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Observations (Hermite, 1859):

eπ
√

43 ≈ 884736743.999777466

≈ 123(92 − 1)3 + 744− 10−4 · 2.225 . . .

eπ
√

67 ≈ 147197952743.999998662454

≈ 123(212 − 1)3 + 744− 10−6 · 1.337 . . .

eπ
√

163 ≈ 262537412640768743.99999999999925007

≈ 123(2312 − 1)3 + 744− 10−13 · 7.499 . . .
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Abelian extensions

Definition
An abelian extension L|K is finite Galois extension where Gal(L|K )
is abelian.

Examples:
Q(
√
2)|Q,

Q(i , ζ7)|Q(i).

Non-examples:
Q(

3
√
2, ζ3)|Q,

Q(
3
√
2)|Q .
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Rings of integers

Definition
The ring of integers ZK of a number field K is the subring of all
elements of K satisfying a monic polynomial with coefficients in Z.

Examples:

ZQ = Z .

K = Q(ζn), ZK = Z[ζn].

K = Q(
√

d), d squarefree then

ZK =

{
Z[
√

d ] if d ≡ 2, 3 (mod 4),
Z[(1+

√
d)/2] if d ≡ 1 (mod 4).
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The ideal class group

Given a number field K we let I (ZK ) be the set

{M subgroup of K : ZK M ⊂ M, ∃a ∈ Zk s.t. aM ⊂ ZK ,M 6= 0}

of (non-zero) fractional ideals of ZK . This is an (abelian) group
under multiplication! The set

P(ZK ) = {aZK : a ∈ K ∗}

of (non-zero) principal ideals is a subgroup.

Definition
The ideal class group of a number field K is the quotient

cl(ZK ) = I (ZK )/P(ZK ).

cl(ZK ) measures how far ZK is from having unique factorisation.
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The ideal class group

Examples

K cl(ZK )

Q(
√
−1) 1

Q(
√
−5) C2

Q(
√
−31) C3

Q(
√
−159) C10

Q(
√
−163) 1
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The Hilbert class field (of an imaginary quadratic field)

Let K be an imaginary quadratic number field, i.e. K = Q(
√
−n)

for some n ∈ Z≥1.

Definition
An extension L|K is unramified if for all prime ideals p of ZK we
have a factorisation

pZL = P1 P2 · · ·Pn

into distinct prime ideals Pi of ZL.

Definition
The Hilbert class field of K is the maximal unramified abelian
extension of K .
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The Hilbert class field (of an imaginary quadratic field)

Definition
The Hilbert class field of K is the maximal unramified abelian
extension of K .

Examples

K Hilbert class field L Gal(L|K )

Q(
√
−1) Q(

√
−1) 1

Q(
√
−31) Q(

√
−31)[x ]/(x3 + x − 1) C3

Q(
√
−159)

Q(
√
−159)[x ]/(x10 − 3x9 + 6x8

− 6x7 + 3x6 + 3x5 − 9x4

+ 13x3 − 12x2 + 6x − 1)

C10

Q(
√
−163) Q(

√
−163) 1
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The Artin reciprocity theorem for the Hilbert class field

Theorem
If K is a number field and L is its Hilbert class field then

cl(ZK ) ∼= Gal(L|K ).

Q

K

L

Gal(L|K )
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Lattices

Definition

A lattice is an additive subgroup of C that is isomorphic to Z2.
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Homothety

Definition
Two lattices L and L′ are called homothetic if L = λL′ for some
λ ∈ C∗.

Every lattice is homothetic to one of the form Z+Z τ for some
τ ∈ C with positive imaginary part.
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The j-invariant

The j-invariant is a function

j : {lattices} → C

such that j(L) = j(L′) ⇐⇒ L and L′ are homothetic.
We can define j on the upper half plane by j(τ) = j(Z+Z τ).
Letting q = e2πiτ it turns out that

j(τ) = q−1 + 744+ 196884q + 21493760q2

+ 864299970q3 + 20245856256q4 + · · · .
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The j-invariant

Figure : The j-invariant, picture by Fredrik Johansson
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Singular moduli

Definition
The values j(τ) for τ imaginary quadratic are called singular
moduli.

Examples

j(i) = 1728,

j
(
1+
√
−3

2

)
= 0,

j
(
1+
√
−15

2

)
=
−191025− 85995

√
5

2
,

j
(√
−14

)
= 23

(
323+ 228

√
2+ (231+ 161

√
2)
√√

2− 1
)3

.
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(A corollary of) The first main theorem of class field theory

Theorem
If K is an imaginary quadratic field, ZK = Z+Z τ then:

1 j(τ) is an algebraic integer.
2 The Hilbert class field of K is K (j(τ)).

A (kind of) converse (Schneider)

If τ is an algebraic number that is not imaginary quadratic then
j(τ) is transcendental.
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Explaining Hermite’s observations

K = Q(
√
−d) with cl(ZK ) = 1, ZK = Z+Z τ.

⇓
The Hilbert class field of K is K .

⇓
j(τ) ∈ ZK .

⇓
e−2πiτ + 744+ 196884e2πiτ + . . . ∈ ZK ∩R = Z .
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Explaining Hermite’s observations

So if d = 163 we have τ = (1+
√
−163)/2 and so

j(τ) = e−πi(1+i
√

163) + 744+ 196884eπi(1+i
√

163) + . . .

= −eπ
√

163 + 744− 196884e−π
√

163 + . . .

is an integer.
The trailing terms are tiny (of order 10−13) here giving

eπ
√

163 ≈ −j(τ) + 744.
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The class number 1 problem

Theorem (Stark-Heegner)

The only imaginary quadratic number fields with trivial class group
are Q(

√
−d) for

d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.

So we might expect eπ
√

19 to be close to an integer too, however

eπ
√

19 = 885479.77768 . . .

isn’t really. The value is not as close to the corresponding singular
modulus as e−π

√
d has larger absolute value for smaller d .



Introduction Background The Hilbert class field Singular moduli Modern work Conclusion

A formula of Gross-Zagier

We have that j((1+
√
−67)/2) = −123(212 − 1)3 and

j((1+
√
−163)/2) = −123(2312 − 1)3 and so

j
(
1+
√
−163
2

)
− j
(
1+
√
−67

2

)
= −215 ·37 ·53 ·72 ·13 ·139 ·331.

j
(
1+
√
−163
2

)
− 1728 = −26 · 36 · 72 · 112 · 192 · 1272 · 163.

Definition
The discriminant of an imaginary quadratic number τ is the
discriminant of its minimal polynomial over Z. i.e. if
aτ2 + bτ + c = 0 then the discriminant of τ is b2 − 4ac .
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A formula of Gross-Zagier

Theorem (Gross-Zagier, ’84)

Given imaginary quadratic integers τ1, τ2 of discriminant d1, d2 we
have

N(j(τ1)− j(τ2))2 = ±
∏

x ,n,n′∈Z
n,n′>0

x2+4nn′=d1d2

nε(n
′).

where

ε(p) =


1 if (d1, 1) = 1, d1 is a square mod p,
−1 if (d1, 1) = 1, d1 is not a square mod p,
1 if (d2, 1) = 1, d2 is a square mod p,
−1 if (d2, 1) = 1, d2 is not a square mod p,

for p prime and ε is defined multiplicatively.
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Closing remarks

Singular moduli are not particularly complex objects in and of
themselves.
But their relation between different areas of mathematics
ensures that they are still a research topic to this day.
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Sources

I used some of the following when preparing this talk, and so they
are probably good places to look to learn more about the topic:

“Primes of the form x2 + ny2” – David A. Cox
“Don Zagier’s work on singular moduli” – Benedict Gross
“Complex multiplication and singular moduli” – Chao Li
“Properties of Singular Moduli” - Ken Ono
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