The S-unit equation and non-abelian Chabauty in depth 2

Joint work with Alexander Betts, Theresa Kumpitsch, Martin Lüdtke, Angus McAndrew, Lie Qian, Elie Studnia, Yujie Xu \mathcal{D}_{hai}

The S-unit Equation

Throughout let S be a finite set of primes of \mathbb{Q} or in a number field K $u \in \mathbb{Q}$ $\mathcal{O}_p(u) = 0$ $\forall p \notin S$

Plan: 1. History / background 2. Chabauty. 3. Nonabelian extension 4. Refinements + application

<u>Def</u>: A pair of S-units (u, v) such that u + v = 1 is called a <u>solution to the S-unit equation</u>.

Ex: $S = \{2,3\}$, $K = \mathbb{Q}$ then 9 - 8 = 1 so (9, -8) is a solution to the $\{2,3\}$ -unit equation, we can also take (-8,9) or (2,-1). <u>Observations:</u> 1) There is an action of S_3 on solutions, generated by these symmetries: $(u, v) \mapsto (v, u)$, $(u, v) \mapsto (-2, 1)$. 2) We have v = 1 - u so in terms of u we have a solution if and

only if all of u, 1 - u, $\frac{1}{u}$, $\frac{1}{u}$ are $\neq O \pmod{p}$ if $p \notin S$.

IP F2

licture

Solutions to the S-unit equation can be thought of as $\mathbb{Z}[\frac{1}{5}]$ -points of $\mathbb{P}' \{0,1,\infty\}$, we will use z = u from now on. <u>Thm</u> (Siegel): For fixed S we have $|\mathcal{P}' \{0,1,\infty\} (\mathbb{Z}[\frac{1}{5}])| < \infty$.

This result is not constructive however!

Questions remain about this problem:

- Can we bound the set of solutions in terms of S or ISI and K or deg(K)?
- 2. Can we (efficiently) determine the set of solutions given any S and K?
- 3. Can we bound the heights of solutions?

These problems have a long history: Some examples:

1. <u>Thm</u> (Evertse):

$$|P':30,1,\infty}(2(\frac{1}{57})| < 3.7^{\log k + 15}$$

Lower bounds due to Konyagin-Soundararajan.

2. Matschke has a solver based on sieving using height bounds coming from modularity due to Matschke-von Känel.

3. Bugeaud, Győry, Le Fourn,....

<u>Coal of our work</u>: Not to attack these well studied problems directly, instead we wish to test some conjectures in non-abelian Chabauty applied to $P' \setminus \{0, 1, \infty\}$.

2. Chabauty Methods:

Let C/\mathbb{Q} be a nice curve of genus $g \ge 2$ and fix a prime p of good reduction for C, and a base point $P \in C(\mathbb{Q})$. Then we can often determine $C(\mathbb{Q})$ using Chabauty's method.

If r < g then $J(Q) \land C(Q_p)$ should be finite, this proves the Mordell conjecture for these curves.

<u>Coleman</u>: <u>defines an integration theory</u> for curves over p-adic fields, which is p-adically valued. This makes the map j_P and hence Chabauty's method explicit, we can find g - r independent holomorphic differentials $\{w_i\}$ on $\mathcal{T}(\alpha_p)$ such that the integrals $\int_p^* \omega_i$ simultaneously vanish on $C(\mathbb{Q})$.

Application: <u>Thm:</u> (Hirakawa-Matsumura, 2019):

There exists a unique pair of a rational right triangle and a

rational isosceles triangle with the equal areas and equal perimeters.

<u>Pf</u>: Chabauty on a genus 2 rank l

Curve:
$$r^2 = (-3w^3 + 2w^2 - 6w + 4)^2 - 8w^6$$

Hideki Matsumura

<u>S-units</u>: Fix a prime $p \notin S$. We can form a similar diagram using the generalized Jacobian of \mathcal{X} . Assume $K = \mathbb{Q}$.

Bottom left group has rank 2ISI and the bottom right is of dimension 2. So a naive application of Chabauty to this diagram

would not apply.

 $\int f q^n f = 1$ Consider the case of |S| = 1, $S = \{q\}$, and assume $y_q(1-z) = 0$

then the bottom horizontal map has non-dense image.

So the set of z s.t. $\frac{1}{2}(1-2)=0$ lie in the locus where $\log((-2)=0$. The zeroes of log are precisely the roots of unity. (003(1-2)= 0 3- adially Eg:

If q = 2, p = 3 then this gives: Solutions to the $\{2\}$ -unit equation for which $v_{1}(1-z) = O$ have 1-z a root of log which is 3-adically near -1, hence 1-z = -1 and z = 2 is the only solution.

Other solutions?

What about the complete set of solutions when |S| = 1?

If $v_q(z) > O$ then $v_q(1-z) = O$.

If $v_{g}(z) = O$ then swapping z and I-z reduces us to the first case. If $v_q(z) < O$ then $v_q(1-z) = v_q(z)$ and then $v_q(-z) = O$, $v_q(z) > O$ so the S_3 -action reduces us to the previous case.

In fact, valuations of (z, 1-z) look like: $v_q(z) = 0$ ($v_q(z), v_q(1-z)$)

<u>3. Non-abelian Chabauty</u>

- Minhyong Kim has introduced an extension of Chabauty's method that conjecturally gives another proof of Mordell's conjecture In many cases.
- This method reproves Siegel's theorem but remains to be fully understood.

<u>Kim's idea</u>: Extend the Chabauty diagram to non-linear objects on the second row (Selmer schemes).

Before we took the Jacobian which is an abelianized

fundamental group, by including more non-abelian information we

hope to retain more knowledge about the curve.

- Let $\mathcal{X}_{\mathcal{I}} \underset{\mathcal{I}}{\mathbb{Z}_{\mathcal{I}}}$ be a model of a hyperbolic curve (eg. $\mathbb{P}' \cdot 30, 1, \infty$ 3) then: • $\mathcal{U}^{\acute{e}t}$ denotes the \mathbb{Q}_{p} -pro-unipotent completion of $\mathcal{R}^{\acute{e}t}_{\mathcal{I}}(\mathcal{X}_{q})$
- $\mathcal{U}_{n}^{\acute{e}t}$ denotes the quotient by the nth step of the lower central series (n is called the depth).
- \mathcal{U}_{n}^{dR} , \mathcal{U}_{n}^{dR} are defined likewise for the de Rham fundamental group π , $\mathcal{A}_{n}^{dR}(\chi)$

Then we consider the local Selmer scheme: $\int_{I_{n}}^{G_{\ell}} (\mathcal{O}_{p}/\mathcal{O}_{n})$. $H_{l_{n}}^{1} (\mathcal{O}_{p_{n}}, \mathcal{U}_{n}^{e_{\ell}}) \cong H^{1} (\mathcal{O}_{p_{n}}, \mathcal{U}_{n}^{e_{\ell}})$ Consisting of crystalline classes, and we have an isomorphism $H_{l_{n}}^{1} (\mathcal{O}_{p_{n}}, \mathcal{U}_{n}^{e_{\ell}}) \cong F_{n}^{e_{n}} (\mathcal{U}_{n}^{e_{\ell}}, \mathcal{U}_{n}^{e_{\ell}})$ Similarly we define the global Selmer scheme: $Sel_{s,n} = Sel_{s,n}(\mathcal{X}) \subseteq H^{1} (\mathcal{O}_{s}, \mathcal{U}_{n}^{e_{\ell}})$.

containing those classes which are crystalline at p and are unramified at all $q \notin S \lor \{p\}$.

<u>Thm</u> (Kim): This fits into a commutative diagram (Kim's cutter) for each n:

 $\rightarrow \mathcal{X}(\mathbb{Z}_p)$ analytic $\int \tilde{g}_p$ \tilde{g}_{OR} $\chi(\chi(\zeta'_{s}))$ algebraic) is 11'10 (DER) ~ rollide $(\mathcal{D} = \alpha 1)$ ()

In the n = I case this recovers the classical Chabauty diagrams we saw before.

<u>Thm</u> (Kim): If dim Sel_s \leq dim H'_g(G, U^{*}) then $\mathcal{Z}(\mathbb{Z}[\frac{1}{3}])$ is finite and lies in $\mathcal{X}(\mathbb{Z}[\frac{1}{3}]) = jp'(loc_p(Sel_{s,n}(\mathcal{X})))$ for all n.

<u>Conjecture</u> (Kim): We always have

 $\mathcal{X}\left(\mathcal{Z}\left[\frac{1}{5}\right]\right) = \mathcal{X}\left(\mathcal{Z}\left(\frac{1}{5}\right)\right)_{n}$ eventually. $n \gg O$

Motivating question: How deep do we need to go?

4. Refinements and application to $\{\gamma, \gamma_{0,1,\infty}\}$. For \mathcal{P}' , $\{0, 1, \infty\}$ in depth 2 we have Sel 5, 2 Jocke Sels, 2 = M × A 1SI H' (Gp, U2) = // 3 = // 2 × /A tom & & brom before $\frac{2}{7} \mathcal{X}(\mathcal{Z}(\mathcal{Z})) \rightarrow \mathcal{X}(\mathcal{Z}_{p})$ $\begin{bmatrix} (V_q(2))(V_q(1-2))_q \\ (X_q(1-2)) \\ (X_q(1-2))_q \\ (X_q(1-2))$

Ges ges 1 3 10/5/.

Li₂(z) is an iterated Coleman integral: $\int \frac{d^2}{d^2} d^2$ Defined near O by the classical power series $\int_{k=0}^{\infty} \frac{d^2}{k^2}$. h₃ is the most mysterious part of this diagram. <u>Thm</u> (Dan-Cohen, Wewers):

- I. h, is a bilinear form
- 2. The coefficients of this form satisfy

alg + age = logglogl for liges

We give new proofs of these facts. <u>Problem</u>: 2|S| > 2 as soon as |S| > 1, image of loc, will be dense! To directly apply this version of Kim's cutter we need to go to n = 3 at least!

Corwin & Dan-Cohen go to depth 4 and find the function

$$\begin{split} & \zeta^{\mathfrak{u}}(3)\log^{\mathfrak{u}}(3)\operatorname{Li}_{4}^{\mathfrak{u}} - \left(\frac{18}{13}\operatorname{Li}_{4}^{\mathfrak{u}}(3) - \frac{3}{52}\operatorname{Li}_{4}^{\mathfrak{u}}(9)\right)\log^{\mathfrak{u}}\operatorname{Li}_{3}^{\mathfrak{u}} \\ & -\frac{(\log^{\mathfrak{u}})^{3}\operatorname{Li}_{1}^{\mathfrak{u}}}{24}\left(\zeta^{\mathfrak{u}}(3)\log^{\mathfrak{u}}(3) - 4\left(\frac{18}{13}\operatorname{Li}_{4}^{\mathfrak{u}}(3) - \frac{3}{52}\operatorname{Li}_{4}^{\mathfrak{u}}(9)\right)\right) \end{split}$$

cutting out solutions for the {3}-unit equation. <u>Alternative approach</u>: Betts-Dogra (arXiv:1909.05734) introduce <u>refined Selmer schemes</u> of smaller dimension, that take into account local behavior at primes in S. This works out to be precisely the tropical decomposition we

considered above: For any $z \in [R', \{0, 1, \infty\} (\mathbb{Z} \subseteq 3), \eta \in S$ $V_{g}(2)$, $J_{g}(1-2)$ lies on one of the rays Ug (2)=0 Vg11-2)=0 each of dim=2<3 So j (z) lands in one of 3^{151} different refined Selmer schemes depending on which ray $z \mid ay$ on for each prime in S. We denote these as $Sel_{5,2}$ for example. <u>Upshot</u>: d_{in} Set $s_{2} = 2 < 3$ so we can apply "refined nonabelian Chabauty" in depth 2 to bound the solutions to the S-unit equation.

<u>Remark</u>: this method in depth I is exactly what we did in the first example of finding $\{q\}$ -units with $v_q(I-z) = O$. <u>Thm</u> (BBKLMQSX): Let $S = \{\ell, q\}$ and $p \notin S$ then up to the S_3 -action the solutions to the S-unit equation lie in

$$\mathcal{X}(\mathbb{Z}_{p})_{S,2}^{I,-}$$

Which is given by $a_{\ell,q}L_{i_2}(2) = a_{q,\ell}L_{i_2}(1-2)$

When we know one solution we can determine $\alpha_{L,q}$ and then control all other possible solutions.

<u>Thm</u> (BBKLMQSX): Let $S = \{I\}$ and $p \neq I$ be prime, then

$$\chi(Z_p)_{\{e\}}^{enx}$$

is cut out by $l_{0}(2)=0$, $L_{i_2}(2)=0$ (Up to the S; action)

<u>Thm</u> (BBKLMQSX): Let $S = \{q, l\}$ and let $p \notin S$ be prime then $\chi(\chi)_{\{q, l\}}^{2n}$

is cut out by

$$a_{l,q} L_{i_1} (2) = a_{q,l} L_{i_2} (1-2).$$

Up to the S_{τ} action.

When we know a solution we can go further and find the $a_{\ell,j}$'s.

<u>Thm</u> (BBKLMQSX): Let $q = 2^{+} \pm 1$, be a Fermat or Mersenne prime then $\chi(\mathbb{Z}_{p})_{1=0,2}^{1/-1}$ is cut out by

$$L_{i_2}((\mp \gamma) L_{i_2}(2) = (L_{i_2}(\pm \gamma) L_{i_2}(1-2)).$$

We also show that working with refined Selmer schemes in depth 2 gives an easily checkable condition for extra solutions, this

completely resolves the |S| = 1 case.
arXiv:1812.05707v5 [math.NT] 21 Aug 2020
arXiv:1812.05707v5 [math.NT] 21 Aug 2020
arXiv:1812.05707v5 [math.NT] 21 Aug 2020
