Riemann Hypotheses

Alex J. Best

WMS Talks

4/2/2014

(ロ)、

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In this talk:

- 2 The original hypothesis
- 3 Zeta functions for graphs
- 4 More assorted zetas
- 5 Back to number theory

6 Conclusion

The Riemann zeta function: Euler's work

A brief history of ζ :

• In 1735 Euler solves the Basel problem by finding that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Riemann zeta function: Euler's work

- A brief history of ζ :
 - In 1735 Euler solves the Basel problem by finding that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

ション ふゆ アメリア メリア しょうくの

• He also discovered more general formulae for $\sum_{n=1}^{\infty} n^{-2k}$ in terms of the Bernoulli numbers B_{2k} for all natural k.

The Riemann zeta function: Euler's work

A brief history of ζ :

• In 1735 Euler solves the Basel problem by finding that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

- He also discovered more general formulae for $\sum_{n=1}^{\infty} n^{-2k}$ in terms of the Bernoulli numbers B_{2k} for all natural k.
- In fact, a nice form for

$$\sum_{n=1}^{\infty} n^{-2k-1},$$

ション ふゆ アメリア メリア しょうくの

is still unknown today.

A brief history of ζ :

 In 1859 Bernhard Riemann, a well known analyst, publishes a paper on his work counting the primes using methods from analysis.

VII.

Ueber die Anzahl der Primzahlen unter einer gegobenen Grösse. (Monatsberichte der Berliner Akademie, November 1859.)

Meinen Dauk für die Ausseichung, welche mir die Akademie durch die Aufahnne unter ihre Correspondenten hat zu Theil werelen lassen, glaube ich am besten dadurch zu erkennen zu geben, dass ich von der hierdruch erhaltennen Erklaubniss baltigkeit der Primnelhen; ein Gegenstand, welcher durch das Interesse, welches Gauss und Dirichlet demedben längere Zeit geschenkt haben, einer solchen Mitheilung viellecht nicht gaus unwerthe erscheint.

Bei dieser Untersuchung diente mir als Ausgangspunkt die von Euler gemachte Bemerkung, dass das Product

$$\prod \frac{1}{1-\frac{1}{p^2}} = \Sigma \frac{1}{n^2}$$

wenn für p alle Primzahlen, für n alle gnazen Zahlen gosstat worden. Die Function der complexen Verinderlichen 23, welche durch diese beiden Audrücke, so lange sie convergien, dargestellt wird, bezichnes ich durch $\xi(c)$. Beide convergien nur, so lange der reeße Theil von s grösser als 1 ist; es lisat sich indess leicht ein immer gültig bleibender Ausrituck der Function finden. Durch Auwendung der Gleichung

$$\int_{0}^{\infty} e^{-sx} x^{s-1} dx = \frac{\Pi(s-1)}{n^{s}}$$

erhält man zunächst

$$\Pi(s-1) \,\, \xi(s) = \int_{0}^{\infty} \frac{x^{s-1} \, dx}{e^{x}-1} \, .$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

A brief history of ζ :

- In 1859 Bernhard Riemann, a well known analyst, publishes a paper on his work counting the primes using methods from analysis.
- In the paper he considers

$$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}.$$

VII.

Ueber die Anzahl der Primzahlen unter einer gegobenen Grösse. (Monatsberichte der Berliner Akademie, November 1859.)

Meinen Dank für die Ausscichung, welche mir die Alusdenie durch die Aufmähnen unter ihre Corespondenten hat zu Theil werden lassen, glaube ich am besten dadurch zu erkennen zu geben, dass ich von der hierdruch erhaltenne Erklaubniss baldiget Gebrauch mache durch Mitheling einer Untersuchung über die Häufigkeit der Primnelhe; ein Gegenstand, welcher durch das Interszes, welches Gauss und Dirichlet demselben lingere Zeit geschenkt haben, einer solehen Mitheling wiellecht nicht gaus unwerth erscheint.

Bei dieser Untersuchung diente mir als Ausgangspunkt die von Euler gemachte Bemerkung, dass das Product

$$\prod \frac{1}{1 - \frac{1}{p^s}} = \Sigma \frac{1}{n^s}$$

wenn für p alle Primzahlen, für n alle ganzen Zahlen gosett werden. Die Function der complexen Verinderüchen 25, welche durch diese beiden Audrücke, so lange sie convergiren, dargestellt wird, bezeichne ich durch $\xi(c)$. Beide convergiren nur, so lange der reelle Theil von s grösser als 1 ist; es lisst sich indess leicht ein immer gültig bleibender Ausdurck der Function findene. Durch Auwendung der Gleichung

$$\int_{0}^{\infty} e^{-sx} x^{s-1} dx = \frac{\Pi(s-1)}{n^{s}}$$

erhält man zunächst

$$\Pi(s-1) \,\, \xi(s) = \int_{0}^{\infty} \frac{x^{s-1} \, dx}{e^{s}-1} \,.$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

A brief history of ζ :

- In 1859 Bernhard Riemann, a well known analyst, publishes a paper on his work counting the primes using methods from analysis.
- In the paper he considers

$$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}.$$

 Here the notation ζ for this function is used for the first time.

VII.

Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. (Monatsberichte der Berliner Akademie, Norember 1859.)

Meinen Dank für die Ausseichnung, welche mir die Akademie durch die Aufnahme unter ihre Corespondenten hat au Theil werehe lassen, glaube ich am besten dadurch zu ertennen zu geben, dass ich von der bierdurch erhaltenne Erklaubniss baldiget Gebrauch machdurch Mitheling einer Untersuchung über die Häufigkeit der Primzhlen; ein Gegenstand, welcher durch das Interesse, welches Gauss und Dirichlet demselben lingere Zeit geschenkt haben, einer solehen Mitheling viellecht nicht gaus unwerth erscheint.

Bei dieser Untersuchung diente mir als Ausgangspunkt die von Euler gemachte Bemerkung, dass das Product

$$\prod \frac{1}{1-\frac{1}{p^*}} = \Sigma \frac{1}{n^*},$$

wenn für p alle Primzhlen, für n alle ganzen Zahlen gesett werden. Die Function der complexen Veründerlichen s_i welche durch diese beiden Ausdrücke, so lange sie convergiren, dargestellt wird, bezichne ich durch $\{\xi(t), Beide convergiren nur, so lange der reelle Theil von$ <math>s grösser als 1 ist; es lisst sich indess leicht ein immer gültig bleibender Ausdrück der Punction finden. Durch Auwendung der Gleiehung

$$\int_{0}^{\infty} e^{-\pi x} x^{s-1} dx = \frac{\Pi(s-1)}{n^{s}}$$

erhält man zunächst

$$\Pi(s-1) \,\, \xi(s) = \int_{0}^{\infty} \frac{x^{s-1} \, dx}{e^{x}-1} \, .$$

イロト 不得 とうき イヨト

A brief history of ζ :

- In 1859 Bernhard Riemann, a well known analyst, publishes a paper on his work counting the primes using methods from analysis.
- In the paper he considers

$$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}.$$

- Here the notation ζ for this function is used for the first time.
- Along the way he (essentially) makes four hypotheses.

VII.

Ueber die Anzahl der Primzahlen unter einer gegobenen Grösse. (Monatsberichte der Berliner Akademie, November 1859.)

Meinen Dank für die Ausseichung, welche mir die Akademie durch die Aufahnen unter ihre Correspondenten hat zu Theil werelen lassen, glaube ich am besten dadurch zu ertemene zu geben, dass ich von der bierdurch erhaltenne Erklaubniss baltiget Gebrauch mache durch Mitheling einer Untersuchung über die Häufigkeit der Primzhlen; ein Gegenstand, welcher durch das Interesso, welches Gauss und Dirichlet demoßben längere Zeit geschenkt haben, einer solchen Mitheling viellecht nicht gaus unwerth erscheint.

Bei dieser Untersuchung diente mir als Ausgangspunkt die von Euler gemachte Bemerkung, dass das Product

$$\prod \frac{1}{1-\frac{1}{p^*}} = \Sigma \frac{1}{n^*}$$

wenn für p alle Primzhlen, für n alle ganzen Zahlen gesett werden. Die Function der complexen Veründerlichen s_i welche durch diese beiden Ausdrücke, so lange sie convergiren, dargestellt wird, bezichne ich durch $\xi(c)$. Beide convergiren nur, so lange der reelle Theil von s grösser als 1 ist; es lisst sich indess leicht ein immer gültig bleibender Ausdruck der Punction finden. Durch Ausvendung der Gleichung

$$\int_{0}^{\infty} e^{-sx} x^{s-1} dx = \frac{\Pi(s-1)}{n^{s}}$$

erhält man zunächst

$$\Pi(s-1) \,\, \xi(s) = \int_{0}^{\infty} \frac{x^{s-1} \, dx}{e^{s}-1} \,.$$

・ロッ ・ 雪 ・ ・ ヨ ・ ・ 日 ・

Introduction The original hypothesis Zeta functions for graphs More zetas Number theory again Conclusion

The Riemann zeta function: What Riemann did

In his work Euler had (more or less) found that

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1-p^s}.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The Riemann zeta function: What Riemann did

In his work Euler had (more or less) found that

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^s}.$$

ション ふゆ アメリア メリア しょうくの

In his paper Riemann uses this to take the function $\zeta \colon \{\sigma + it \in \mathbb{C} \mid \sigma > 1\} \to \mathbb{C}$ and extend it to all of \mathbb{C} .

The Riemann zeta function: What Riemann did

In his work Euler had (more or less) found that

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^s}.$$

In his paper Riemann uses this to take the function $\zeta: \{\sigma + it \in \mathbb{C} \mid \sigma > 1\} \rightarrow \mathbb{C}$ and extend it to all of \mathbb{C} . He defines an **analytic continuation** from $\mathbb{C} \rightarrow \mathbb{C}$ which matches the series definition given above when the series converges (when $\operatorname{Re}(s) > 1$).

ション ふゆ アメリア メリア しょうくの

The Riemann zeta function: What Riemann did

In his work Euler had (more or less) found that

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^s}.$$

In his paper Riemann uses this to take the function $\zeta : \{\sigma + it \in \mathbb{C} \mid \sigma > 1\} \rightarrow \mathbb{C}$ and extend it to all of \mathbb{C} . He defines an **analytic continuation** from $\mathbb{C} \rightarrow \mathbb{C}$ which matches the series definition given above when the series converges (when $\operatorname{Re}(s) > 1$). Riemann also discovers a **functional equation** for the zeta function by showing that

$$\pi^{-s/2}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \pi^{-(1-s)/2}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The Riemann zeta function: What does it look like?

$$f(s) = s$$
:

The Riemann zeta function: What does it look like?

 $\zeta(s)$:

900

The Riemann zeta function: What does it look like?

 $\zeta(s)$:

Introduction The original hypothesis Zeta functions for graphs More zetas Number theory again Conclusion

The Riemann zeta function: What does it look like?

$$\zeta(s)$$
:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The zeta function has "trivial" zeroes at the negative even integers, but also "non-trivial" zeroes lying on the line $\text{Re}(s) = \frac{1}{2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The zeta function has "trivial" zeroes at the negative even integers, but also "non-trivial" zeroes lying on the line $\text{Re}(s) = \frac{1}{2}$.

The Riemann Hypothesis (RH)

All non-trivial zeroes of the Riemann zeta function lie on the critical line

$$\left\{s\in\mathbb{C}: \ \mathsf{Re}(s)=rac{1}{2}
ight\}.$$

ション ふゆ アメリア メリア しょうくの

The zeta function has "trivial" zeroes at the negative even integers, but also "non-trivial" zeroes lying on the line $\text{Re}(s) = \frac{1}{2}$.

The Riemann Hypothesis (RH)

All non-trivial zeroes of the Riemann zeta function lie on the critical line

$$\left\{s\in\mathbb{C}: \ \mathsf{Re}(s)=rac{1}{2}
ight\}.$$

ション ふゆ アメリア メリア しょうくの

Why do we care?

The zeta function has "trivial" zeroes at the negative even integers, but also "non-trivial" zeroes lying on the line $\text{Re}(s) = \frac{1}{2}$.

The Riemann Hypothesis (RH)

All non-trivial zeroes of the Riemann zeta function lie on the critical line

$$\left\{s\in\mathbb{C}: \ \mathsf{Re}(s)=rac{1}{2}
ight\}.$$

Why do we care?

 It is a natural function to consider, and knowing the zeroes of a complex function are key to understanding it.

ション ふゆ く は マ く ほ マ く し マ

The zeta function has "trivial" zeroes at the negative even integers, but also "non-trivial" zeroes lying on the line $\text{Re}(s) = \frac{1}{2}$.

The Riemann Hypothesis (RH)

All non-trivial zeroes of the Riemann zeta function lie on the critical line

$$\left\{s\in\mathbb{C}:\; \mathsf{Re}(s)=rac{1}{2}
ight\}.$$

Why do we care?

- It is a natural function to consider, and knowing the zeroes of a complex function are key to understanding it.
- The location of the zeroes of $\zeta(s)$ relates in a strong way to the distribution of the primes.

The Riemann zeta function: Why number theorists care

The prime counting function $\pi(x)$

We define

$$\pi(x) = |\{ p \in \mathbb{N} \colon p ext{ prime}, ext{ } p \leq x \}|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Riemann zeta function: Why number theorists care

The prime counting function $\pi(x)$

We define

$$\pi(x) = |\{p \in \mathbb{N} \colon p \text{ prime, } p \leq x\}|.$$

Gauss noticed that $\pi(x)$ is approximated well by

$$\operatorname{Li}(x) = \int_0^x \frac{\mathrm{d}t}{\log t}$$

ション ふゆ アメリア メリア しょうくの

which was later confirmed by some of Chebyshev's work.

The Riemann zeta function: Why number theorists care

The prime counting function $\pi(x)$

We define

$$\pi(x) = |\{p \in \mathbb{N} \colon p \text{ prime, } p \leq x\}|.$$

Gauss noticed that $\pi(x)$ is approximated well by

$$\operatorname{Li}(x) = \int_0^x \frac{\mathrm{d}\,t}{\log t}$$

which was later confirmed by some of Chebyshev's work. The Riemann hypothesis is actually equivalent to the statement that there exists $c_2 > c_1 > 0$ such that

$$\mathsf{Li}(x) + c_1 \sqrt{x} \log(x) \le \pi(x) \le \mathsf{Li}(x) + c_2 \sqrt{x} \log(x)$$

ション ふゆ く は マ く ほ マ く し マ

eventually. These are the best possible bounds!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Expander graphs

Suppose we want to design a communications network (for computers, people, phones, etc.) by linking together n entities with wires, such that each object has only k wires from it (this is called k-regular).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Expander graphs

```
Suppose we want to design a communications network (for computers, people, phones, etc.) by linking together n entities with wires, such that each object has only k wires from it (this is called k-regular). We shall call our entities nodes and wires edges, as in graph theory. The set of
```

nodes is V and edges E.

(ロ) (型) (E) (E) (E) (O)

Expander graphs

```
Suppose we want to design a communications network (for computers, people, phones, etc.) by linking together n entities with wires, such that each object has only k wires from it (this is called k-regular). We shall call our entities nodes and wires edges, as in graph theory. The set of
```

nodes is V and edges E

For today we will think of our goal as the following: If we split our network into two non-empty parts (a partition) there should be lots of edges between the two halves.

Expander graphs

```
Suppose we want to design a communications network (for computers, people, phones, etc.) by linking together n entities with wires, such that each object has only k wires from it (this is called k-regular).
```

We shall call our entities **nodes** and wires **edges**, as in graph theory. The set of nodes is V and edges E.

For today we will think of our goal as the following: If we split our network into two non-empty parts (a partition) there should be lots of edges between the two halves.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Expander graphs

```
Suppose we want to design a communications network (for computers, people, phones, etc.) by linking together n entities with wires, such that each object has only k wires from it (this is called k-regular).
```

We shall call our entities **nodes** and wires **edges**, as in graph theory. The set of nodes is V and edges E.

For today we will think of our goal as the following: If we split our network into two non-empty parts (a partition) there should be lots of edges between the two halves.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Given such a graph G we can fix a numbering of the vertices and form:

The adjacency matrix

Is an $n \times n$ matrix $A_G = (a_{i,j})$ of 1's and 0's given by

 $a_{i,j} = 1 \iff$ there is an edge between vertex *i* and vertex *j*.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Given such a graph G we can fix a numbering of the vertices and form:

The adjacency matrix

Is an $n \times n$ matrix $A_G = (a_{i,j})$ of 1's and 0's given by

 $a_{i,j} = 1 \iff$ there is an edge between vertex *i* and vertex *j*.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

What is the set of eigenvalues (the spectrum) of this matrix?

Given such a graph G we can fix a numbering of the vertices and form:

The adjacency matrix

Is an $n \times n$ matrix $A_G = (a_{i,j})$ of 1's and 0's given by

 $a_{i,j} = 1 \iff$ there is an edge between vertex *i* and vertex *j*.

What is the set of eigenvalues (the **spectrum**) of this matrix? So we define $\lambda(G)$ to be the next largest eigenvalue after k, i.e.

$$\lambda(G) = \max_{|\lambda_i| < k} |\lambda_i|.$$

ション ふゆ アメリア メリア しょうくの

Given such a graph G we can fix a numbering of the vertices and form:

The adjacency matrix

Is an $n \times n$ matrix $A_G = (a_{i,j})$ of 1's and 0's given by

 $a_{i,j} = 1 \iff$ there is an edge between vertex *i* and vertex *j*.

What is the set of eigenvalues (the **spectrum**) of this matrix? So we define $\lambda(G)$ to be the next largest eigenvalue after k, i.e.

$$\lambda(G) = \max_{|\lambda_i| < k} |\lambda_i|.$$

The gap between this value and k is very important for optimisation problems of this nature. The larger the better!

Ramanujan graphs

It turns out (Alon, Boppara) that for fixed $\epsilon > 0$ only finitely many graphs do not satisfy

$$\lambda(G) \geq 2\sqrt{k-1} - \epsilon.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Ramanujan graphs

It turns out (Alon, Boppara) that for fixed $\epsilon > 0$ only finitely many graphs do not satisfy

$$\lambda(G) \geq 2\sqrt{k-1} - \epsilon.$$

This set of graphs must be pretty special, so we name them

Ramanujan graphs

A graph G as above which satisfies

$$\lambda(G) \leq 2\sqrt{k-1}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

These are highly optimal from our point of view!
Ramanujan graphs

It turns out (Alon, Boppara) that for fixed $\epsilon > 0$ only finitely many graphs do not satisfy

$$\lambda(G) \geq 2\sqrt{k-1} - \epsilon.$$

This set of graphs must be pretty special, so we name them

Ramanujan graphs

A graph G as above which satisfies

$$\lambda(G) \leq 2\sqrt{k-1}.$$

These are highly optimal from our point of view!

Only in 2013 were Ramanujan graphs shown to exist for $k \neq p^n + 1$ (Marcus, Speilman, Srivastava).

Take a graph G as described above (k-regular for some k, finite and connected). We define:

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A prime in G

A prime in G is a **path** in G that is

Take a graph G as described above (k-regular for some k, finite and connected). We define:

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Take a graph G as described above (k-regular for some k, finite and connected). We define:

Take a graph G as described above (k-regular for some k, finite and connected). We define:

Take a graph G as described above (k-regular for some k, finite and connected). We define:

Take a graph G as described above (k-regular for some k, finite and connected). We define:

The Ihara zeta function of G

$$\zeta_G(u) = \prod_{P \text{ a prime of } G} \left(1 - u^{\operatorname{length}(p)}\right)^{-1}.$$

The Ihara determinant formula

Though we have defined $\zeta_G(u)$ in a similar way to $\zeta(s)$ the resulting function is a lot simpler!

The Ihara determinant formula

Though we have defined $\zeta_G(u)$ in a similar way to $\zeta(s)$ the resulting function is a lot simpler! In fact we always have the following expression for ζ_G :

The Ihara determinant formula

$$\zeta_G(u)^{-1} = (1-u^2)^{|E|-|V|} \det((1-(k-1)u^2)I - Au).$$

The lhara zeta function has slightly different behaviour than the classical zeta, there are poles instead of zeroes!

The Ihara zeta function has slightly different behaviour than the classical zeta, there are poles instead of zeroes! So we might conjecture

RH for graphs

In the strip $0 < \operatorname{Re}(u) < 1$ the only poles of $\zeta_G(u)$ are on the line $\operatorname{Re}(u) = \frac{1}{2}$.

The Ihara zeta function has slightly different behaviour than the classical zeta, there are poles instead of zeroes! So we might conjecture

RH for graphs

In the strip $0 < \operatorname{Re}(u) < 1$ the only poles of $\zeta_G(u)$ are on the line $\operatorname{Re}(u) = \frac{1}{2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

When is this true?

The Ihara zeta function has slightly different behaviour than the classical zeta, there are poles instead of zeroes! So we might conjecture

RH for graphs

In the strip $0 < \operatorname{Re}(u) < 1$ the only poles of $\zeta_G(u)$ are on the line $\operatorname{Re}(u) = \frac{1}{2}$.

When is this true?

Theorem

A graph G satisfies the RH for graphs \iff it is Ramanujan.

The sketchiest rough idea of a proof you will ever see

Proof: We are looking for zeroes of $\zeta_G(u)^{-1}$ which is given by the lhara determinant formula as

$$(1-u^2)^{|\mathcal{E}|-|V|}\det(I(1-(k-1)u^2)-Au)$$

which is given by

$$(1-u^2)^{|E|-|V|}\prod_{\lambda}(I(1-(k-1)u^2)-\lambda u).$$

The sketchiest rough idea of a proof you will ever see

Proof: We are looking for zeroes of $\zeta_G(u)^{-1}$ which is given by the lhara determinant formula as

$$(1-u^2)^{|\mathcal{E}|-|V|}\det(I(1-(k-1)u^2)-Au)$$

which is given by

$$(1-u^2)^{|E|-|V|}\prod_{\lambda}(I(1-(k-1)u^2)-\lambda u).$$

Then check some cases using the fact that $\lambda(G) \leq 2\sqrt{k-1}$ to see when this is zero.

• Dynamical systems, the Ruelle zeta is actually a generalisation of the Ihara zeta function we saw earlier.

- Dynamical systems, the Ruelle zeta is actually a generalisation of the lhara zeta function we saw earlier.
- Function fields (that the analogue of RH is true was proved by André Weil in the 40's).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Dynamical systems, the Ruelle zeta is actually a generalisation of the lhara zeta function we saw earlier.
- Function fields (that the analogue of RH is true was proved by André Weil in the 40's).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• Curves over finite fields.

- Dynamical systems, the Ruelle zeta is actually a generalisation of the lhara zeta function we saw earlier.
- Function fields (that the analogue of RH is true was proved by André Weil in the 40's).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Curves over finite fields.
- Fractal strings.

- Dynamical systems, the Ruelle zeta is actually a generalisation of the lhara zeta function we saw earlier.
- Function fields (that the analogue of RH is true was proved by André Weil in the 40's).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Curves over finite fields.
- Fractal strings.
- Schemes (over finite type over Z).

Richard Dedekind (1831–1916) wanted to use analysis to study more general fields than just \mathbb{Q} , specifically he was interested in number fields.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Richard Dedekind (1831–1916) wanted to use analysis to study more general fields than just \mathbb{Q} , specifically he was interested in number fields.

Number fields

A **number field** is a field that is also a finite dimensional \mathbb{Q} -vector space.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Richard Dedekind (1831–1916) wanted to use analysis to study more general fields than just \mathbb{Q} , specifically he was interested in number fields.

Number fields

A number field is a field that is also a finite dimensional $\mathbb{Q}\text{-vector}$ space.

ション ふゆ く は マ く ほ マ く し マ

e.g. $\{a+bi \mid a, b \in \mathbb{Q}\}$,

Richard Dedekind (1831–1916) wanted to use analysis to study more general fields than just \mathbb{Q} , specifically he was interested in number fields.

Number fields

A **number field** is a field that is also a finite dimensional \mathbb{Q} -vector space.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

e.g. $\{a + bi \mid a, b \in \mathbb{Q}\}$, $\{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$,

Richard Dedekind (1831–1916) wanted to use analysis to study more general fields than just \mathbb{Q} , specifically he was interested in number fields.

Number fields

A **number field** is a field that is also a finite dimensional \mathbb{Q} -vector space.

ション ふゆ く は マ く ほ マ く し マ

e.g. $\{a + bi \mid a, b \in \mathbb{Q}\}, \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}, \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{2}\sqrt{3} \mid a, b, c, d \in \mathbb{Q}\}.$

Richard Dedekind (1831–1916) wanted to use analysis to study more general fields than just \mathbb{Q} , specifically he was interested in number fields.

Number fields

A **number field** is a field that is also a finite dimensional $\mathbb{Q}\text{-vector}$ space.

e.g. $\{a + bi \mid a, b \in \mathbb{Q}\}, \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}, \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{2}\sqrt{3} \mid a, b, c, d \in \mathbb{Q}\}.$ In a general number field the idea of a prime element doesn't work out so well, however if we consider nice subgroups of the field (ideals of the ring of integers) as elements then everything works out nicely.

Richard Dedekind (1831–1916) wanted to use analysis to study more general fields than just \mathbb{Q} , specifically he was interested in number fields.

Number fields

A **number field** is a field that is also a finite dimensional \mathbb{Q} -vector space.

e.g.
$$\{a + bi \mid a, b \in \mathbb{Q}\}, \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}, \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}, \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{2}\sqrt{3} \mid a, b, c, d \in \mathbb{Q}\}.$$

In a general number field the idea of a prime element doesn't work out so well, however if we consider nice subgroups of the field (ideals of the ring of integers) as elements then everything works out nicely. For example we have unique factorisation of ideals into prime ideals.

Richard Dedekind (1831–1916) wanted to use analysis to study more general fields than just \mathbb{Q} , specifically he was interested in number fields.

Number fields

A **number field** is a field that is also a finite dimensional \mathbb{Q} -vector space.

e.g. $\{a + bi \mid a, b \in \mathbb{Q}\}, \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}, \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{2}\sqrt{3} \mid a, b, c, d \in \mathbb{Q}\}.$

In a general number field the idea of a prime element doesn't work out so well, however if we consider nice subgroups of the field (ideals of the ring of integers) as elements then everything works out nicely. For example we have unique factorisation of ideals into prime ideals.

So we should deal with ideals instead of elements!

◆□▶ ◆圖▶ ◆目▶ ◆目▶ →目 → ��や

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Dedekind zeta function

So Dedekind defined for a number field K

The Dedekind zeta function

$$\zeta_K(s) =$$

So Dedekind defined for a number field K

The Dedekind zeta function

$$\zeta_{\mathcal{K}}(s) = \sum_{I \subset \mathcal{O}_{\mathcal{K}}} \frac{1}{N(I)^s}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

where N(I) is the **norm** of $I (= |\mathcal{O}_{\mathcal{K}}/I|)$.

So Dedekind defined for a number field K

The Dedekind zeta function

$$\zeta_{\mathcal{K}}(s) = \sum_{I \subset \mathcal{O}_{\mathcal{K}}} \frac{1}{N(I)^s}$$

where N(I) is the **norm** of $I (= |\mathcal{O}_K/I|)$.

 \mathbb{Q} is a number field too, and it turns out that the ideals of \mathbb{Q} correspond one to one with the set of natural numbers. We then have $N((n)) = |\mathbb{Z}/(n)| = |\mathbb{Z}/n\mathbb{Z}| = n$.

So Dedekind defined for a number field K

The Dedekind zeta function

$$\zeta_{\mathcal{K}}(s) = \sum_{I \subset \mathcal{O}_{\mathcal{K}}} \frac{1}{N(I)^s}$$

where N(I) is the **norm** of $I (= |\mathcal{O}_K/I|)$.

 \mathbb{Q} is a number field too, and it turns out that the ideals of \mathbb{Q} correspond one to one with the set of natural numbers. We then have $N((n)) = |\mathbb{Z}/(n)| = |\mathbb{Z}/n\mathbb{Z}| = n$. Therefore

$$\zeta(s)=\zeta_{\mathbb{Q}}(s).$$

So Dedekind defined for a number field K

The Dedekind zeta function

$$\zeta_{\mathcal{K}}(s) = \sum_{I \subset \mathcal{O}_{\mathcal{K}}} \frac{1}{N(I)^s}$$

where N(I) is the **norm** of $I (= |\mathcal{O}_K/I|)$.

 \mathbb{Q} is a number field too, and it turns out that the ideals of \mathbb{Q} correspond one to one with the set of natural numbers. We then have $N((n)) = |\mathbb{Z}/(n)| = |\mathbb{Z}/n\mathbb{Z}| = n$. Therefore

$$\zeta(s)=\zeta_{\mathbb{Q}}(s).$$

A proof of these hypotheses for all number fields (known as the **extended** Riemann hypothesis) would give approximations for the number of prime ideals of bounded norm, exactly the same as for the original hypothesis.

Closing remarks

• Zeta functions can be used to pack up lots of useful information into one big package (a complex function).

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Closing remarks

- Zeta functions can be used to pack up lots of useful information into one big package (a complex function).
- The properties of this package can tell us about the objects we started with.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()
Closing remarks

- Zeta functions can be used to pack up lots of useful information into one big package (a complex function).
- The properties of this package can tell us about the objects we started with.
- We can also see links between different objects via their zeta functions.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Closing remarks

- Zeta functions can be used to pack up lots of useful information into one big package (a complex function).
- The properties of this package can tell us about the objects we started with.
- We can also see links between different objects via their zeta functions.
- Due to the abundant computational evidence (over ten trillion non-trivial zeroes found so far, all on the critical line) a huge number of papers have been written that assume the Riemann hypothesis is true. So a proof of the (generalised) hypothesis would imply hundreds of other results true also.

Sources used

I used some of the following when preparing this talk, and so they are possibly good places to look to learn more about the topic:

- 💶 "What is... an expander?" Peter Sarnak
- Problems of the Millennium: The Riemann Hypothesis" Peter Sarnak
- "Problems of the Millennium: The Riemann Hypothesis" (Official Millennium prize problem description) – Enrico Bombieri
- "Zeta Functions of Graphs: A Stroll through the Garden" Audrey Terras
- Wikipedia Enough said
- http://graphtheoryinlatex.blogspot.com/ Pretty pictures
- "Fractal Geometry, Complex Dimensions and Zeta Functions" Lapidus and van Frankenhuijsen (not used in talk but still cool)