve C/K
of genus 2 is a Richelot curve over K if it is given by y* = G(x) together with
the factorisation

G(x) = Go(x)G1(x)Ga(x)
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as a Richelot polynomial over K such that Ag # 0.
To a Richelot curve C/K we associate its Richelot dual curve C given by

C: y2 = F(x)

where F(x) is the Richelot dual polynomial of G(x) with respect to the given
factorisation. 0

Remark 2.19 Let G(x) € K[x] be a polynomial of degree 5 or 6. Denote by K¢
its splitting field. Then the conditions for G(x) to be a Richelot polynomial can
be rephrased as

Gal(Kg/K) € C3 > S5 C Sg

G(x) = Go(x)G1(x)G2(x)

Richelot isogenies. Definition 2.20 Richelot isogenies. Let C/K be a Richelot
curve with fixed factorisation

G(x) = Go(x)G1(x)G2(x).

Let | be its Jacobian, consider the 2-torsion points of | (K) defined by the
quadratic factorisation of G(x).

D; = [P;, Q]
where P; = (a;,0), Q; = (Bi,0). Then the isogeny over K for | whose kernel is
{0, D1, Dy, D3} is called a Richelot isogeny. o

We say that a Jacobian admits a Richelot isogeny over K if its underlying
curve is a Richelot curve /K.

Theorem 2.21 Let C/K be a Richelot curve with fixed factorisation
G(x) = Go(x)G1(x)Ga(x).
Let C/K be its Riihelot dufl curve and let ¢ a{e\znote the associated Richelot isogeny on
J. Then ¢: ] — ] where | is the Jacobian of C and moreover ¢p¢p = [2].
Lecture ? 9/4/2018

Brauer groups Galois cohomology and local invariants (Angus). Reference
Milne’s CFT.

Central simple algebras:

We will consider finite dimensional k-algebra for k a field.

Definition 2.22 A k-algebra A is central if the center Z(A) = k. A k-algebra is

simple if the only two sided ideals are A and (0). o
Example 2.23 The matrix algebra M, (k) is central simple for k. ]
Example 2.24 A quaternion algebra like H = R{i, j, k} is central simple for k.

O
Example 2.25 A division algebra is simple. m]

Definition 2.26 Two central simple k-algebras A, B are similar, if there exists
m,n € Zsgs.t. A® My, (k) ~ B ® M,(k). Denote this by A ~ B. o
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Definition 2.27 Brauer groups. The Brauer group of a field k denoted Br(k)
is the set of similarity classes of central simple algebras [A] with operation

[Al[B] = [A @ B].

Remark 2.28
1. The class [M, (k)] is the identity for all n.

2. The operation is well defined.

3. Given A let A°P be the algebra with order of multiplication reversed.
Then ~
A Q®r A’ — Endi(A) ~ Mdimk(A)(k)

(a®a’)— (v ava’).

So
[A]7" = [A°P].

Galois cohomology:

Theorem 2.29 Noether-Skolem. Let A, B be central simple k-algebras and
f,g: A — B a k-algebra morphism. Then there exists

b € B*

such that
f(a) = bg(a)b‘l, Va € A.

Let A be a central simple k-algebra with maximal subfield L/k.
Let 0 € Gal(k/k), it induces a map

0:A—> A,
comparing this to the identity Noether-Skolem gives an element
ey s.t. oa = eoaegl, VYa e L

defined up to multiplication by L*.
Given another 7 € Gal(k/k) I have

eorae,t = o(ta) = esecae;te;?!

thus there exists
¢(o,7) € L*

s.t.
eor = ¢(0, T)eger
this gives a map
{central simple algebras/k} — H 2(Gal(k/ k),EX).
Theorem 2.30 This descends to
Br(k) ~ HX(Gal(k/k), k).

Some special k.
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Theorem 2.31 Wedderburn. Every central simple k-algebra is isomorphic to
M, (D) for D a division k-algebra.

Proposition 2.32 If k = k then any division k-algebra D is isomorphic to k. Thus
Br(k) = 0.

Theorem 2.33 Wedderburn. Every finite division ring is a field. So if k is a finite
field then Br(k) = 0.

Theorem 2.34 Frobenius. Every central division R-algebra is isomorphic to either
R or H. Thus Br(R) = Z/2.

Let k be a non-archimidean local field with valuation
v kX —>2Z
for a central division algebra D there exists n € Z s.t.

v: D* — lZ.
n
Consider a maximal unramified subfield
KcLcD

with o € Gal(L/K) lifting frobenius.
Noether-Skolem gives @ € D* s.t.

ox = ozxa_l, Vx €L

up to L*.
If we take o’ = ca for ¢ € L* we can compute

v(a’) =v(c) +v(a) =v(a) (mod Z).
We get a map

{central division algebras/k} — Q/Z.

Theorem 2.35 This descends to an isomorphism

Br(k) ~ Q/Z.

If F is a number field with a place v € |F| get a map

0, Fy =C,
invy: Br(F) = Br(F,) ~{Z/2, F, =R,
Q/Z, F, nonarch.

Global CFT gives an exact seq

0 — Br(F) — @Br(l—"v) — Q/Z — 0.
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Root numbers of elliptic curves (Ricky). Based on Rohrlich’s article elliptic
curves and the Weil-Deligne group

K non-archimidean local field, K is its separable closure.
¢ = (x — x9)7' e Gal(k/k), g = |K|

® some lift of ¢ in Gal(K/K).
W (K/K) = Weil group, the preimage of (¢) in Gal(k/k) under Gx - G.
We consider ¢: W(K/K) — GL(V), representations over V/C (always cts.)
Say o is of Galois type if it factors through a finite quotient.
Another source of examples is

w: W—C*
given by
w(l) = {1}
where
I= ker(GK - Gk)
and w(®) = g7

Fact, all irreducible 0 = p ® w* for some s € C and p of Galois type.
Definition 2.36 The Weil-Deligne group. The Weil-Deligne group is
W'(K/K) = W(K/K) < C
where W acts on C via w

gzg_1 =w(g)z, g € W(K/K),z € C.

Upshot: Representations ¢’ of W’ are the same as (o, N) where
0: W — GL(V)
a representation and N is a nilpotent linear operator on V. Satisfying

a(g)Na(g)™" = w(g)N.

One motivation for studying those is a general construction of Grothendieck
and Deligne which turn an Il-adic representation of Gk into a representation
of W’ (given i: Q; — C).

Example 2.37
sp(n) =C"

with action of W’ given by
a(8)ej = w(g)ej, Vg e W
Nej =¢j+1, Ney =0

check relation cNo~! = wN. m]

We want to define e-factors for representations of W’. We need two choices:

Y: K— C*
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an additive character of K. And

dx
a Haar measure on K.
Then
e(o’,,dx) = e(o, ¢, dx)o(0”)
where

5(0’) = det(-N|V'/V}))
and e(o, Y, dx) is defined by the following proposition.

Proposition 2.38 Deligne-Langlands. There exists a unique function e(o, ¢ dx)
satisfying
1. e(, ¢, dx) is multiplicative in short exact sequences.
2. If L/K is finite then
di
e(Indp/k p, ¥, dx) = e(p, YoTry k, dxr)-(e(Indy/x 11, ¢, dx)/e(1r, ¢ o Trp x, dxp)) ™"
3. For x a character
6(, XI l;l}/ dx)

agrees with the ones defined in Tate’s thesis. They're both given by an integral
formula.

Definition 2.39 Root numbers. The root number of ¢’ is defined to be

, B e(o’) y,dx)
W) = 1y, dl

For E/K an elliptic curve we have a representation on V; (I # p).
Using the Grothendieck-Deligne construction, let ok be a representation
of W’ it has the following property

¢ E pot. good reduction then
Ngjx =0
and ok is semisimple. E has good reduction iff og/k is unramified.

¢ E has potential multiplicative reduction implies that we can take x a
character of W with y? = 1, so that

EX
has split multiplicative reduction. Then
aJ’E/K ~ yw ' ®sp(2)
X is trivial / unramified and non-trivial / ramified according to E having

split / non-split / additive reduction.

’

* 0}, is essentially symplectic. W(E/K) = W(o} /K

E/K
and must be +1.

) is independent of ¢

Proposition 2.40
1. E has good reduction implies W(E/K) = 1.
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2. E potentially multiplicative reduction implies

-1 split

1 nonsplit’

W(E/K) = {

If additive reduction take & quadratic character s.t.
E€
has split multiplicative reduction and W(E/K) = &(-1).

III (Sachi). Lecture? 11/4/2018

Suppose G is a finite abelian group with a non-degenerate alternating,

bilinear paring
I''GxG—Q/Z

then there exists H s.t. G = H X H.

Nondegeneracy is the property that: If I'(v, w) = Oforallw € G thenw = 0.

Alternating: For all v € G, I'(v, v) = 0. (this implies skew-symmetry).

Analogous theorem:

Symplectic space if V a vector space with non-degenerate alternating bi-
linear pairing, w has a decomposition.

V=WeW"

where W is Lagrangian.

Proof is via induction on the dimension of V. Fixv € V. AW s.t. w(v, w) =
1, scalar nondegeneracy:.

Define W ={z eV : w(z,w) =0, w(v,z) = 0}.

(W,V)AW =0

so restrict w to W, induct.
Proof of the theorem. Trivial group v'.

Reduce to the case of a p-group, G a p-group. Fix x of maximal order in
G, p". There exists y such that I'(x, y) = l%' If not then T'(p"~'x, y) = 0 for all

y € G so this contradicts non-degeneracy. Any y has maximal order also since
0% p"'T(x, y) =T(x,p"'y).

Next we want to show (x) N (y) = 0. If mx = ny for some 0 < m,n < p”

then
0=mI(x,y) =T(x,mx)=nl(x,y)#0.
Define
H={z:T(x,z) =T(y,z) =0}
claim:
G=({x)e(y)eH.
Proof of claim: If g € G

y=g-p"T(y,g)x-p"I(x, gy
SO 0
T(x,y)=T(x,8) - p"T(y, §)Lex—p"I'(x, g)T(x,y) =0

———
1 / pn
here we used alternating.
Then I restricts to a non-degenerate alternating bilinear pairingon H. =
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Remark 2.41 For a PPAV we do not always have an alternating pairing, some-
times just skew-symmetric, or nothing! So Sha can be square, twice a square,
or arbitrary. See Poonen-Stoll, Stein?

Complete 2-descent (Oana). Let
y* = x(x = 5)(x +5)
http://www.1lmfdb.org/EllipticCurve/Q/800/d/3, then
A=10°

so the bad primes are 2, 5.
#E(F3) = 4. )
Etors(Q) - E(F3)

SO

Erors(Q)[2] = {0, (0,0), (5,0), (=5,0)}.
E[2] € E(Q).
§={2,5,00} C Mg.
Q(5,2) = {b € Q*/(Q)* : ordy(b) =0 (mod 2), Vp ¢ S}
a complete set of coset representatives is
{£1, £2,+5, +10}

which has 8 elements. Consider

E(Q)/2E(Q) — Q(S,2) x Q(S,2)

€0 20,61 25,(32:—5.

0 (1,1)
(0,0) > (-1,-5)
0,5) — (5,2)
(0,-5) — (-5,10)

does the system
blz% - sz% =5

blzf - b1b22§ =-5

have a solution for pairs (b1, ba) € Q(S,2)? and z1, 2, z3 € Q?
If by <0,b, > 0 or by > 0, b, < 0 then we have no solution.

b1 | by | reason/point?
1 | point0

2 | point (0,5)
-1 | -1 | point (-4,6)
-5 | -2 | point (0,5) + (-4,6)

Table 2.42: Images
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Reason if (;’;) = —1and x? = ay? (mod p) then

x=0=y (mod p)

then
b1(z2 - brz3) = -5
I£5 1 by and (%) = =1 then
5|Z3
we have z3 € 5Z; N Q

gl =

|z3l5 <

We reverse engineer (-4, 6) € E(Q).

Weil-Chitelet groups (Aash, Asra). Ihave an elliptic curve E/K, then C/K
a smooth curve is a PHS if

Ju: E(K) x C(K) — C(K)
(P,p)—>p+P.

Such that p is defined over K and (P+Q)+p = P+(Q+p)and forallp, g € C(K)

there exists a unique P € E(K) s.t. u(P,p) = q.
We say two PHS C, C’ are equivalent if

p/K:C—C’

which respects the action of E.
VPeE,peC
O(P +p)=P+dp)

¢(#C(P/ p)) = MC’(PI QD(P))
WC(E) is set of the equivalence classes of PHS's.

WCGJ@e»H%G@wE)

Proposition 2.43 Weil. Let Hy, Hy be homogeneous spaces for an algebraic group
G/K. There exists H a PHS over K and

f:H]XH2—>G

fP+p,Q+q)=P+Q+f(p,q)

where P,Q € Q, p € Hy,q € Hy this H is unique up to PHS isomorphism. If Hy, H,
are the classes of Hi, Hp we call Hy + H, the class of H (above). This defines a group
structure.

1. Well defined binary operation
2. Identity: call class of G, Hp.
GxH—H
(P,p) > P+p
Hy+H =H'
for any H. Inverse: Say H is a PHS, consider H™
u:HXE—H

43



p,P—p+P
p-:H XE — H~

p,P—p+(=P)

¢:HxH —E

(a,b) > v(a,b)
P =v(a,b) € Es.t. P+ b =a. Associativity: Hy, Hp, H3

Hy, Hy, — Hiz
Lecture ? 18/4/2018

C: ¥ = f(0) = prpa(ps() = C's ¥ = 201D D()g()

Richelot isogeny

J(C) —— J(C)
We showed

cp Q
(_1)rk2(]) - (_1)ord2(]—1v E(/('[))TII’)

Take a € III(A/K) then a can be represented by a locally trivial PHS X over
K. Let K5¢P(X) be the function field of X ®x K*P. Have an exact sequence
0 — (K*P)* — (K5P(X))* — K*P(X)*/(K*F)* — 0
which yields
Br(K) = H*(Gx, (K*P)*) — H*(Gx, K**P(X)*) » H*(Gx, K*P(X)*/(K*F)*) > 0

the last 0 is as H3(Gg, (K5P)X) = 0 as X is locally trivial (c.f. MIne Arithmetic
duality theory rmk. 6.11) we have

0— [ |Br(Ko) = [ [ HA(Gx,, K*P(X)*) = H*(Gk,, K*P(X)* | (K*P)*) — -

On the other hand from the exact sequence
0 — K%P(X)*/(K*P)* = Div’(X ®k K*P) — Pic’(X @k K*P) — 0
we have
H'(Gk, Div'(X®xK*P)) — H'(Gk, Pic®(X@kK*P)) — H*(Gk, K (X)* /(K*F)*) — - -
now over K5, A ®x K*P ~ X ®x K*P hence
Pic’(X ® KP) ~ Pic’(A ® K*P)
hence one gets a map
H'(Gk, Pic%(A ® K**P)) — H*(Gk, (K*P(X))*/(K*P)*)

Fact 2.44 For Jacobians of curves if the principal polarization on | is given by a rational
divisor then (-, -) is alternating, hence | 1llo(A/K)| = O otherwise | Ill(A/K)| = 20.

Noted by Poonen and Stoll.
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Theorem 2.45 C is deficient at an odd number of place iff
[Io())| = 20

Definition 2.46 Deficient places. We say that C is deficient at a place v if C
doesn’t have a K, rational divisor of degree g — 1. o

Hence for genus g curves this says that C has no K, rational divisor of de-
gree 1. Equivalently C has no K,-rational point over any odd degree extension
of K.

E.g. if K, = R we have C deficient iff C(R) # 0.

yz = cq1(x)q2(x)q3(x), ¢ > 0 and g; irred over R

Figure 2.47

Here ¢ > 0 and C(R) # 0 and C is not deficient over R.
Alternatively ¢ < 0 and C(R) = 0 and C is deficient over R.

Infinite places. Definition 2.48 Let /K be a jacobian admitting a Richelot

isogeny ¢ over K for a place of K such that v|co, we denote ¢, the map
induced by ¢ on J(K,) and define

¢ J(Ko)" = J(Ko)’
the restriction of ¢, to the identity component. o

Lemma 2.49

9 )
Qp o ker(@)n(J(Ko))
where n(J(Ky)) denotes the number of connected components of J(K).
Proof. Same as the elliptic curve case. ]
Case K, = Chere n(J(C)) =1 =n(J’(C)) and | ker ¢| = 4
Proposition 2.50

2MCER-1 i n(C(R)) > 0,

nU(R)) = {1 if n(C(R)) = 0.

Proposition 2.51 A divisor D; = [P;, Q;] € ker(¢) is in ker ¢ iff the points P;, Q;
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satisfy either

1. Pi=Q; or
2. Pjand Q; lie on the same connected component of C(R).

o O

Figure 2.52

Figure 2.53

D1 =[(r1,0), (r2,0)] with r1, r; the smallest roots. Then D; € ker ¢.
D, =[(r1,0), (r3,0)] with r3 the next smallest root. Then D; ¢ ker ¢.

Lecture ? 23/4/2018

Missed
Proposition 2.54 The number of real roots of F(x) (hence n(J(Ky))) is given as follows

(addition modulo 3):
1. Iféi € Rand 6i41,0i42 € R, ie. 041 = 5,4.2 then
6; € R’ 6§+1' 6;+2 ¢ R
with .
=0j4p-

6/

i+1
2. Iféi, 0i41 € R then 5;+2 e R, and 5;+2 <0 Zﬁcki,lq.l <0.

Proof. Clear since

o) = Aié(am —ajr2)(@iv1 = Bir2)(Bir1 — @iv2)(Biv1 — Pis2)
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fori=1,2,3. [ ]

Remark 2.55 m, follows from the signs of 6], 67, 65 and the leading term of

1792/, 03
F(x).
Example 2.56 Let G1(x) = x2 - 16,Go(x) + x2 + x + &, G3 = x2 = 2x + 9. We
have 61 = 64, 6, = =16, 03 = —32. C has one real connected component hence
n(J(R)) =1and m, = 1. O
Now

Dq = [(a1,0), (B1,0)] € ker ¢
D3 = [(a2,0), (a2, 0)]
D3 = [(aS/ O)/ (53/ 0)] € ker(,‘b

so | ker ¢| = 4.
Also 67,067, 6% € Rall ki ; > 0s0 67,067,065 > 0so that C" has 3 connected

components and n(J’(R)) =4 and m}, = 1.

co(])
co(J’)
Recall that for an abelian variety A/K over a number field

co(A) = |A(Ky)/Ao(Ko)|
Lemma 2.57 Let S be a finite set of primes of K containing archimidean places and
bad reduction places. For each place v ¢ S, denote A, the abelian variety over the
residue field F,, where q, = Nk, /g,(v). Set d = dimA = dim A,. Let w # 0 be
a choice of exterior differential form of degree d on A defined over K and for v { oo.
Consider ||, u which determines a Haar measure on A(Ky). Then

/ ol d—'ﬂ
TSR P

where wy is a choice of v-regular d-form with (wg), # 0 and if A had bad reduction at
v then Ay(Fy,)| is the number of F,, points on the special fibre A, of Neron’s minimal

model.
/ |wlo Hi =
A(Ky)

Tamagawa numbers (v 1 o). We need to compute

(we won't at v|2).

Coy |AU(qu7)|q_d

Sketch of proof.

w
/ lwolo Uz
A(Ky)

wo

w
= ‘— |A(Kv)/A0(Kv)|/ |wolopd
@o Ao(Ky)
w d
= |[—| o [Ao(Ky) /A1(Ky)| |w0|v#v
@wo A1(Ky)
[ -~ —
= ':;;;; Cy z‘lz;(}:ql,) C]v d.

How to compute c,? Need to compute |gv(qu)|.

Example 2.58 Consider an elliptic curve E. Recall that by Hensel’s lemma,
Eo(Ky) = Eys (qu) let

f(x,y)zy2+a1xy+a3y—x3—a2x2—a4x—a6 =0

be the minimal Weierstraf equation for E. Let f(x, y) be the reduced polyno-
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mial mod 7. and P(&, ﬁ) € Ens(qu) a point. Since P is non-singular either

af
E(P)iO

of

g(P) #0or

say the latter, then choose any x¢ € Ok, withxg = @& (mod ;) then f(xo, y) =0
has f(xg, f) = 0 as 8 is a simple root. By Hensel’s lemma there exists yy € Ok,
such that §jp = 0 and f(xo, yo) = 0. So P = (x0, o) € Eo(K) reduces to P. O

For non-singular points get points over Ok, .

Example 2.59
E: yz = (x+1)(x—p2)(x+p2), p>3

E: ? =T+ 172

Lecture ? 25/4/2018

Missed more sorry
Remark 2.60 We are interested in “good” models, i.e. we require that
8(2);7 = E(Qp)-
Our model §/Z: y? = (x +1)(x — p?)(x + p?) is proper since & C P%p so that

&(Z,) = E(Qp) but it is singular since its special fibre is.
We need to manipulate E/Z,: y* = (x + 1)(x — p?)(x + p?) s.t.

1. &isamodel of Z,.
2. The generic fibre is E/Q,

3. Only non-singular points of its special fibre can be lifted to points over
QponE

To satisfy 1 and 2, we can do change of variables of the form

x=xp,y=yip, x =x1y, p =p1y, y = y1x,p = p1x.

We will use only y = y1p for now.

Cr:y* = (x+pH)(x —pP)x +1)
Ci: P =7F+1) =P

Figure 2.61
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Cop: yi = (x1+p)x1—p)px1+1), x =x1p, y = y1p

Coz: P2 =2 ~P'UP =T, UT;

Ci: v = (2 + D)(x2 = D(p?x2 +1), x1 = X2p, Y1 = Y2p
Ci: 5 = (2~ (T2 +1)
The collection of these charts (together with their counterpart at infinity)
give a regular model & of E/Q,.
So we have four components, all P! meeting in a square. (There are still
singularities on & at intersection points in the special fibre, but they are regular

singularities, i.e. the local ring at these points is regular, i.e. we have mp/m3
dimension 2).

Example 2.62 Let a € Z,, E: y*> = x> + 4. E might be singular at P = (0,0),
if 2 = 0 (mod p) then we degenerate to a cusp. The maximal ideal mp of the
local ring is generated by x, y,p. If a # 0 (mod p?) thenv(a) = land p € aZ,.
Buta = y? - x3so, p € (y* - x%)Z, € m3. So x,y generate mp/m? and P is
regular. If 2 = 0 (mod p?) then mp/m? cannot be generated by fewer than
3-elements so P is not regular. ]

Proposition 2.63 Let C/Z,, be an arithmetic surface and C/Q, be the generic fibre
of C.
1. If C is proper then C(Q,) = C(Zy).

2. If C is regular and proper then
C(Qp) = C(Zp) = CO(Zp)

where C° € C = CN singular points.

Remark 2.64 The smooth part of a proper regular arithmetic surface is large
enough to contain all of the rational points on the generic fibre.

Definition 2.65 Neron models. The Neron model of E/K is an arithmetic
surface &/K whose generic fibre is the given elliptic curve. Itis such that every
point of E gives a point of & and such that the group law on E extends to make
& into a group (as a scheme over R). o

Remark 2.66 Neron models are smooth R-schemes i.e. for every point p €
Spec(R) the fibre is a non-singular variety. However it might have several
components and may not be complete. So in general & will not be proper over
R.

E/Z,: v =(x-1)(x-2)(x-3),p>3

Theorem 2.67 Let E/K be an elliptic curve, C/R a proper minimal regular model
for E/K and let & /R be the largest subscheme pf C /R which is smooth over R. Then
&/R is a Neron model for E/K.

Lecture ? 30/4/2018
Recall we need to compute |[E(Q,)/Eo(Qjp)| and we considered the example

E/Qy: yz =x(x — pz)(x + pz).
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Ci:?=%+1=T,Ul

Cos: 2 =7 ~PlUP =L UT;

Cy: 75 = (2 - D)(#2+1)
Write &° for & \ {singularities in special fibre} then
S(Zp) = So(zp) = E(Qp)-

We saw that the Neron model of E/Q, can be obtained from &/Z, be
removing the singularities in the special fibres.

Proposition 2.68

— _  j—0 — \Gal(F,/F,)
E(Q))/En(Q)) = £(Z,)/8°(Z,) — (EF,) [E(F,))

& is the Neron model of E/Q,, and E°/Z,, denotes the identity component of E/Z,.
g/ F,, denotes the special fibre of E. g |, is the identity component of &/ Fp.

In our case the Tamagawa number is

)Gal(E/Fp )

— _ —0 —
cp = ‘(S(FP)/S ()
To actually calculate this use Tate’s algorithm.

2.3 Jacobians of hyperelliptic curves

Let A/Q, be such a Jacobian. A admits a Neron model A/Z,. The open
subscheme whose special fibre is the connected component of the identity A°.
As for an elliptic curve write Ag(Q,) for the points reducing to ﬁO(Fr,),
then
A(Qp)/AO(Qp)

is finite and

) Gal(F, /F,)

Cp(A/Qp) = |A(Qp)/AO(Qp)| = ’(ﬁ(?p)/ﬁo(l_:p)

How to compute ¢,,?

Theorem 2.69 Let C/Q), be a smooth proper, geometrically connected curve, let C|Z,,
be the minimal regular model for C, ] /Q,, its jacobian, A |Z, the Neron model for .
If J/Qp is semistable (ordinary double roots as singularities) then

A’ [F, = Pic’(C)
as a consequence
|ﬁ(fp) / ﬁo(ﬁp)) = | det M| X correction term.
Where M is any minor of the incidence matrix Nj;j of
C/F,.

Njj is the size of the intersection of I';, I'; for the irreducible components I of E/F_p.
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Example 2.70

-2 1 0 1
1 =2 1 0
Nij = 0 1 -2 1
1 0 1 =2

-2 1 0

M=[1 -2 1

0 1 -2

det(M) = —4.

In order to compute c, for | need to construct special fibre of minimal regular
model for C. o

Namikawa-Ueno classification of types of semistable reductions of genus
2 curves.

1. Good reduction: g =2
2. One node.
3. Two nodes.
4. Three nodes.
5. One cusp (triple root).
6. Two cusps (triple root).

Cassels-Tate pairing (Maria). Claim 2.71 K number field and A/K a.v. admits a
principal polarization ¢p given by a rational divisor. Then the Cassels-Tate pairing

() Yep * TI(A) X TII(A) — Q/Z

is alternating.

Proof.
dp: A — AV =~ Pic%(A)

by sending a € A(K*%P), ¢p(a) = [D, — D], where D, = D + a is the translate
of D by a.
Assume D is a rational divisor, what we’ll prove is that (a, cj)D(a)) =0 for
alla € A. Where
(-,-y: II(A) x III(AY) — Q/Z

Fix a € III(A,K) € H'(Gk, A) and let X be the corresponding PHS of A.
Then for any P € X(K®P), a is represented by the cocycle

a(o): Gg = A
o+ d(P)-P.
Denote a’ = ¢p(a). Then a’ is represented by
a'(0): Gk = A" = Pic%(A)
0+ [Dy(e) — D]

this lifts to
B: Gg — Div'(A)

o Da(o) -D,
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which is a cocycle:

p(at) = B(o) + ap(7)
ﬁ(GT) = Da(dr) -D= Da(a)+aa(’f) -D= Da(a) -D= Da(o) -D+ DUO((T) -D
= Da(o) -D+ O_(Da(”() -D)= ﬁ(O) + G(ﬁ(’[))
using K-rationality of D.
Using
A®K*P = X ® K5P
Q—P+0Q

we can regard
o' Gx — Pic’(X)

B’ Gk — Div'(X)
now use
HY(Gk, DivY (X ® K*P)) — H'(Gg, Pic’(X ® K*P)) — H%(Gg, K*P(X)* /K5PX)

b=(B) —d =)0

Big diagram to conclude. |

2.4 Semistable models of hyperelliptic curves of genus 2

Lecture? 1/5/2018

Recall: Can compute Tamagawa numbers of semistable Jacobians of genus
2 curves from the special fibre of their minimal regular models (i.e. there
exists a formula for them.

Definition 2.72 A model is semistable if its special fibre is geometrically re-
duced and has only ordinary double points as singularities. When such a
model exists over K we say that the curve is semistable over K. Or has
semistable reduction /K. o

Example 2.73 p > 7 and
C:y? = (x = pH)x + pH)(x - D(x = 2)(x = 3)(x — 4)

anode

@

Figure 2.74

Have 1 genus 1 component meeting 3 genus 0 in a square on the special
fibre of minimal regular model ]
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Example 2.75 p > 7 and
C:y? = (x—p)x+p)x —1-p)(x =1+ p*)(x - 3)(x - 4)

two nodes.

Figure 2.76

Have 7 genus 0 components meeting in a pair of squares with one common
line. m]

Example 2.77 p > 7 and
C:y?=(x—p)Hx+p)x-1-p*)x-1+p*)(x -2+ p>)(x -2-p°)

two nodes.

Figure 2.78

Have 8 genus 0 components, two non-intersecting lines joined by 3 chains
of two Pls. m]

Example 2.79 p > 7 and
C:y? = (x = p*)(x = 2p*)(x = 3p*)(x — 4)(x — 5)(x - 6)

a cusp.
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Figure 2.80

Have 2 genus 1 components meeting. O
Example 2.81 p > 7 and
C:y? = (x = p?)(x = 2p%)(x = 3p?)(x = 1 = 4p?)(x = 1= 5p?)(x — 1 = 6p?)

two cusps.
Figure 2.82
Have 2 genus 1 components joined by a P'. m]

Places of K above 2. Here it is very difficult to compute a minimal regular
model for C, hence can’t compute the Tamagawa numbers.
One way around is to use the definition of the local contribution

coker ¢y
ker o

(_1)0rd2
Proposition 2.83 Consider the family
F i y? = (2% — (41)2) (X% + tox + £3)(x% + t4x + t5)

such that t; € Ok, to = 1 (mod 2), t3 — }l = 0 (mod 2), 4y = -2 (mod 8),
ts5 =1 (mod 8). Then C € F has totally split toric reduction, and assuming that
Go(x), Gs(x) are both irreducible over K, then

coker ¢y
ker o

(_1)0rd2 -1
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So combining v|eo, v § 200, v|2 if C € F over K, for v|2 and semistable at
v 1 200 with C a Richelot curve then we can compute the parity of the rky(J).

Example 2.84
2 2 2 172
C:y”=(x"-16)(x +x+z)(x -2x+9)

C/R — (_1)0rd2In(])mR/n(]’)/mi(Ikerzpll — (_1)ord2(1~1/4~4‘1) =1

have C/Q,, for p = 3,5,11,13,17,97,1201 and p = 131 is good reduction for
C but not for C’. For p = 3,17 have ¢, = 2,m;, = 1. For p = 5,11,13,97,1201
have similar with non-split nodes. p = 131 havec, =1,m, =1, c;, =1, m;, =2.
Two e.c.s swapped.

(_1) Cp mp — _1

forp =2
(_1)°rd2(mlfecrr$2)) =1
hence
(~1)*e) = n(_l)ordz(mfsf;ﬁf’)) =1
v
so | has even rky(]). O
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