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The Riemann zeta function: Euler's work

A brief history of ζ:

In 1735 Euler solves the Basel problem by �nding that

∞∑
n=1

1

n2
=
π2

6
.

He also discovered more general formulae for
∑∞

n=1 n
−2k in

terms of the Bernoulli numbers B2k for all natural k .

In fact, a nice form for

∞∑
n=1

n−2k−1,

is still unknown today.
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The Riemann zeta function: Along comes Riemann

A brief history of ζ:

In 1859 Bernhard Riemann, a well
known analyst, publishes a paper
on his work counting the primes
using methods from analysis.

In the paper he considers

ζ(s) =
∞∑
n=1

1

ns
.

Here the notation ζ for this
function is used for the �rst time.

Along the way he (essentially)
makes four hypotheses.
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The Riemann zeta function: What Riemann did

In his work Euler had (more or less) found that

ζ(s) =
∞∑
n=1

1

ns
=

∏
p prime

1

1− ps
.

In his paper Riemann uses this to take the function
ζ : {σ + it ∈ C | σ > 1} → C and extend it to all of C. He de�nes
an analytic continuation from C→ C which matches the series
de�nition given above when the series converges (when Re(s) > 1).
Riemann also discovers a functional equation for the zeta
function by showing that

π−s/2Γ
( s
2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s).
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The Riemann zeta function: What does it look like?

f (s) = s:
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The Riemann zeta function: The hypothesis

The zeta function has �trivial� zeroes at the negative even integers,
but also �non-trivial� zeroes lying on the line Re(s) = 1

2 .

The Riemann Hypothesis (RH)

All non-trivial zeroes of the Riemann zeta function lie on the
critical line {

s ∈ C : Re(s) =
1

2

}
.

Why do we care?

It is a natural function to consider, and knowing the zeroes of
a complex function are key to understanding it.

The location of the zeroes of ζ(s) relates in a strong way to
the distribution of the primes.
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The Riemann zeta function: Why number theorists care

The prime counting function π(x)

We de�ne
π(x) = |{p ∈ N : p prime, p ≤ x}|.

Gauss noticed that π(x) is approximated well by

Li(x) =

∫ x

0

dt

log t

which was later con�rmed by some of Chebyshev's work.
The Riemann hypothesis is actually equivalent to the statement
that there exists c2 > c1 > 0 such that

Li(x) + c1
√
x log(x) ≤ π(x) ≤ Li(x) + c2

√
x log(x)

eventually. These are the best possible bounds!
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Expander graphs

Suppose we want to design a
communications network (for computers,
people, phones, etc.) by linking together
n entities with wires, such that each
object has only k wires from it (this is
called k-regular).

We shall call our entities nodes and wires
edges, as in graph theory. The set of
nodes is V and edges E .

For today we will think of our goal as the
following:
If we split our network into two
non-empty parts (a partition) there
should be lots of edges between the two
halves.
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The spectrum

Given such a graph G we can �x a numbering of the vertices and
form:

The adjacency matrix

Is an n × n matrix AG = (ai ,j) of 1's and 0's given by

ai ,j = 1 ⇐⇒ there is an edge between vertex i and vertex j .

What is the set of eigenvalues (the spectrum) of this matrix?
So we de�ne λ(G ) to be the next largest eigenvalue after k , i.e.

λ(G ) = max
|λi |<k

|λi |.

The gap between this value and k is very important for
optimisation problems of this nature. The larger the better!
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Ramanujan graphs

It turns out (Alon, Boppara) that for �xed ε > 0 only �nitely many
graphs do not satisfy

λ(G ) ≥ 2
√

k − 1− ε.

This set of graphs must be pretty special, so we name them

Ramanujan graphs

A graph G as above which satis�es

λ(G ) ≤ 2
√

k − 1.

These are highly optimal from our point of view!
Only in 2013 were Ramanujan graphs shown to exist for k 6= pn + 1
(Marcus, Speilman, Srivastava).
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The Ihara zeta function

Take a graph G as described above (k-regular for some k , �nite
and connected). We de�ne:

A prime in G

A prime in G is a path in G that is

closed,

backtrackless,

tailless and

de�ned up to rotation.

The Ihara zeta function of G

ζG (u) =
∏

P a prime of G

(
1− ulength(p)

)−1
.
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The Ihara determinant formula

Though we have de�ned ζG (u) in a similar way to ζ(s) the
resulting function is a lot simpler!

In fact we always have the following expression for ζG :

The Ihara determinant formula

ζG (u)−1 = (1− u2)|E |−|V | det((1− (k − 1)u2)I − Au).
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The Riemann hypothesis for graphs

The Ihara zeta function has slightly di�erent behaviour than the
classical zeta, there are poles instead of zeroes!

So we might
conjecture

RH for graphs

In the strip 0 < Re(u) < 1 the only poles of ζG (u) are on the line
Re(u) = 1

2 .

When is this true?

Theorem

A graph G satis�es the RH for graphs ⇐⇒ it is Ramanujan.
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The sketchiest rough idea of a proof you will ever see

Proof: We are looking for zeroes of ζG (u)−1 which is given by the
Ihara determinant formula as

(1− u2)|E |−|V | det(I (1− (k − 1)u2)− Au)

which is given by

(1− u2)|E |−|V |
∏
λ

(I (1− (k − 1)u2)− λu).

Then check some cases using the fact that λ(G ) ≤ 2
√
k − 1 to see

when this is zero.
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What else has a zeta function?

Dynamical systems, the Ruelle zeta is actually a generalisation
of the Ihara zeta function we saw earlier.

Function �elds (that the analogue of RH is true was proved by
André Weil in the 40's).

Curves over �nite �elds.

Fractal strings.

Schemes (over �nite type over Z).
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The Dedekind zeta function

Richard Dedekind (1831�1916) wanted to use analysis to study
more general �elds than just Q, speci�cally he was interested in
number �elds.

Number �elds

A number �eld is a �eld that is also a �nite dimensional Q-vector
space.

e.g. {a + bi | a, b ∈ Q}, {a + b
√
2 | a, b ∈ Q},

{a + b
√
2 + c

√
3 + d

√
2
√
3 | a, b, c , d ∈ Q}.

In a general number �eld the idea of a prime element doesn't work
out so well, however if we consider nice subgroups of the �eld
(ideals of the ring of integers) as elements then everything works
out nicely. For example we have unique factorisation of ideals into
prime ideals.
So we should deal with ideals instead of elements!
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The Dedekind zeta function

So Dedekind de�ned for a number �eld K

The Dedekind zeta function

ζK (s) =

∑
I⊂OK

1

N(I )s

where N(I ) is the norm of I (= |OK/I |).

Q is a number �eld too, and it turns out that the ideals of Q
correspond one to one with the set of natural numbers. We then
have N((n)) = |Z/(n)| = |Z/nZ| = n. Therefore

ζ(s) = ζQ(s).

A proof of these hypotheses for all number �elds (known as the
extended Riemann hypothesis) would give approximations for the
number of prime ideals of bounded norm, exactly the same as for
the original hypothesis.
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Closing remarks

Zeta functions can be used to pack up lots of useful
information into one big package (a complex function).

The properties of this package can tell us about the objects we
started with.

We can also see links between di�erent objects via their zeta
functions.

Due to the abundant computational evidence (over ten trillion
non-trivial zeroes found so far, all on the critical line) a huge
number of papers have been written that assume the Riemann
hypothesis is true. So a proof of the (generalised) hypothesis
would imply hundreds of other results true also.
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Sources used

I used some of the following when preparing this talk, and so they
are possibly good places to look to learn more about the topic:

1 �What is... an expander?� � Peter Sarnak

2 �Problems of the Millennium: The Riemann Hypothesis� �
Peter Sarnak

3 �Problems of the Millennium: The Riemann Hypothesis�
(O�cial Millennium prize problem description) � Enrico
Bombieri

4 �Zeta Functions of Graphs: A Stroll through the Garden� �
Audrey Terras

5 Wikipedia � Enough said

6 http://graphtheoryinlatex.blogspot.com/ � Pretty pictures

7 �Fractal Geometry, Complex Dimensions and Zeta Functions� �
Lapidus and van Frankenhuijsen (not used in talk but still cool)
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