Geometric approaches to solving Diophantine equations

Alex J. Best

Tomorrows Mathematicians Today 2013
16-2-2013

Introduction

Geometric approaches to solving
Diophantine

Named for Diophantus of Alexandria (≈ 250 AD) Some Diophantine equations:

Introduction

Named for Diophantus of Alexandria (≈ 250 AD) Some Diophantine equations:

$$
x^{2}+y^{2}=z^{2}
$$

(Pythagorean triples)

Introduction

Named for Diophantus of Alexandria (≈ 250 AD) Some Diophantine equations:

Alex J. Best

$$
x^{2}+y^{2}=z^{2}
$$

(Pythagorean triples)

$$
x^{2}-n y^{2}=1
$$

(Pell's equation)

Introduction

Named for Diophantus of Alexandria (≈ 250 AD) Some Diophantine equations:

Alex J. Best

$$
x^{2}+y^{2}=z^{2}
$$

(Pythagorean triples)

$$
x^{2}-n y^{2}=1
$$

(Pell's equation)

$$
x^{3}+48=y^{4}
$$

Introduction

Named for Diophantus of Alexandria (≈ 250 AD) Some Diophantine equations:

Alex J. Best

$$
x^{2}+y^{2}=z^{2}
$$

(Pythagorean triples)

$$
x^{2}-n y^{2}=1
$$

(Pell's equation)

$$
\begin{gathered}
x^{3}+48=y^{4} \\
9^{x}-8^{y}=1
\end{gathered}
$$

What do we want to know?

Geometric approaches to solving
Diophantine equations

Alex J. Best

Introduction
Geometry of
Numbers
Rational points on surfaces

What do we want to know?

Geometric approaches to solving
Diophantine equations

Alex J. Best

- Are there any solutions?

What do we want to know?

Geometric approaches to solving
Diophantine equations

Alex J. Best

- Are there any solutions?
- How many are there?

What do we want to know?

Geometric

 approaches to solvingDiophantine equations

Alex J. Best

- Are there any solutions?
- How many are there?
- Can we classify them?

What do we want to know?

- Are there any solutions?
- How many are there?
- Can we classify them?
- How can we compute them?

In this talk

Geometric approaches to solving
Diophantine equations

Alex J. Best

Introduction
Geometry of
Numbers

Rational points on
Two general ideas:

In this talk

Geometric approaches to solving
Diophantine equations

Alex J. Best

Introduction
Geometry of
Numbers

Rational points on
Two general ideas:
surfaces

- Geometry of numbers

In this talk

Geometric approaches to solving
Diophantine equations

Alex J. Best

Two general ideas:

- Geometry of numbers
- Rational points on surfaces

Minkowski and the Geometry of Numbers

1910 - Hermann Minkowski publishes his paper "Geometrie der Zahlen" and sparks a new field called the Geometry of Numbers.

A motivating example

Geometric approaches to solving
Diophantine equations

Alex J. Best
We want to find when integers x, y such that $x^{2}+y^{2}=p$ where p is prime.

Introduction
Geometry of Numbers

A motivating example

We want to find when integers x, y such that $x^{2}+y^{2}=p$ where p is prime.
We can try a few primes, and notice that $2^{2}+1^{2}=5$, $3^{2}+2^{2}=13,4^{2}+1^{2}=17, \ldots$ all work.

A motivating example

Alex J. Best

We want to find when integers x, y such that $x^{2}+y^{2}=p$ where p is prime.
We can try a few primes, and notice that $2^{2}+1^{2}=5$, $3^{2}+2^{2}=13,4^{2}+1^{2}=17, \ldots$ all work.
But 7, 11, 19, ... do not.

A motivating example

Alex J. Best

We want to find when integers x, y such that $x^{2}+y^{2}=p$ where p is prime.
We can try a few primes, and notice that $2^{2}+1^{2}=5$,
$3^{2}+2^{2}=13,4^{2}+1^{2}=17, \ldots$ all work.
But $7,11,19, \ldots$ do not.
So maybe $x^{2}+y^{2}=p$ when $p \equiv 1(\bmod 4)$.
Theorem (Fermat's Christmas Theorem)
An odd prime p can be written as $p=x^{2}+y^{2}$ if and only if $p \equiv 1(\bmod 4)$.

Geometry of

 Numbers
What can geometry do for us?

When $p=5$ we can look at points satisfying our criteria:

What can geometry do for us?

When $p=5$ we can look at points satisfying our criteria:

What can geometry do for us?

When $p=5$ we can look at points satisfying our criteria:

What can geometry do for us?

When $p=5$ we can look at points satisfying our criteria:

Minkowski's first theorem

Geometric approaches to solving
Diophantine equations

Alex J. Best

We say a set B in \mathbb{R}^{n} is symmetric if $x \in B \Longrightarrow-x \in B$.
We say a set B is \mathbb{R}^{n} is convex if
$x, y \in B \Longrightarrow x+\lambda(y-x) \in B$ for $0 \leq \lambda \leq 1$.

```
Introduction
Geometry of
Numbers
```


Minkowski's first theorem

We say a set B in \mathbb{R}^{n} is symmetric if $x \in B \Longrightarrow-x \in B$.
We say a set B is \mathbb{R}^{n} is convex if
$x, y \in B \Longrightarrow x+\lambda(y-x) \in B$ for $0 \leq \lambda \leq 1$.
Theorem (Minkowski)
If B is a convex symmetric body and Λ a lattice in \mathbb{R}^{n} then B contains a non-zero point of the lattice if:

$$
\operatorname{Vol}(B)>2^{d} i
$$

Where i is the area of a single cell of the lattice Λ. We can find it using determinants, or the order of our lattice as a subgroup of \mathbb{Z}^{n} for the more algebraically inclined.

Let's apply it

Geometric approaches to solving Diophantine equations

Alex J. Best

A circle in \mathbb{R}^{2} is symmetric and convex, great!

Introduction
Geometry of Numbers

Rational points on surfaces

Let's apply it

Geometric approaches to solving
Diophantine equations

Alex J. Best

A circle in \mathbb{R}^{2} is symmetric and convex, great! The area of our lattice cell is p.

Let's apply it

Geometric approaches to solving
Diophantine equations

Alex J. Best

A circle in \mathbb{R}^{2} is symmetric and convex, great! The area of our lattice cell is p.
The area of our circle is $\pi 2 p$

Introduction
Geometry of Numbers

Let's apply it

Geometric approaches to solving
Diophantine
equations
Alex J. Best

A circle in \mathbb{R}^{2} is symmetric and convex, great!
The area of our lattice cell is p.
The area of our circle is $\pi 2 p$
So Minkowski tells us that as:

$$
\pi 2 p=\operatorname{Vol}(B)>2^{d} i=2^{2} p=4 p
$$

We have a point which satisfies $x^{2}+y^{2}=k p$ for some $k \geq 1$, and also $x^{2}+y^{2}<2 p$. So $x^{2}+y^{2}=p$ and we are done.
-

Rational points on surfaces

Geometric
approaches to solving
Diophantine equations

Alex J. Best
Euler looked at

$$
A^{4}+B^{4}=C^{4}+D^{4}
$$

with $A, B, C, D \in \mathbb{Q}$
This defines a surface in \mathbb{R}^{4}.

Rational points on surfaces

Alex J. Best
Euler looked at

$$
A^{4}+B^{4}=C^{4}+D^{4}
$$

with $A, B, C, D \in \mathbb{Q}$
This defines a surface in \mathbb{R}^{4}.
One parametrisation of solutions[1]:

$$
\begin{aligned}
& a(s, t)=s^{7}+s^{5} t^{2}-2 s^{3} t^{4}+3 s^{2} t^{5}+s t^{6} \\
& b(s, t)=s^{6} t-3 s^{5} t^{2}-2 s^{4} t^{3}+s^{2} t^{5}+t^{7} \\
& c(s, t)=s^{7}+s^{5} t^{2}-2 s^{3} t^{4}-3 s^{2} t^{5}+s t^{6} \\
& d(s, t)=s^{6} t+3 s^{5} t^{2}-2 s^{4} t^{3}+s^{2} t^{5}+t^{7}
\end{aligned}
$$

Rational points on surfaces

Euler looked at

$$
A^{4}+B^{4}=C^{4}+D^{4}
$$

with $A, B, C, D \in \mathbb{Q}$
This defines a surface in \mathbb{R}^{4}.
Rational points on surfaces

One parametrisation of solutions[1]:

$$
\begin{aligned}
& a(s, t)=s^{7}+s^{5} t^{2}-2 s^{3} t^{4}+3 s^{2} t^{5}+s t^{6} \\
& b(s, t)=s^{6} t-3 s^{5} t^{2}-2 s^{4} t^{3}+s^{2} t^{5}+t^{7} \\
& c(s, t)=s^{7}+s^{5} t^{2}-2 s^{3} t^{4}-3 s^{2} t^{5}+s t^{6} \\
& d(s, t)=s^{6} t+3 s^{5} t^{2}-2 s^{4} t^{3}+s^{2} t^{5}+t^{7}
\end{aligned}
$$

Unfortunately this does not give us all solutions.

Counting solutions

Geometric approaches to solving
Diophantine equations

Alex J. Best

Introduction

Geometry of Numbers

Rational points on surfaces

Counting solutions

Q: How many solutions are there?
A: ∞
Can we find a better way of counting them? We want to estimate the density of our solutions.

Heights

Geometric approaches to solving
 Diophantine equations

Alex J. Best

We want a different way of describing the size of a rational number.
Take

$$
\begin{aligned}
x= & \frac{a}{b} \in \mathbb{Q}, a, b \in \mathbb{Z} \\
& \operatorname{gcd}(a, b)=1
\end{aligned}
$$

Heights

Alex J. Best
We want a different way of describing the size of a rational number.
Take

$$
\begin{aligned}
x= & \frac{a}{b} \in \mathbb{Q}, a, b \in \mathbb{Z} \\
& \operatorname{gcd}(a, b)=1
\end{aligned}
$$

Then we say height of x is:

$$
H(x):=\max \{\log (|a|), \log (|b|)\}
$$

Heights

We want a different way of describing the size of a rational number.
Take

$$
\begin{aligned}
x= & \frac{a}{b} \in \mathbb{Q}, a, b \in \mathbb{Z} \\
& \operatorname{gcd}(a, b)=1
\end{aligned}
$$

Then we say height of x is:

$$
H(x):=\max \{\log (|a|), \log (|b|)\}
$$

Hurrah! There are only finitely many points with height less than a given value.

Counting points

We now want to count points in a set X with bounded height. We do this in a simple way and define:

$$
N(X, B):=\#\{x \in X \mid H(x) \leq B\}
$$

We can analyse the growth of this function as B grows.

Counting points

We now want to count points in a set X with bounded height. We do this in a simple way and define:

$$
N(X, B):=\#\{x \in X \mid H(x) \leq B\}
$$

We can analyse the growth of this function as B grows. Manin and others have conjectured that the growth of $N(X, B)$ is asymptotically governed by geometric properties of the surface for many problems[2].

Morals

Geometric approaches to solving
Diophantine equations

Alex J. Best

Geometry can help us show solutions exist to Diophantine equations.
Geometric properties govern the density of the solutions to some problems.

Rational points on surfaces

Morals

Geometry can help us show solutions exist to Diophantine equations.
Geometric properties govern the density of the solutions to some problems.
And there is a lot more interplay between these two areas.

References

Hardy, G.H. and Wright, E.M. and Heath-Brown, D.R. and Silverman, J.H., An Introduction to the Theory of Numbers, Oxford University Press, 2008.
囯 Heath-Brown, D.R., Diophantine equations, Algebra, Geometry, Analysis \& Logic, Talk at Warwick Mathematics Institute.

