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What do we want to know?

» Are there any solutions?
» How many are there?
» Can we classify them?

» How can we compute them?
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Minkowski and the Geometry of Numbers

1910 - Hermann Minkowski publishes his paper “Geometrie
der Zahlen” and sparks a new field called the Geometry of
Numbers.

GEOMETRIE DER ZAHLEN

HERMANN MINKOWSEI

LEIPZIG UND BERLIN
DRUCK UND VERLAG VON B.G.TEUBNER
110
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A motivating example

We want to find when integers x, y such that x> + y? = p
where p is prime.
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A motivating example

We want to find when integers x, y such that x> + y? = p
where p is prime.

We can try a few primes, and notice that 22 4 12 = 5,
32+22=13,42+12 =17, ... all work.

But 7, 11, 19, ... do not.
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A motivating example

We want to find when integers x, y such that x> + y? = p
where p is prime.

We can try a few primes, and notice that 22 4 12 = 5,
32+22=13,42+12 =17, ... all work.

But 7, 11, 19, ... do not.

So maybe x? + y? = p when p=1 (mod 4).

Theorem (Fermat’s Christmas Theorem)

An odd prime p can be written as p = x* + y? if and only if
p=1 (mod 4).
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We say a set B is R" is convex if
x,y€B = x4+ ANy—x)eBfor0<A<1.
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Minkowski's first theorem

We say a set B in R" is symmetricif x€ B — —x € B.
We say a set B is R" is convex if

x,y€B = x4+ ANy—x)eBfor0< <1,

Theorem (Minkowski)

If B is a convex symmetric body and A a lattice in R" then
B contains a non-zero point of the lattice if:

Vol(B) > 29j

Where i is the area of a single cell of the lattice N. We can
find it using determinants, or the order of our lattice as a
subgroup of Z" for the more algebraically inclined.
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Let's apply it

A circle in R? is symmetric and convex, great!
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Let's apply it

A circle in R? is symmetric and convex, great!
The area of our lattice cell is p.

The area of our circle is 2p

So Minkowski tells us that as:

m2p = Vol(B) > 29i = 2%p = 4p

We have a point which satisfies x* 4+ y? = kp for some
k > 1, and also x% + y? < 2p. So x%> + y? = p and we are
done.
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This defines a surface in R*. surfaces
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Euler looked at

AY + B* = c* + D*
with A,B,C,D € Q

Rational points on

This defines a surface in R*. surfaces
One parametrisation of solutions[1]:

a(s,t) = s’ +s°t2 —253t* + 35215 + stO

b(s,t) = s —3s5t2 —2s*t3 4+ 25 + 7

c(s,t) = s"+35°t2 — 253t — 35215 + st°

d(s, t) Ot +3s%t2 — 25%t3 + 525 + tf

Unfortunately this does not give us all solutions.
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Q: How many solutions are there? surfaces
A: oo

Can we find a better way of counting them?

We want to estimate the density of our solutions.
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We want a different way of describing the size of a rational
number.
Take

Rational points on

X = % c Q, a, b S Z surfaces
ged(a, b) =1
Then we say height of x is:
H(x) := max{log(|al), log(|b])}

Hurrah! There are only finitely many points with height
less than a given value.



Counting points

We now want to count points in a set X with bounded
height. We do this in a simple way and define:

N(X,B) := #{x € X|H(x) < B}

We can analyse the growth of this function as B grows.
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We now want to count points in a set X with bounded
height. We do this in a simple way and define:

Rational points on
surfaces

N(X,B) := #{x € X|H(x) < B}

We can analyse the growth of this function as B grows.
Manin and others have conjectured that the growth of

N(X, B) is asymptotically governed by geometric properties
of the surface for many problems|[2].
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Geometry can help us show solutions exist to Diophantine ahoralloehelos
surraces
equations.

Geometric properties govern the density of the solutions to
some problems.
And there is a lot more interplay between these two areas.
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[§ Hardy, G.H. and Wright, E.M. and Heath-Brown, D.R. Rational points on
and Silverman, J.H., An Introduction to the Theory of Sl
Numbers, Oxford University Press, 2008.

@ Heath-Brown, D.R., Diophantine equations, Algebra,
Geometry, Analysis & Logic, Talk at Warwick
Mathematics Institute.
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