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Why do we integrate things? Logarithms

Take dx
x , as a differential on the group R×, this is translation

invariant, i.e. (a · −)∗(dx/x) = d(ax)/ax = dx/x, hence∫ t

1

dx
x = log |t| : R× → R

has the property that∫ ab

1

dx
x =

∫ ab

a

dx
x +

∫ a

1

dx
x =

∫ b

1

dx
x +

∫ a

1

dx
x

Integration can define logarithm maps between groups and
their tangent spaces.

How do we calculate log |t|? Power series on R>0 and use the
relation log |t| = 1

2 log t
2



Why do we integrate things? Interesting functions

We have already seen polylogarithms, defined recursively by

L1(z) = − log(1− z), Lk(z) =
∫ z

0
Lk−1(s)

ds
s : C∖ [1,∞) → C

These functions can alternatively be described via the power
series

Lk(z) =
∞∑
n=1

zn

nk



Coleman integration

Is there p-adic analogue of this? Given a p-adic space, (as
p-adic solutions to some equations) we can locally write down
convergent power series for a 1-form and integrate.

Bad topology!

For instance near a point α:

ω =
d(α+ x)
α+ x =

dx
α+ x =

1
α

∑(
−x
α

)n
dx

so that∫
α+x

ω = −
∑ 1

n+ 1

(
−x
α

)n+1
+C

But we cannot find C! There is a different choice in each disk.



Coleman integration: More problems

Now we have functions

K ⟨t⟩ =
{∑

aiti;ai ∈ K, lim
i→∞

|ai| = 0
}

and
d : T→ Ω1T

and our integral map should send∑
aiti 7→

∑ ai
i+ 1 t

i+1

but
ai
i+ 1

may not converge to 0.

So instead we work with a subring of overconvergent functions

T † =
{∑

aiti;ai ∈ K, ∃r > 1 such that lim
i→∞

|ai| ri = 0
}
.



Coleman’s theorem

Take X/Zp a genus g curve, and p an odd prime.

We pick a lift of the Frobenius map, i.e. ϕ : X→ X which reduces
to the Frobenius on X× Fp, and write A† (resp. Aloc(X)) for
overconvergent (resp. locally analytic) functions on X.

Theorem (Coleman)

There is a Qp-linear map
∫ x
b : Ω

1
A† ⊗ Qp → Aloc(X) for which:

d ◦
∫ x

b
= id : Ω1A† ⊗ Qp → Ω1loc “FTC”

∫ x

b
◦d = id : A† ↪→ Aloc∫ x

b
ϕ∗ω = ϕ∗

∫ x

b
ω “Frobenius equivariance”

This also works over extensions of Qp.



Computation: Polylogarithms on P1∖{0, 1,∞}

Let’s revisit the polylogarithms

L1(z) = − log(1− z), Lk(z) =
∫ z

0
Lk−1(s)

ds
s : C∖ [1,∞) → C

Coleman integration then defines a p-adic analogue of these
functions, with exactly the same definition via iterated
integration on P1∖{0, 1,∞}.

(We must choose a branch of the p-adic logarithm, for
simplicity we take the Iwasawa logarithm where logp(p) = 0.)

The power series definition still holds near z = 0, but
otherwise we must use frobenius equivariance to define it.



Computing polylogarithms

Besser and de Jeu have given a complete algorithm to compute
these functions, and this is now implemented in SageMath.

For instance we can check relations among polylogarithms
sage: K = Qp(7, prec=30)
sage: x = K(1/3)
sage: (x^2).polylog(4) - 8*x.polylog(4) -

8*(-x).polylog(4)
O(7^23)

In exactly the same way as:
sage: x = RBF(1/3) # Real ball, or do pari(1/3)
sage: (x^2).polylog(4) - 8*x.polylog(4) -

8*(-x).polylog(4)
[+/- 2.51e-14]



Computation: group structure

If X/Qp is an algebraic group, ω is a translation invariant 1-form
we have

∫ P+Q

0
ω =

∫ P

0
ω +

∫ Q

0
ω =⇒

∫ P

0
ω =

1
n

∫ nP

0
ω

but if n = #X̃(Fp) then nP ∈ B(0, 1) so the integral on the right
can be performed locally with only power series.

This requires arithmetic in the group, which may be hard. And
can only integrate invariant differentials.



Computation: p-adic cohomology

There is an alternate approach via p-adic cohomology, due to
Balakrishnan-Bradshaw-Kedlaya.

Let X/Zp be a smooth curve of good reduction.

Pick a basis ω1, . . . , ω2g for H1dR(X) and let U ⊆ X be an affine
subspace containing no poles of any ωi and on which we have
a lift of frobenius ϕ.

If we apply ϕ∗ to ωi we may write

ϕ∗ωi =

2g∑
j=1

Mijωj − dfi using Kedlaya’s algorithm, or a variant

∫ ϕ(P)

ϕ(b)
ωi =

∫ P

b
ϕ∗ωi =

∫ P

b

 2g∑
j=1

Mijωj

−
∫ P

b
dfi



Computation: p-adic cohomology

∫ ϕ(P)

ϕ(b)
ωi =

∫ P

b

 2g∑
j=1

Mijωj

− (fi(P)− fi(b))

=⇒

 ...∫ P
b ωi
...

 = (M−I)−1
 ...

fi(P)−fi(b)
...

 if b = ϕ(b), P = ϕ(P)

Every point P ∈ U is close to one fixed by Frobenius, so we can
use the above and local integration to find integrals between
points of U.

To move outside of U we have to either work close to the
boundary of the removed disks (i.e. in a highly ramified
extension). Or use tricks due to the special geometry of the
curve (extra automorphisms).



Applications: Chabauty’s method

Given X/Q a smooth curve and p > 2 · genus(X) a prime of good
reduction for X and base point b ∈ X(Q). If

rank(Jac(X))(Q) < genus(X)

we can find a differential ωann ∈ H0(X,Ω1) such that

X(Q) ⊆ F−1(0) for F(z) =
∫ z

b
ωann

this F and its zero set can be computed explicitly in practice,
giving an explicit finite set containing X(Q) in many examples.

Note: We can use either the group theory or p-adic
cohomology method here.



Applications: Chabauty-Kim

Minhyong Kim has vastly generalised the above to cases where

rank(Jac(X))(Q) ≥ genus(X)

This can be made effective, and computable

Theorem (Balakrishnan-Dogra-Muller-Tuitman-Vonk)
The (cursed) modular curve Xsplit(13) (of genus 3 and jacobian
rank 3), has 7 rational points: one cusp and 6 points that
correspond to CM elliptic curves whose mod-13 Galois
representations land in normalizers of split Cartan subgroups.

Their method can also be applied to other interesting curves:

Theorem (WIP B.-Bianchi-Triantafillou-Vonk)
The modular curve X0(67)+ (of genus 2 and jacobian rank 2),
has rational points contained in an explicitly computable finite
set of 7-adic points.



Motivating question

Can p-adic algorithms for computing zeta functions be turned
into algorithms for computing Coleman integrals?

For instance Harvey and Minzlaff have introduced variants of
Kedlaya’s algorithm for hyper- and super-elliptic curves that
works well when p is large!

They use interpolation to reduce the work when reducing

ϕ∗ωj ⇝
∑

Mijωj

but its not clear where the functions fi went.

Key to their interpolation is the fact that reductions in
cohomology are linear in the exponents of x, y.



Superelliptic curves

We can write down a similar recurrence that evaluates the
exact forms also, using( N∑

i=t
aixi
)

= ((· · · ((aN)x+ aN−1)x+ · · · )x+ a0)

Theorem (B.)
Let C/Zpn : ya = h(x)

with gcd(a, deg(h)) = 1, p ∤ a, Let M be the matrix of Frobenius,
acting on H1dR(C), basis {ωi,j = xi dx/yj}i=0,...,b−2,j=1,...,a, and
points P,Q ∈ C(Qpn) known to precision pN, if p > (aN− 1)b,
the vector of Coleman integrals

(∫ Q
P ωi,j

)
i,j
can be computed in

time Õ
(
g3
√
pnN5/2 + N4g4n2 log p

)
to absolute precision N− vp(det(M− I)).


