The (inescapable) *p*-adics

Alex J. Best 5/5/2018

BU Math Retreat 2018

Example (Fibonacci)

 $a_0 = 0, a_1 = 1$ and $a_n = a_{n-1} + a_{n-2}$ for $n \ge k = 2$:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,

Example (Fibonacci)

 $a_0 = 0, a_1 = 1$ and $a_n = a_{n-1} + a_{n-2}$ for $n \ge k = 2$:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,

 a_n grows exponentially.

Example (A periodic sequence)

 $a_0 = 1, a_1 = 0$ with $a_n = -a_{n-1} - a_{n-2}$

Example (A periodic sequence)

$$a_0 = 1, a_1 = 0$$
 with $a_n = -a_{n-1} - a_{n-2}$

1, 0, -1, 1, 0

 a_n is periodic now.

Example (Natural numbers interlaced with zeroes)

$$a_0 = 1, a_1 = 0, a_2 = 2, a_3 = 0$$
 with $a_n = 2a_{n-2} - a_{n-4}$

Example (Natural numbers interlaced with zeroes)

 $a_0 = 1, a_1 = 0, a_2 = 2, a_3 = 0$ with $a_n = 2a_{n-2} - a_{n-4}$

not periodic but the zeroes do have a regular repeating pattern.

Question What possible patterns are there for the zeroes of a linear recurrence sequence?

Question

What possible patterns are there for the zeroes of a linear recurrence sequence?

Observation

A linear recurrence sequence is the Taylor expansion around 0 of a rational function

$$\frac{a_1 + a_2 x + \dots + a_\ell x^\ell}{b_1 + b_2 x \dots + b_k x^k}$$

with $b_1 \neq 0$ (so that the expansion makes sense).

Example

$$\frac{x}{1-x-x^2} \leftrightarrow \mathsf{Fibonacci}$$

Example

$$\frac{x}{1-x-x^2}$$
. \leftrightarrow Fibonacci

$$\frac{1}{1+x+x^2}. \leftrightarrow 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0,$$

Example

$$\frac{x}{1-x-x^2}$$
. \leftrightarrow Fibonacci

 $\frac{1}{1+x+x^2}. \leftrightarrow 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0,$

 $\frac{1}{(1-x^2)^2} \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0$

Example

$$\frac{x}{1-x-x^2}$$
. \leftrightarrow Fibonacci

 $\frac{1}{1+x+x^2}. \leftrightarrow 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0$

 $\frac{1}{(1-x^2)^2} \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0$

Observation The set of all linear recurrence sequences is a vector space! Hard to tell how the rule changes.

Observation

The set of all linear recurrence sequences is a vector space! Hard to tell how the rule changes.

We can always mess up a finite amount of behaviour. So assume a_n has infinitely many zeroes, what is the structure of the zero set?

$$\frac{1}{(1-x^2)^2} - (1-x+2x^2+3x^4+4x^6) \leftrightarrow 0, 1, 0, 0, 0, 0, 0, 0, 5, 0, 6, 0, 7, 0, 8, 0$$

$$\frac{1}{(1-x^2)^2} - (1-x+2x^2+3x^4+4x^6) \leftrightarrow 0, 1, 0, 0, 0, 0, 0, 0, 5, 0, 6, 0, 7, 0, 8, 0$$

Interlacing with 0 and shifting correspond to plugging in x^2 and multiplying by x respectively in the rational functions

$$\frac{1}{(1-x^2)^2} - (1-x+2x^2+3x^4+4x^6) \leftrightarrow 0, 1, 0, 0, 0, 0, 0, 0, 5, 0, 6, 0, 7, 0, 8, 0$$

Interlacing with 0 and shifting correspond to plugging in x^2 and multiplying by x respectively in the rational functions

$$\frac{1}{(1-x)^2} \leftrightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21$$

$$\frac{1}{(1-x^2)^2} - (1-x+2x^2+3x^4+4x^6) \leftrightarrow 0, 1, 0, 0, 0, 0, 0, 0, 5, 0, 6, 0, 7, 0, 8, 0$$

Interlacing with 0 and shifting correspond to plugging in x^2 and multiplying by x respectively in the rational functions

$$\frac{1}{(1-x)^2} \leftrightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21$$
$$\frac{1}{(1-x)^2} \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13$$

$$\overline{(1-x^2)^2} \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13$$

$$\frac{1}{(1-x)^2} \leftrightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21$$
$$\frac{1}{(1-x^2)^2} \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13$$
$$\frac{1}{(1-x^4)^2} \leftrightarrow 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0, 0$$

$$\frac{1}{(1-x)^2} \leftrightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21$$
$$\frac{1}{(1-x^2)^2} \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13$$
$$\frac{1}{(1-x^4)^2} \leftrightarrow 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0, 0$$
$$\frac{x}{(1-x^4)^2} \leftrightarrow 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0$$

$$\frac{1}{(1-x)^2} \leftrightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21$$
$$\frac{1}{(1-x^2)^2} \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13$$
$$\frac{1}{(1-x^4)^2} \leftrightarrow 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0, 0$$
$$\frac{x}{(1-x^4)^2} \leftrightarrow 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0$$
$$\frac{1+2x}{(1-x^4)^2} \leftrightarrow 1, 2, 0, 0, 2, 4, 0, 0, 3, 6, 0, 0, 4, 8, 0, 0, 5, 10, 0, 0, 6, 12, 0, 0, 7, 10$$

$$\frac{1}{(1-x)^2} \leftrightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21$$

$$\frac{1}{(1-x^2)^2} \leftrightarrow 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13$$

$$\frac{1}{(1-x^4)^2} \leftrightarrow 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0, 0$$

$$\frac{x}{(1-x^4)^2} \leftrightarrow 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0$$

$$\frac{1+2x}{(1-x^4)^2} \leftrightarrow 1, 2, 0, 0, 2, 4, 0, 0, 3, 6, 0, 0, 4, 8, 0, 0, 5, 10, 0, 0, 6, 12, 0, 0, 7, 1$$
Still has periodic zero set, all *n* congruent to 2, 3 modulo 4.

Approach

Expand into partial fractions

$$\frac{p(x)}{q(x)} = \sum_{i=1}^{m} \sum_{j=1}^{n_j} \frac{r_{ij}}{(1 - \alpha_i x)^j}$$

Approach

Expand into partial fractions

$$\frac{p(x)}{q(x)} = \sum_{i=1}^{m} \sum_{j=1}^{n_j} \frac{r_{ij}}{(1 - \alpha_i x)^j}$$

do some math:

$$\sum_{n=0}^{\infty} \left(\sum_{i=1}^{m} \sum_{j=1}^{n_j} r_{ij} \binom{n+j-1}{j-1} \alpha_i^n \right) x^n$$

Approach

Expand into partial fractions

$$\frac{p(x)}{q(x)} = \sum_{i=1}^{m} \sum_{j=1}^{n_j} \frac{r_{ij}}{(1 - \alpha_i x)^j}$$

do some math:

$$\sum_{n=0}^{\infty} \left(\sum_{i=1}^{m} \sum_{j=1}^{n_j} r_{ij} \binom{n+j-1}{j-1} \alpha_i^n \right) x^n$$

Upshot: there are polynomials $A_i(n)$ such that

$$a_n = \sum_{i=1}^m A_i(n) \alpha_i^n$$

Like that formula for Fibonacci with the golden ratio in.

So a_n is an analytic function of n which has zeroes for infinitely many integer values.

So a_n is an analytic function of n which has zeroes for infinitely many integer values.

Like

 $\sin(\pi x)!$

So a_n is an analytic function of n which has zeroes for infinitely many integer values.

Like

$\sin(\pi x)!$

Ridiculous suggestion

What if the integers were bounded? In that case infinitely many zeroes \implies the function is zero!

The only absolute values on ${\bf Q}$ are

the usual one & $|\cdot|_p$

defined by $|p|_p = \frac{1}{p}$ and $|q|_p = 1$ for all other primes $q \neq p$.

The only absolute values on ${\bf Q}$ are

the usual one & $|\cdot|_p$

defined by $|p|_p = \frac{1}{p}$ and $|q|_p = 1$ for all other primes $q \neq p$. With $|\cdot|_p$ the integers are bounded!

The only absolute values on ${\bf Q}$ are

the usual one & $|\cdot|_p$

defined by $|p|_p = \frac{1}{p}$ and $|q|_p = 1$ for all other primes $q \neq p$.

With $|\cdot|_p$ the integers are bounded! Are the functions

$$\sum_{i=1}^m A_i(n)\alpha_i^n$$

p-adic analytic functions of n?

The only absolute values on ${\bf Q}$ are

the usual one & $|\cdot|_p$

defined by $|p|_p = \frac{1}{p}$ and $|q|_p = 1$ for all other primes $q \neq p$.

With $|\cdot|_p$ the integers are bounded! Are the functions

$$\sum_{i=1}^m A_i(n)\alpha_i^n$$

p-adic analytic functions of *n*?

Problem

The *p*-adic exponential function has finite radius of convergence.

The only absolute values on ${\bf Q}$ are

the usual one & $|\cdot|_p$

defined by $|p|_p = \frac{1}{p}$ and $|q|_p = 1$ for all other primes $q \neq p$.

With $|\cdot|_p$ the integers are bounded! Are the functions

$$\sum_{i=1}^m A_i(n)\alpha_i^n$$

p-adic analytic functions of *n*?

Problem

The *p*-adic exponential function has finite radius of convergence.

The fix

Choose p so that $|\alpha_i|_p = 1$ for all i, then $\alpha_i^{p-1} = 1 + \lambda_i$ with $|\lambda_i|_p \leq \frac{1}{p}$. Now $(\alpha_i^{p-1})^n$ is analytic!

Write n as r + (p-1)n' with $0 \le r < p-1$

Write *n* as r + (p-1)n' with $0 \le r < p-1$, then

$$a_n = \sum_{i=1}^m A_i(n)\alpha_i^n = \sum_{i=1}^m A_i(r+(p-1)n')\alpha_i^{r+(p-1)n'}$$

$$=\sum_{i=1}^{m}A_{i}(r+(p-1)n')\alpha_{i}^{r}(\alpha_{i}^{(p-1)})^{n'}$$

for each fixed r this function of n' is analytic.

Write *n* as r + (p-1)n' with $0 \le r < p-1$, then

$$a_n = \sum_{i=1}^m A_i(n)\alpha_i^n = \sum_{i=1}^m A_i(r+(p-1)n')\alpha_i^{r+(p-1)n'}$$

$$=\sum_{i=1}^{m}A_{i}(r+(p-1)n')\alpha_{i}^{r}(\alpha_{i}^{(p-1)})^{n'}$$

for each fixed r this function of n' is analytic. Infinitely many zeroes for integer n means $\exists r$ with infinitely many zeroes of the form r + (p-1)n'. So the function

$$\sum_{i=1}^{m} A_i (r + (p-1)n') \alpha_i^r (\alpha_i^{(p-1)})^{n'}$$

is identically zero, and all these $a_n = 0$ when $n \equiv r \pmod{p-1}$.

Finale

Theorem (Skolem \rightsquigarrow **Mahler** \rightsquigarrow **Lech)** All except finitely many indicies of the zeroes of a linear recurrence lie in a finite union of arithmetric progressions, i.e. they are all of the form nM + b for some $b \in B \subset \{0, ..., M - 1\}$, $n \in \mathbb{N}$.

Finale

Theorem (Skolem \rightsquigarrow **Mahler** \rightsquigarrow **Lech)** All except finitely many indicies of the zeroes of a linear recurrence lie in a finite union of arithmetric progressions, i.e. they are all of the form nM + b for some $b \in B \subset \{0, ..., M - 1\}$, $n \in \mathbb{N}$.

