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Coleman integration: Let X/K be a smooth projective and geometrically integral curve
over a number field.

When g = genus(X) ≥ 2 we have #X(K) < ∞ by Faltings’ theorem.

Classic Chabauty

Bourbaki in Dieulefit

Let p be a prime of good reduction for X assume we have a
Qp-linear assignment

∫ x
b : Ω1

X ⊗ Qp → Qp for which:

d ◦
∫ x

b
= id, “FTC”

∫ x

b
◦ d = id

let J = Jac(X)

X(Q) X(Qp)

J(Q) J(Qp) Lie J(Qp)

We have
J(Q) ∩ X(Qp) ⊇ X(Q)

now if
r = rank(J(Q)) < g

then this intersection is finite! If we can compute these logarithm functions we can potentially
find the intersection explicitly.

Number field Chabauty
If we work over a fixed number field K one can make sense of all of the above, and sometimes
one can do better following ideas of Siksek and Wetherell.

If X/K is a curve over a number field K of degree d then ResK/Q(X) is a d-dimensional
projective variety such that

V = ResK/Q(X)(Q) ↔ X(K)

and
A = ResK/Q(Jac(X))

is a gd-dimensional abelian variety. Then the analogous Chabauty diagram is

V (Q) V (Qp)

A(Q) A(Qp) Lie A(Qp)

where now
dim A(Q) = rank(J(K)), dim V (Q) = d

If d + r ≤ gd then we might hope that the intersection of these two subspaces is finite, and
we can therefore cut out X(K) whenever r ≤ (g − 1)[K : Q].

Warning 1. The intersection is not always finite! This was noted by Siksek, but even
Siksek’s guess for a sufficient condition also turned out to be false, as shown by Dogra, with
the example of a genus 3 hyperelliptic curve over Q(

√
33).

Nevertheless in practice this approach is quite useful, Siksek gives an explicitly checkable
condition that can be used to verify that rational points are alone in their residue disk.

Theorem (Siksek). For every X/K and Q ∈ X(K) there is an effectively computable matrix
Mp(Q) defined using the integrals of holomorphic 1-forms against a basis of a free subgroup of
finite index in J(K), and the local behaviour of the basis of 1-forms such that, if the reduction
of Mp(Q) has rank d then Q is the only K-rational point of the curve in a p-adic unit ball
around Q.

Example (B.–Dahmen). Consider X : x13 + y13 = z5, one of the generalized Fermat curves,
then there exists a covering map

X → C : y2 = 4x5 + 1677α2 − 2769α + 637/K

where
K = Q(α) = Q[x]/(x3 − x2 − 4x − 1)

is the unique cubic subfield of Q(ζ13). This curve has rank 2 over K and genus 2, so regular
Chabauty does not apply. Nevertheless Siksek’s techniques using the prime 47 suffice to show
that there are only five K-rational points on C.

Problem: There are too many functions satisfying all the conditions above, so computing
one of them on the nose is hard

Coleman’s idea: impose that the integral pullback along rigid analytic maps, including for
a chosen lift of Frobenius∫ x

b
ϕ∗ω = ϕ∗

∫ x

b
ω “Frobenius equivariance”

We can compute the abelian integrals needed for Chabauty by multiplying points on our
curve till they lie in the same residue disk on the Jacobian.

But we would also like for some applications to compute iterated integrals, using Coleman
integrals as coefficient functions for 1-forms and iterating again.

To do this, we cannot allow arbitrary rigid functions on our space, but must remove a finite
union of disks and consider overconvergent functions:

U ′

U

X

For example in this way p-adic polylogarithms may be defined

lin(z) =
∫

lin−1(z)dz

z
, li1(z) = − log(1 − z)

Algorithms to compute these are due to Besser and de Jeu.

Applications of this theory:

Coleman integration can be used to define p-adic regulators,
p-adic heights, p-adic periods.

Cursed curve by S.
Hashimoto

Of these, p-adic heights can be expressed in terms of double
integrals and have played a big role in the effort of several
authors that enables the non-abelian Chabauty of Kim to be
made effective and computable, some highlights:

Theorem (Balakrishnan–Dogra–Müller–Tuitman–Vonk). The
(non-)split Cartan modular curve of level 13 is a genus 3 curve
which can be given as

Xs(13) : y4 + 5x4 − 6x2y2 + 6x3z + 26x2yz + 10xy2z−
10y3z − 32x2z2 − 40xyz2 + 24y2z2 + 32xz3 − 16yz3 = 0

its Jacobian has rank 3, and Picard rank 3. Then quadratic
Chabauty shows that there are exactly 7 rational points on
this curve.

Theorem (Balakrishnan–B.–Bianchi–Lawrence–Müller–Triantafillou–Vonk). The number of
rational points on the Atkin–Lehner quotient modular curves X0(N)+ := X0(N)/wN , all of
genus 2, rank 2 and Picard rank 2 for N ∈ {67, 73, 103} are as follows:

#X0(67)+(Q) = 10, #X0(73)+(Q) = 10, #X0(103)+(Q) = 8.

This involves non-abelian Chabauty and Mordell–Weil sieving at 31 and 137 in the N = 67
case.

Theorem (Balakrishnan–Dogra–Müller–Tuitman–Vonk). The non-split Cartan modular curve
of level 17 is a genus 6 curve, its Jacobian has rank 6. Quadratic Chabauty shows that there
are exactly 7 rational points on this curve.

Many authors by now use quadratic Chabauty computations for interesting questions in
rational points, Adžaga, Arul, Beneish, Chen, Chidambaram, Keller, and Wen Arul and
Müller, Chidambaram, Keller, and Padurariu, and more ...

Over number fields? work of Balakrishnan-Besser-Bianchi-Muller caries out explicit quadratic
Chabauty over number fields

Goal: extend explicit computational tools to general curves over general p-adic fields, to
enable experiments and explicit proofs.

Anatomy of a p-adic integral computation: after Balakrishnan-Bradshaw-Kedlaya

1. Pick a lift of the Frobenius map
2. Compute Frobenius action on H1

3. Evaluate primitives for at least one point in each disk
4. Compute integrals between nearby points
5. Solve a linear system

Authors Capabilities System
Balakrishnan-Bradshaw-Kedlaya Odd hyperelliptic curves / Qp Sage
Balakrishnan-Tuitman (BT) General curves with a map to P1 /

ramified
Magma

B. Superelliptic curves / Qpn (some re-
striction on p)

Julia/Nemo

B.-Kaya-Keller(+CMM) (after BT) General curves with a map to P1 /
mixed

Magma

In the algorithm of Balakrishnan-Tuitman and BKK we work with almost any plane model
of a curve, over a number field K, of the form

X : Q(x, y) = 0.

(For now we assume p inert in K and take the completion Kp ' Qpn)

We consider this together with a map X
x7−→ P1.

We work in the ring R†/Kp of overconvergent p-adic functions away from the ramification
locus.

Then using prior work of Tuitman we can find a Frobenius lift

ϕ : R† → R†

x 7→ xp

c 7→ σ(c) for c ∈ Qpn ,

a vector of primitives and the matrix capturing the Frobenius action on cohomology

(ϕ∗ωi)i = M(ωi)i + (dfi)i︸ ︷︷ ︸
=0

∈ H1
rig(X ⊗ Kp).

these can be computed for a basis (ωi)i of 1-forms p-adically integral on the complement of
the ramification locus.

Roughly, these algorithms (based on Kedlaya’s) approximate the Frobenius lift applied to
differentials, then try to iteratively reduce the degree of the resulting series by subtracting
appropriately chosen exact differentials. Generally need to consider many terms!

Over extension fields: In order to integrate over Qpn we start with the known data above.
Assuming we want to integrate between two points of X(Qpn).

We define the action of ϕ on X(Qpn) via

ϕ(x0, y0) = (σ−1(ϕ(x)(x0, y0)), σ−1(ϕ(y)(x0, y0))).

On functions f : X(Qpn) → Qpn the action of ϕ is then

ϕ(f)(P ) = σf(ϕ(P )).

The action the nth power of Frobenius on the basis differentials is given by

ϕ∗n(ωi)i =
∑

t=n−1,...,0

 ∏
s=n−1,...,t+1

σs(M)

ϕ∗t(dfi)i +
∏

s=n−1,...,0
σs(M)(ωi)i.

so that 1 −
∏

s=n−1,...,0
σs(M)

(∫ Q

P
ωi

)
i

=

(∫ ϕnP

P
ωi

)
i

+
(∫ Q

ϕnQ
ωi

)
i

+
∑

t=n−1,...,0

 ∏
s=n−1,...,t+1

σs(M)

σt
(
fi(ϕtQ) − fi(ϕtP )

)
i
.

U ′

U

X

·
·

·
··

As we can compute the RHS and the matrix M we can compute
the integrals of basis differentials.

The primitives fi must be evaluated at at least one point in
each disk, and at Frobenius images of these points.

This forces us to pass to a totally ramified extension on top of
the unramified one we started with. We simply choose ϕ to be
an element of the Galois group of this extension that extends
the usual Frobenius on the unramified extension.

In the algorithm for superelliptic curves the superelliptic auto-
morphism is used to conclude that integrals between the bad
points all vanish and avoid passing to additional ramified ex-
tensions.

Conclusion: The algorithm of Balakrishnan-Tuitman can be extended to completely general
p-adic fields, but remains quite time consuming.

We have a working implementation, and will soon release a preprint with proofs of correctness
and complexity analysis. The Coleman integral is Galois equivariant, which is convenient to
check that the implementation is correct, but doesn’t seem to help yet when computing.

Time for something completely different: A Wieferich prime is one for which

2p−1 ≡ 1 (mod p2),

only 2 are known, unlikely p-adic closeness.

Katz (2015) reinterprets this as the fact that 2#Gm(Fp) is closer to the identity p-adically
than it is forced to be.

If we assume that this happens no more often that it would randomly we get a heuristic for
the distribution of Wieferich primes.

Generalizing we consider an abelian variety A and select an integral model of the Lie algebra
of the Neron model and a point P of infinite order, consider

WP : {p : p prime, p good} → Lie(A/Z) ⊗Z (R/Z) ∼= (R/Z)d

p 7→
((∫ #AFp (Fp)P

0
ωi

)
/p mod p

)
i

we call this quantity WP (p) the Wieferich quotient, the “first digit” of the integral.

Katz conjectures that as long as P generates a Zariski dense subgroup, if we take larger p
the Wieferich quotients equidistribute.

The genus 2 curve
X : y2 = 4x5 − 8x4 + 8x3 − 4x2 + 1

997.b.997.1, has a rational point x = (0, 1) such that the class P = [x − ∞] ∈ Jac(X)(Q) is
of infinite order. A histogram of Wieferich quotients of the Coleman integrals of invariant
1-forms is as follows:

for the Wieferich quotients WP (p) for all primes 15 < p < 10000, and p 6= 997.

However for the genus 2 curve

X : y2 = 4x5 − 8x4 + 8x3 − 4x2 + 1

2080.a.4160.2, with P = [(0, 1) − ∞] ∈ Jac(X)(Q) of infinite order, the Wieferich quotients
WP (p) for all primes 15 < p < 10000.

This curve has Jacobian over Q isogenous the product of elliptic curves 32.a and 65.a. As
32.a is rank 0, the point P will not generate a Zariski dense subgroup of the Jacobian in this
case.

We see that the annihilating differential is (mod p)

dx

y
+ 2x

dx

y

for all these p, so almost certainly a global annihilating differential.

Doing these computations type of we gain some evidence for Katz’s conjecture, even in cases
where other things might interfere, e.g. CM.
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https://www.lmfdb.org/Genus2Curve/Q/997/b/997/1
https://www.lmfdb.org/Genus2Curve/Q/2080/a/4160/2
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