The (inescapable) p-adics

Alex J. Best

5/5/2018
BU Math Retreat 2018

Linear recurrence sequences

Definition (Linear recurrence sequence) A linear recurrence sequence, is a sequences whose nth term is the linear combination of the previous k terms (for all $n \geq k$)

Linear recurrence sequences

Definition (Linear recurrence sequence)
A linear recurrence sequence, is a sequences whose nth term is the linear combination of the previous k terms (for all $n \geq k$)

Example (Fibonacci)
$a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq k=2$:
$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181$,

Linear recurrence sequences

Definition (Linear recurrence sequence)
A linear recurrence sequence, is a sequences whose nth term is the linear combination of the previous k terms (for all $n \geq k$)

Example (Fibonacci)
$a_{0}=0, a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq k=2$:
$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181$,
a_{n} grows exponentially.

Linear recurrence sequences

Definition (Linear recurrence sequence)
A linear recurrence sequence, is a sequences whose nth term is the linear combination of the previous k terms (for all $n \geq k$)

Example (A periodic sequence)
$a_{0}=1, a_{1}=0$ with $a_{n}=-a_{n-1}-a_{n-2}$
$1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0$,

Linear recurrence sequences

Definition (Linear recurrence sequence)
A linear recurrence sequence, is a sequences whose nth term is the linear combination of the previous k terms (for all $n \geq k$)

Example (A periodic sequence)
$a_{0}=1, a_{1}=0$ with $a_{n}=-a_{n-1}-a_{n-2}$
$1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0$,
a_{n} is periodic now.

Linear recurrence sequences

Definition (Linear recurrence sequence)
A linear recurrence sequence, is a sequences whose nth term is the linear combination of the previous k terms (for all $n \geq k$)

Example (Natural numbers interlaced with zeroes)
$a_{0}=1, a_{1}=0, a_{2}=2, a_{3}=0$ with $a_{n}=2 a_{n-2}-a_{n-4}$
$1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10,0,11,0,12,0,13,0,14,0,15,0$

Linear recurrence sequences

Definition (Linear recurrence sequence)
A linear recurrence sequence, is a sequences whose nth term is the linear combination of the previous k terms (for all $n \geq k$)

Example (Natural numbers interlaced with zeroes)
$a_{0}=1, a_{1}=0, a_{2}=2, a_{3}=0$ with $a_{n}=2 a_{n-2}-a_{n-4}$
$1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10,0,11,0,12,0,13,0,14,0,15,0$
not periodic but the zeroes do have a regular repeating pattern.

The ultimate question

Question

What possible patterns are there for the zeroes of a linear recurrence sequence?

The ultimate question

Question
What possible patterns are there for the zeroes of a linear
recurrence sequence?
Observation
A linear recurrence sequence is the Taylor expansion around 0 of a rational function

$$
\frac{a_{1}+a_{2} x+\cdots+a_{\ell} x^{\ell}}{b_{1}+b_{2} x \cdots+b_{k} x^{k}}
$$

with $b_{1} \neq 0$ (so that the expansion makes sense).

Linear recurrence sequences

Example

$$
\frac{x}{1-x-x^{2}} . \leftrightarrow \text { Fibonacci }
$$

Linear recurrence sequences

Example

$$
\frac{x}{1-x-x^{2}} . \leftrightarrow \text { Fibonacci }
$$

$$
\frac{1}{1+x+x^{2}} . \leftrightarrow 1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0
$$

Linear recurrence sequences

Example

$$
\frac{x}{1-x-x^{2}} \cdot \leftrightarrow \text { Fibonacci }
$$

$$
\frac{1}{1+x+x^{2}} . \leftrightarrow 1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0
$$

$$
\frac{1}{\left(1-x^{2}\right)^{2}} \cdot \leftrightarrow 1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10,0,11,0,12,0,13,0,14
$$

Linear recurrence sequences

Example

$$
\frac{x}{1-x-x^{2}} \cdot \leftrightarrow \text { Fibonacci }
$$

$$
\begin{aligned}
& \frac{1}{1+x+x^{2}} . \leftrightarrow 1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0 \\
& \frac{1}{\left(1-x^{2}\right)^{2}} . \leftrightarrow 1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10,0,11,0,12,0,13,0,14
\end{aligned}
$$

$$
\frac{(1+x)^{3}-x^{3}}{(1+x)^{5}-x^{5}} \leftrightarrow 1,-2,3,-5,10,-20,35,-50,50,0,-175,625,
$$

$$
-1625,3625,-7250,13125,-21250,29375,-29375
$$

0, 106250, - 384375, 1006250, -2250000, 4500000,
$-8140625,13171875,-18203125,18203125,0,-65859375,23$

Consequences

Observation
 The set of all linear recurrence sequences is a vector space! Hard to tell how the rule changes.

Consequences

Observation

The set of all linear recurrence sequences is a vector space! Hard to tell how the rule changes.

We can always mess up a finite amount of behaviour. So assume a_{n} has infinitely many zeroes, what is the structure of the zero set?

Linear recurrence sequences

Example

$\frac{1}{\left(1-x^{2}\right)^{2}}-\left(1-x+2 x^{2}+3 x^{4}+4 x^{6}\right) \leftrightarrow 0,1,0,0,0,0,0,0,5,0,6,0,7,0,8,0$,

Linear recurrence sequences

Example

$\frac{1}{\left(1-x^{2}\right)^{2}}-\left(1-x+2 x^{2}+3 x^{4}+4 x^{6}\right) \leftrightarrow 0,1,0,0,0,0,0,0,5,0,6,0,7,0,8,0$,

Interlacing with 0 and shifting correspond to plugging in x^{2} and multiplying by x respectively in the rational functions

Linear recurrence sequences

Example

$\frac{1}{\left(1-x^{2}\right)^{2}}-\left(1-x+2 x^{2}+3 x^{4}+4 x^{6}\right) \leftrightarrow 0,1,0,0,0,0,0,0,5,0,6,0,7,0,8,0$,

Interlacing with 0 and shifting correspond to plugging in x^{2} and multiplying by x respectively in the rational functions
$\frac{1}{(1-x)^{2}} \leftrightarrow 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21$

Linear recurrence sequences

Example

$\frac{1}{\left(1-x^{2}\right)^{2}}-\left(1-x+2 x^{2}+3 x^{4}+4 x^{6}\right) \leftrightarrow 0,1,0,0,0,0,0,0,5,0,6,0,7,0,8,0$,

Interlacing with 0 and shifting correspond to plugging in x^{2} and multiplying by x respectively in the rational functions
$\frac{1}{(1-x)^{2}} \leftrightarrow 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21$
$\frac{1}{\left(1-x^{2}\right)^{2}} \leftrightarrow 1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10,0,11,0,12,0,13$

Linear recurrence sequences

$$
\frac{1}{(1-x)^{2}} \leftrightarrow 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21
$$

$$
\frac{1}{\left(1-x^{2}\right)^{2}} \leftrightarrow 1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10,0,11,0,12,0,13
$$

$$
\frac{1}{\left(1-x^{4}\right)^{2}} \leftrightarrow 1,0,0,0,2,0,0,0,3,0,0,0,4,0,0,0,5,0,0,0,6,0,0,0,7,0,0
$$

Linear recurrence sequences

$$
\frac{1}{(1-x)^{2}} \leftrightarrow 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21
$$

$$
\frac{1}{\left(1-x^{2}\right)^{2}} \leftrightarrow 1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10,0,11,0,12,0,13
$$

$$
\frac{1}{\left(1-x^{4}\right)^{2}} \leftrightarrow 1,0,0,0,2,0,0,0,3,0,0,0,4,0,0,0,5,0,0,0,6,0,0,0,7,0,0
$$

$$
\frac{x}{\left(1-x^{4}\right)^{2}} \leftrightarrow 0,1,0,0,0,2,0,0,0,3,0,0,0,4,0,0,0,5,0,0,0,6,0,0,0,7,0
$$

Linear recurrence sequences

$$
\begin{aligned}
& \frac{1}{(1-x)^{2}} \leftrightarrow 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21 . \\
& \frac{1}{\left(1-x^{2}\right)^{2}} \leftrightarrow 1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10,0,11,0,12,0,13 \\
& \frac{1}{\left(1-x^{4}\right)^{2}} \leftrightarrow 1,0,0,0,2,0,0,0,3,0,0,0,4,0,0,0,5,0,0,0,6,0,0,0,7,0,0 \\
& \frac{x}{\left(1-x^{4}\right)^{2}} \leftrightarrow 0,1,0,0,0,2,0,0,0,3,0,0,0,4,0,0,0,5,0,0,0,6,0,0,0,7,0 \\
& \frac{1+2 x}{\left(1-x^{4}\right)^{2}} \leftrightarrow 1,2,0,0,2,4,0,0,3,6,0,0,4,8,0,0,5,10,0,0,6,12,0,0,7,1
\end{aligned}
$$

Linear recurrence sequences

$$
\begin{aligned}
& \frac{1}{(1-x)^{2}} \leftrightarrow 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21 \\
& \frac{1}{\left(1-x^{2}\right)^{2}} \leftrightarrow 1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10,0,11,0,12,0,13 \\
& \frac{1}{\left(1-x^{4}\right)^{2}} \leftrightarrow 1,0,0,0,2,0,0,0,3,0,0,0,4,0,0,0,5,0,0,0,6,0,0,0,7,0,0 \\
& \frac{x}{\left(1-x^{4}\right)^{2}} \leftrightarrow 0,1,0,0,0,2,0,0,0,3,0,0,0,4,0,0,0,5,0,0,0,6,0,0,0,7,0 \\
& \frac{1+2 x}{\left(1-x^{4}\right)^{2}} \leftrightarrow 1,2,0,0,2,4,0,0,3,6,0,0,4,8,0,0,5,10,0,0,6,12,0,0,7,1
\end{aligned}
$$

Still has periodic zero set, all n congruent to 2,3 modulo 4 .

Approach

Expand into partial fractions

$$
\frac{p(x)}{q(x)}=\sum_{i=1}^{m} \sum_{j=1}^{n_{j}} \frac{r_{i j}}{\left(1-\alpha_{i} x\right)^{j}}
$$

Approach

Expand into partial fractions

$$
\frac{p(x)}{q(x)}=\sum_{i=1}^{m} \sum_{j=1}^{n_{j}} \frac{r_{i j}}{\left(1-\alpha_{i} x\right)^{j}}
$$

do some math:

$$
\sum_{n=0}^{\infty}\left(\sum_{i=1}^{m} \sum_{j=1}^{n_{j}} r_{i j}\binom{n+j-1}{j-1} \alpha_{i}^{n}\right) x^{n}
$$

Approach

Expand into partial fractions

$$
\frac{p(x)}{q(x)}=\sum_{i=1}^{m} \sum_{j=1}^{n_{j}} \frac{r_{i j}}{\left(1-\alpha_{i} x\right)^{j}}
$$

do some math:

$$
\sum_{n=0}^{\infty}\left(\sum_{i=1}^{m} \sum_{j=1}^{n_{j}} r_{i j}\binom{n+j-1}{j-1} \alpha_{i}^{n}\right) x^{n}
$$

Upshot: there are polynomials $A_{i}(n)$ such that

$$
a_{n}=\sum_{i=1}^{m} A_{i}(n) \alpha_{i}^{n}
$$

Like that formula for Fibonacci with the golden ratio in.

Approach

So a_{n} is an analytic function of n which has zeroes for infinitely many integer values.

Approach

So a_{n} is an analytic function of n which has zeroes for infinitely many integer values.

Like

$$
\sin (\pi x)!
$$

Approach

So a_{n} is an analytic function of n which has zeroes for infinitely many integer values.

Like

$$
\sin (\pi x)!
$$

Ridiculous suggestion

What if the integers were bounded? In that case infinitely many zeroes \Longrightarrow the function is zero!

Theorem (Ostrowski)
The only absolute values on \mathbf{Q} are

$$
\text { the usual one \& }|\cdot|_{p}
$$

defined by $|p|_{p}=\frac{1}{p}$ and $|q|_{p}=1$ for all other primes $q \neq p$.

Theorem (Ostrowski)
The only absolute values on \mathbf{Q} are

$$
\text { the usual one \& }|\cdot|_{p}
$$

defined by $|p|_{p}=\frac{1}{p}$ and $|q|_{p}=1$ for all other primes $q \neq p$.
With $|\cdot|_{p}$ the integers are bounded!

Theorem (Ostrowski)
The only absolute values on \mathbf{Q} are

$$
\text { the usual one \& }|\cdot|_{p}
$$

defined by $|p|_{p}=\frac{1}{p}$ and $|q|_{p}=1$ for all other primes $q \neq p$.
With $|\cdot|_{p}$ the integers are bounded! Are the functions

$$
\sum_{i=1}^{m} A_{i}(n) \alpha_{i}^{n}
$$

p-adic analytic functions of n ?

Theorem (Ostrowski)
The only absolute values on \mathbf{Q} are

$$
\text { the usual one \& }|\cdot|_{p}
$$

defined by $|p|_{p}=\frac{1}{p}$ and $|q|_{p}=1$ for all other primes $q \neq p$.
With $|\cdot|_{p}$ the integers are bounded! Are the functions

$$
\sum_{i=1}^{m} A_{i}(n) \alpha_{i}^{n}
$$

p-adic analytic functions of n ?
Problem
The p-adic exponential function has finite radius of convergence.

Theorem (Ostrowski)
The only absolute values on \mathbf{Q} are

$$
\text { the usual one \& }|\cdot|_{p}
$$

defined by $|p|_{p}=\frac{1}{p}$ and $|q|_{p}=1$ for all other primes $q \neq p$.
With $|\cdot|_{p}$ the integers are bounded! Are the functions

$$
\sum_{i=1}^{m} A_{i}(n) \alpha_{i}^{n}
$$

p-adic analytic functions of n ?

Problem

The p-adic exponential function has finite radius of convergence.
The fix
Choose p so that $\left|\alpha_{i}\right|_{p}=1$ for all i, then $\alpha_{i}^{p-1}=1+\lambda_{i}$ with $\left|\lambda_{i}\right|_{p} \leq \frac{1}{p}$. Now $\left(\alpha_{i}^{p-1}\right)^{n}$ is analytic!

Write n as $r+(p-1) n^{\prime}$ with $0 \leq r<p-1$

Write n as $r+(p-1) n^{\prime}$ with $0 \leq r<p-1$, then

$$
\begin{gathered}
a_{n}=\sum_{i=1}^{m} A_{i}(n) \alpha_{i}^{n}=\sum_{i=1}^{m} A_{i}\left(r+(p-1) n^{\prime}\right) \alpha_{i}^{r+(p-1) n^{\prime}} \\
=\sum_{i=1}^{m} A_{i}\left(r+(p-1) n^{\prime}\right) \alpha_{i}^{r}\left(\alpha_{i}^{(p-1)}\right)^{n^{\prime}}
\end{gathered}
$$

for each fixed r this function of n^{\prime} is analytic.

Write n as $r+(p-1) n^{\prime}$ with $0 \leq r<p-1$, then

$$
\begin{gathered}
a_{n}=\sum_{i=1}^{m} A_{i}(n) \alpha_{i}^{n}=\sum_{i=1}^{m} A_{i}\left(r+(p-1) n^{\prime}\right) \alpha_{i}^{r+(p-1) n^{\prime}} \\
=\sum_{i=1}^{m} A_{i}\left(r+(p-1) n^{\prime}\right) \alpha_{i}^{r}\left(\alpha_{i}^{(p-1)}\right)^{n^{\prime}}
\end{gathered}
$$

for each fixed r this function of n^{\prime} is analytic. Infinitely many zeroes for integer n means $\exists r$ with infinitely many zeroes of the form $r+(p-1) n^{\prime}$. So the function

$$
\sum_{i=1}^{m} A_{i}\left(r+(p-1) n^{\prime}\right) \alpha_{i}^{r}\left(\alpha_{i}^{(p-1)}\right)^{n^{\prime}}
$$

is identically zero, and all these $a_{n}=0$ when $n \equiv r(\bmod p-1)$.

Finale

Theorem (Skolem \rightsquigarrow Mahler \rightsquigarrow Lech)
All except finitely many indicies of the zeroes of a linear recurrence lie in a finite union of arithmetric progressions, i.e. they are all of the form $n M+b$ for some $b \in B \subset\{0, \ldots, M-1\}, n \in \mathbf{N}$.

Finale

Theorem (Skolem \rightsquigarrow Mahler \rightsquigarrow Lech)
All except finitely many indicies of the zeroes of a linear recurrence lie in a finite union of arithmetric progressions, i.e. they are all of the form $n M+b$ for some $b \in B \subset\{0, \ldots, M-1\}, n \in \mathbf{N}$.

