EXPLICIT COMPUTATION WITH COLEMAN INTEGRALS

Journées Arithmétiques XXXI - Istanbul University

Alex J. Best
2/7/2019
Boston University

COLEMAN INTEGRATION

Question

Is there p-adic analogue of (path) integration?
Given a p-adic space, (\approx the p-adic solutions to some equations). We can locally write down power series defining a 1-form and try to integrate.

For instance
near a point $\alpha \in \mathrm{G}_{m}\left(\mathrm{Q}_{p}\right)=\mathrm{Q}_{p}^{\times}$:
$\frac{\mathrm{d} x}{x}=\frac{\mathrm{d}(\alpha+\mathrm{t})}{\alpha+t}=\frac{\mathrm{d} t}{\alpha+t}=\frac{1}{\alpha} \sum\left(\frac{-t}{\alpha}\right)^{n} \mathrm{~d} t$
so that

Bad topology!

$$
\int_{\alpha}^{\alpha+t} \frac{\mathrm{~d} x}{x}=-\sum \frac{1}{n+1}\left(\frac{-t}{\alpha}\right)^{n+1}+C
$$

Coleman integration: More problems

Working on one p-adic disk, the space of functions we might want to consider is

$$
T=\mathrm{Q}_{p}\langle t\rangle=\left\{\sum a_{\mathrm{i}} \mathrm{t}^{\mathrm{i}} ; a_{\mathrm{i}} \in \mathrm{Q}_{p}, \lim _{\mathrm{i} \rightarrow \infty}\left|a_{\mathrm{i}}\right|=0\right\}
$$

and we have the usual differential

$$
\mathrm{d}: T \rightarrow \Omega_{T}^{1}
$$

so our integral map should send

$$
\sum a_{i} t^{i} \mathrm{~d} t \mapsto \sum \frac{a_{i}}{i+1} t^{i+1}
$$

but $\frac{a_{i}}{i+1}$ may not converge to 0 .
\rightsquigarrow Instead work with a subring, of overconvergent functions

$$
\mathcal{T}^{\dagger}=\left\{\sum a_{\mathrm{i}} \mathrm{t}^{\mathrm{i}} ; a_{\mathrm{i}} \in \mathrm{Q}_{p}, \exists r>1 \text { such that } \lim _{\mathrm{i} \rightarrow \infty}\left|a_{\mathrm{i}}\right| r^{\mathrm{i}}=0\right\}
$$

Coleman's theorem

Take X / Z_{p} regular and proper, and p an odd prime.
We pick a lift of the Frobenius map, i.e. $\phi: X \rightarrow X$ which reduces to the Frobenius on $X \times_{Z_{p}} F_{p}$, and write $A^{\dagger}\left(\right.$ resp. $\left.A_{\text {loc }}(X)\right)$ for overconvergent (resp. locally analytic) functions on X.

Theorem (Coleman)

There is a \mathbf{Q}_{p}-linear map $\int_{b}^{X}:\left(\Omega_{A^{\dagger}}^{1} \otimes \mathbf{Q}_{p}\right)^{\mathrm{d}=0} \rightarrow A_{\text {loc }}(X)$ for which:

$$
\begin{gathered}
\mathrm{d} \circ \int_{b}^{x}=\mathrm{id}: \Omega_{A^{\dagger}}^{1} \otimes \mathbf{Q}_{p} \rightarrow \Omega_{\mathrm{loc}}^{1} \quad \text { "FTC" } \\
\int_{b}^{x} \circ \mathrm{~d}=\mathrm{id}: A^{\dagger} \hookrightarrow A_{\mathrm{loc}} \\
\int_{b}^{x} \phi^{*} \omega=\phi^{*} \int_{b}^{x} \omega \quad \text { "Frobenius equivariance" }
\end{gathered}
$$

COMPUTATION: GROUP STRUCTURE

If X / Z_{p} is an algebraic group, ω is a translation invariant 1 -form we have

$$
\int_{0}^{P+Q} \omega=\int_{0}^{P} \omega+\int_{0}^{Q} \omega \Longrightarrow \int_{0}^{P} \omega=\frac{1}{n} \int_{0}^{n P} \omega
$$

but if $n=\# \tilde{X}\left(F_{p}\right)$ then $n P \in B(0,1)$ so the integral on the right can be performed locally with only power series.

This requires arithmetic in the group, which may be hard. And can only integrate invariant differentials.

COMPUTATION: p-ADIC COHOMOLOGY

There is an alternate approach via p-adic cohomology, due to Balakrishnan-Bradshaw-Kedlaya (for hyperelliptic curves).

Let X / Z_{p} be a smooth curve of good reduction.
Pick a basis $\omega_{1}, \ldots, \omega_{2 g}$ for $H_{d R}^{1}(X)=\Omega_{A^{\dagger}}^{1} / d\left(A^{\dagger}\right)$ and let $U \subseteq X$ be an affine subspace containing no poles of any ω_{i} and on which we have a lift of Frobenius ϕ.

If we apply ϕ^{*} to ω_{i} we may write

$$
\begin{aligned}
\phi^{*} \omega_{i} & =\sum_{j=1}^{2 g} M_{i j} \omega_{j}-\mathrm{d} f_{i} \quad \text { using Kedlaya's algorithm, or a variant } \\
& \Longrightarrow \int_{\phi(b)}^{\phi(P)} \omega_{i}=\int_{b}^{P} \phi^{*} \omega_{i}=\int_{b}^{P}\left(\sum_{j=1}^{2 g} M_{i j} \omega_{j}\right)-\int_{b}^{P} \mathrm{~d} f_{i}
\end{aligned}
$$

COMPUTATION: p-ADIC COHOMOLOGY

$$
\begin{aligned}
\int_{\phi(b)}^{\phi(P)} \omega_{i} & =\int_{b}^{P}\left(\sum_{j=1}^{2 g} M_{i j} \omega_{j}\right)-\left(f_{i}(P)-f_{i}(b)\right) \\
\Longrightarrow \quad\left(\begin{array}{c}
\vdots \\
\int_{b}^{p} \omega_{i} \\
\vdots
\end{array}\right) & =(M-I)^{-1}\binom{f_{i}(P)-f_{i}(b)}{\vdots} \text { if } b=\phi(b), P=\phi(P)
\end{aligned}
$$

Every point $P \in U$ is close to one fixed by Frobenius, so we can use this system and formally integrate between nearby points to find integrals with endpoints in U.

To move outside of U we have to either work close to the boundary of the removed disks (i.e. in a highly ramified extension). Or use tricks due to the special geometry of the curve (extra automorphisms).

Motivating question

Can p-adic algorithms for computing zeta functions be turned into algorithms for computing Coleman integrals?

For instance Harvey and Minzlaff have introduced variants of Kedlaya's algorithm for hyper- and super-elliptic curves that work well when p is large!

They use interpolation to reduce the computation when reducing

$$
\phi^{*} \omega_{j} \rightsquigarrow \sum M_{i j} \omega_{j}
$$

but its not clear where the functions f_{i} went in their work, they can simplify by forgetting this data which is irrelevant for computing zeta functions, but not for Coleman integrals!

We need to know the f_{i} also, or, crucially, just their evaluations at points P, b.

THE REDUCTION PROCEDURE FOR SUPERELLIPTIC CURVES

Let

$$
C / Z_{p}: y^{a}=h(x), U=C \backslash\{y=0, \infty\}
$$

with $\operatorname{gcd}(a, \operatorname{deg}(h))=1, p \nmid a$, Minzlaff uses the lift of Frobenius ϕ where

$$
\phi(x)=x^{p}, \phi(y)=y^{p} \sum_{k=0}^{\infty}\binom{\frac{1}{a}}{k} \frac{\left(\phi(h)-h^{p}\right)^{k}}{y^{a p k}}
$$

$$
\rightsquigarrow \phi^{*}\left(x^{i} d x / y^{j}\right) \equiv \sum_{k=0}^{N-1} \sum_{r=0}^{b k} \mu_{k, r, j} x^{p(i+r+1)-1} y^{-p(a k+j)} \mathrm{d} x \quad\left(\bmod p^{N}\right) .
$$

To find a cohomologous sum of basis differentials we use relations like

$$
\begin{aligned}
& x^{i} y^{-a t-\beta} \mathrm{d} x-\frac{-a}{a t+\beta-a} \mathrm{~d}\left(S_{i}(x) y^{-a t-\beta+a}\right) \\
& =\frac{(a t+\beta-a) R_{i}(x)+a S_{i}^{\prime}(x)}{a t+\beta-a} y^{-a(t-1)-\beta} \mathrm{d} x
\end{aligned}
$$

repeatedly to reduce the y-degree until we reach the basis.

Note that the term

$$
\frac{(a t+\beta-a) R_{i}(x)+a S_{i}^{\prime}(x)}{a t+\beta-a}
$$

is linear in the exponent t of y, this is key to applying the algorithm of Bostan-Gaudry-Schost to speed up evaluation. But the term that we must add to evaluate the f_{i}

$$
\frac{-a}{a t+\beta-a} S_{i}(x) y^{-a t-\beta+a}
$$

is not linear in t ! However if we think of evaluating f as follows

$$
\left(\sum_{i=0}^{N} a_{i} y^{i}\right)=\left(\left(\cdots\left(\left(a_{N}\right) y+a_{N-1}\right) y+\cdots\right) y+a_{0}\right)
$$

we obtain a linear recurrence whose coefficients are fractions of linear functions of t.

SUPERELLIPTIC CURVES

Theorem (B.)
For X superelliptic as above. Let M be the matrix of Frobenius acting on $H_{d R}^{1}(C)$, basis $\left\{\omega_{i, j}=x^{i} \mathrm{~d} x / y^{j}\right\}_{i=0, \ldots, b-2, j=1, \ldots, a}$ and points $P, Q \in C\left(Q_{p^{n}}\right)$ (known to precision p^{N}).
If $p>(a N-1) b$, the vector of Coleman integrals $\left(\int_{P}^{Q} \omega_{i, j}\right)_{i, j}$ can be computed in time

$$
\widetilde{O}\left(g^{3} \sqrt{p} n N^{5 / 2}+N^{4} g^{4} n^{2} \log p\right)
$$

to absolute precision $N-v_{p}(\operatorname{det}(M-I))$.

APPLICATIONS: CHABAUTY'S METHOD

Given X / Q a smooth curve and $p>2 \cdot \operatorname{genus}(X)$ a prime of good reduction for X and base point $b \in X(Q)$. If

$$
\operatorname{rank}(\operatorname{Jac}(X))(\mathrm{Q})<\operatorname{genus}(X)
$$

we can find a differential $\omega_{\mathrm{ann}} \in H^{0}\left(X, \Omega^{1}\right)$ such that

$$
X(Q) \subseteq F^{-1}(0) \text { for } F(z)=\int_{b}^{z} \omega_{\text {ann }}
$$

this F and its zero set can be computed explicitly in practice, giving an explicit finite set containing $X(\mathbb{Q})$ in many examples.

Note: We can use either the group theory or p-adic cohomology method here.

Applications: Chabauty-Kim

Minhyong Kim has vastly generalised the above to cases where

$$
\operatorname{rank}(\operatorname{Jac}(X))(\mathrm{Q}) \geq \operatorname{genus}(X)
$$

This can be made effective, and computable
Theorem (Balakrishnan-Dogra-Muller-Tuitman-Vonk)
The (cursed) modular curve $X_{\text {split }}(13)$ (of genus 3 and jacobian rank 3), has 7 rational points: one cusp and 6 points that correspond to CM elliptic curves whose mod-13 Galois representations land in normalizers of split Cartan subgroups.

Their method can also be applied to other interesting curves:
Theorem (WIP B.-Bianchi-Triantafillou-Vonk)
The modular curve $X_{0}(67)^{+}$(of genus 2 and jacobian rank 2), has rational points contained in an explicitly computable set of 7 -adic points of cardinality 16 .

