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A brief history of (:
@ In 1735 Euler solves the Basel problem by finding that

o
k-1
= =—.
n
n=1 6
o He also discovered more general formulae for >°°°  n=2k in

terms of the Bernoulli numbers By, for all natural k.

o In fact, a nice form for
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Z n72k717
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is still unknown today.
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A brief history of (:

@ In 1859 Bernhard Riemann, a well
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using methods from analysis.
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makes four hypotheses.
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In his work Euler had (more or less) found that
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n=1 p prime

In his paper Riemann uses this to take the function
(:{o+iteC|o>1} — C and extend it to all of C. He defines
an analytic continuation from C — C which matches the series
definition given above when the series converges (when Re(s) > 1).
Riemann also discovers a functional equation for the zeta
function by showing that
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The Riemann zeta function: The hypothesis

The zeta function has “trivial” zeroes at the negative even integers,

but also “non-trivial” zeroes lying on the line Re(s) = 1.

The Riemann Hypothesis (RH)

All non-trivial zeroes of the Riemann zeta function lie on the

critical line .
{s € C: Re(s) = 2}.

@ It is a natural function to consider, and knowing the zeroes of
a complex function are key to understanding it.

Why do we care?

@ The location of the zeroes of ((s) relates in a strong way to
the distribution of the primes.
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The Riemann zeta function: Why number theorists care

The prime counting function 7(x)
We define

m(x) = [{p € N: p prime, p < x}|.

Gauss noticed that 7(x) is approximated well by

Li(x)_/ li
o logt

which was later confirmed by some of Chebyshev's work.
The Riemann hypothesis is actually equivalent to the statement
that there exists ¢o > ¢; > 0 such that

Li(x) + c1v/x log(x) < w(x) < Li(x) + c2v/x log(x)

eventually. These are the best possible bounds!
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The spectrum

Given such a graph G we can fix a numbering of the vertices and
form:

The adjacency matrix

Is an n x n matrix Ag = (a;) of 1's and 0's given by

ajj =1 <= thereis an edge between vertex / and vertex j.

What is the set of eigenvalues (the spectrum) of this matrix?
So we define A(G) to be the next largest eigenvalue after k, i.e.

AMG) = Ail-
(6) = max |

The gap between this value and k is very important for
optimisation problems of this nature. The larger the better!
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Ramanujan graphs

It turns out (Alon, Boppara) that for fixed € > 0 only finitely many
graphs do not satisfy

AMG)>2vVk—1—¢.

This set of graphs must be pretty special, so we name them

Ramanujan graphs

A graph G as above which satisfies

MG) < 2vk—1.

These are highly optimal from our point of view!
Only in 2013 were Ramanujan graphs shown to exist for k £ p" +1
(Marcus, Speilman, Srivastava).
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The lhara zeta function

Take a graph G as described above (k-regular for some k, finite
and connected). We define:

A prime in G

A prime in G is a path in G that is
e closed,
e backtrackless,
o tailless and

o defined up to rotation.

The lhara zeta function of G

Co(u) = H (1 _ ulength(p)>—1 '

P a prime of G
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The lhara determinant formula

Though we have defined ((u) in a similar way to ((s) the
resulting function is a lot simpler!

In fact we always have the following expression for (¢:

The lhara determinant formula

Co(u)™ = (1 — u?)EFVidet((1 — (k — 1)u?) — Au).
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The Riemann hypothesis for graphs

The lhara zeta function has slightly different behaviour than the
classical zeta, there are poles instead of zeroes! So we might
conjecture

RH for graphs

In the strip 0 < Re(u) < 1 the only poles of (g (u) are on the line
Re(u) = 3.

When is this true?

A graph G satisfies the RH for graphs <= it is Ramanujan.
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The sketchiest rough idea of a proof you will ever see

Proof: We are looking for zeroes of (g(u)~! which is given by the
Ihara determinant formula as

(1 — ) E=VIdet(1(1 — (k — 1)u?) — Au)
which is given by

2)IEl- |V|H 1— (k—1)u?) — \u).

Then check some cases using the fact that A\(G) < 2v'k — 1 to see
when this is zero.
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What else has a zeta function?

@ Dynamical systems, the Ruelle zeta is actually a generalisation
of the lhara zeta function we saw earlier.

Function fields (that the analogue of RH is true was proved by
André Weil in the 40's).

Curves over finite fields.

Fractal strings.

Schemes (over finite type over Z).
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The Dedekind zeta function

Richard Dedekind (1831-1916) wanted to use analysis to study
more general fields than just Q, specifically he was interested in
number fields.

Number fields

A number field is a field that is also a finite dimensional Q-vector
space.

eg. {a+bi|abecQ}, {a+bV2]|abecQl,
{a+bV2+cV3+dV2V3]a,b,c,d € Q).

In a general number field the idea of a prime element doesn’t work
out so well, however if we consider nice subgroups of the field
(ideals of the ring of integers) as elements then everything works
out nicely. For example we have unique factorisation of ideals into
prime ideals.

So we should deal with ideals instead of elements!
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The Dedekind zeta function

So Dedekind defined for a number field K
The Dedekind zeta function

1COk

where N(/) is the norm of | (= |Ok/I|).

Q is a number field too, and it turns out that the ideals of
correspond one to one with the set of natural numbers. We then
have N((n)) = |Z/(n)| = |Z/nZ| = n. Therefore

¢(s) = Cals)-

A proof of these hypotheses for all number fields (known as the
extended Riemann hypothesis) would give approximations for the
number of prime ideals of bounded norm, exactly the same as for
the original hypothesis.
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Closing remarks

@ Zeta functions can be used to pack up lots of useful
information into one big package (a complex function).

@ The properties of this package can tell us about the objects we
started with.

@ We can also see links between different objects via their zeta
functions.

@ Due to the abundant computational evidence (over ten trillion
non-trivial zeroes found so far, all on the critical line) a huge
number of papers have been written that assume the Riemann
hypothesis is true. So a proof of the (generalised) hypothesis
would imply hundreds of other results true also.
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Sources used

| used some of the following when preparing this talk, and so they
are possibly good places to look to learn more about the topic:
© “What is... an expander?” — Peter Sarnak
@ "Problems of the Millennium: The Riemann Hypothesis” —
Peter Sarnak

© “Problems of the Millennium: The Riemann Hypothesis”
(Official Millennium prize problem description) — Enrico
Bombieri

@ "Zeta Functions of Graphs: A Stroll through the Garden” —

Audrey Terras

Wikipedia — Enough said

http://graphtheoryinlatex.blogspot.com/ — Pretty pictures

© 0

@ ‘“Fractal Geometry, Complex Dimensions and Zeta Functions” —
Lapidus and van Frankenhuijsen (not used in talk but still cool)
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