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Named for Diophantus of Alexandria (≈ 250AD)
Some Diophantine equations:

I

x2 + y2 = z2

(Pythagorean triples)

I

x2 − ny2 = 1

(Pell’s equation)

I

x3 + 48 = y4

I

9x − 8y = 1
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What do we want to know?

I Are there any solutions?

I How many are there?

I Can we classify them?

I How can we compute them?
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In this talk

Two general ideas:

I Geometry of numbers

I Rational points on surfaces
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Minkowski and the Geometry of Numbers

1910 - Hermann Minkowski publishes his paper “Geometrie
der Zahlen” and sparks a new field called the Geometry of
Numbers.
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A motivating example

We want to find when integers x , y such that x2 + y2 = p
where p is prime.

We can try a few primes, and notice that 22 + 12 = 5,
32 + 22 = 13, 42 + 12 = 17, ... all work.
But 7, 11, 19, ... do not.
So maybe x2 + y2 = p when p ≡ 1 (mod 4).

Theorem (Fermat’s Christmas Theorem)

An odd prime p can be written as p = x2 + y2 if and only if
p ≡ 1 (mod 4).
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What can geometry do for us?
When p = 5 we can look at points satisfying our criteria:
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Minkowski’s first theorem

We say a set B in Rn is symmetric if x ∈ B =⇒ −x ∈ B.
We say a set B is Rn is convex if
x , y ∈ B =⇒ x + λ(y − x) ∈ B for 0 ≤ λ ≤ 1.

Theorem (Minkowski)

If B is a convex symmetric body and Λ a lattice in Rn then
B contains a non-zero point of the lattice if:

Vol(B) > 2d i

Where i is the area of a single cell of the lattice Λ. We can
find it using determinants, or the order of our lattice as a
subgroup of Zn for the more algebraically inclined.
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Let’s apply it

A circle in R2 is symmetric and convex, great!

The area of our lattice cell is p.
The area of our circle is π2p
So Minkowski tells us that as:

π2p = Vol(B) > 2d i = 22p = 4p

We have a point which satisfies x2 + y2 = kp for some
k ≥ 1, and also x2 + y2 < 2p. So x2 + y2 = p and we are
done.
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Rational points on surfaces

Euler looked at
A4 + B4 = C 4 + D4

with A,B,C ,D ∈ Q
This defines a surface in R4.

One parametrisation of solutions[1]:

a(s, t) = s7 + s5t2 − 2s3t4 + 3s2t5 + st6

b(s, t) = s6t − 3s5t2 − 2s4t3 + s2t5 + t7

c(s, t) = s7 + s5t2 − 2s3t4 − 3s2t5 + st6

d(s, t) = s6t + 3s5t2 − 2s4t3 + s2t5 + t7

Unfortunately this does not give us all solutions.
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Counting solutions

Q: How many solutions are there?

A: ∞
Can we find a better way of counting them?
We want to estimate the density of our solutions.
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Heights

We want a different way of describing the size of a rational
number.
Take

x =
a

b
∈ Q, a, b ∈ Z

gcd(a, b) = 1

Then we say height of x is:

H(x) := max{log(|a|), log(|b|)}

Hurrah! There are only finitely many points with height
less than a given value.
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Counting points

We now want to count points in a set X with bounded
height. We do this in a simple way and define:

N(X ,B) := #{x ∈ X |H(x) ≤ B}

We can analyse the growth of this function as B grows.

Manin and others have conjectured that the growth of
N(X ,B) is asymptotically governed by geometric properties
of the surface for many problems[2].
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Morals

Geometry can help us show solutions exist to Diophantine
equations.
Geometric properties govern the density of the solutions to
some problems.

And there is a lot more interplay between these two areas.
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