
Formalization and Arithmetic Geometry

past, present, and future

Alex J. Best

9/4/2024

1



Formalization

Expressing mathematics (objects, arguments) in a format that a
computer can handle and interact with rigorously.
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Potential use cases of formalization

• Quickly searching for previously formalized results that may be
useful in a given situation

• Automation of routine arguments, letting the software worry
about the details

• Producing documents for which we can easily look up precise
definitions, or tell halfway through a paper what the current
objects being talked about are

• Producing interactive documents where the user can choose
the level of detail they want to see, or the shortest path to
understand a given result.
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Potential use cases of formalization, cont

• Error free or higher confidence in the details of published
mathematics

• Can lead to bug free mathematical software, verified plotting
• Allow easier modification of previously formalized material
• Machine learning and AI; some types of machine learning

based tools can already be helpful when formalizing. Can they
they eventually produce a page of mathematics given a brief
prompt? Can they big ideas autonomously? Even being able
to check that routine arguments similar to those in the
literature hold would be very useful.

Would like to have as many of these as possible without sacrificing
benefits of existing presentation methods; readability and easy
comprehension for trained people (any mathematician) and ease of
writing. Not only should this technology make it easier for
computers to do maths, but ideally also humans.
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Demo time!

Lets see how proving a result using a proof assistant (the most
common way of formalizing advanced mathematics) looks.

We will prove Euclid’s theorem using Mathlib, a large library of
formalized mathematics in Lean, that has attracted a community of
mathematicians as developers and users.
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Some recent high profile examples of mathematical formaliza-
tion projects

• Tao led a project to formalize a proof of the Polynomial
Freiman-Rusza conjecture (Gowers-Green-Manners-Tao).
Finished 3 weeks! 25 contributors, analogous to a long reading
group / summer school.

• Scholze challenged the formalization community to formalize
key result in liquid condensed mathematics (Clausen-Scholze).
This took a group of up to 25 people a year and a half.

• Dillies Mehta and Bloom formalizing results in additive
combinatorics in “real time”

• Massot, van Doorn and Nash - Gromov’s h-principle and
sphere eversion

• Buzzard, Commelin and Massot, formalizing the definition of a
perfectoid space.

• Formal proof of the Kepler conjecture
• · · ·
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Future goals

• Strong evidence that with effort most modern mathematical
results can be formalized. Challenge is to make this not just a
one-off, but a sustainable process that doesn’t require as many
person-hours as the above projects took. Can come from
finding efficient mathematical arguments but also improving
the formalization language and surrounding tools. To be closer
to the level of abstraction we are used to.

• Standard undergraduate curriculum is close to all already
formalized.

• Goals for future formalization projects are to consider, higher
level arguments, areas less obviously formal, those with more
appeals to intuition or unverified computation, or sheer volume
of very technical material or techniques. Can most areas of
mathematics be conveniently expressed in a proof assistant?
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Arithmetic Geometry

Formalization and arithmetic geometry sometimes feels less well
developed than many other fields, why?:

• Requires a lot of theory to get to some basic tools, scheme
theory, cohomology theories

• social reasons, researchers in arithmetic geometry interested in
formalization ended up working on projects like Liquid Tensor
Experiment

• ... maybe its not true at all?
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Some general results of interest that have been formalized

• Local and global fields
• Algebraic number theory tools, finiteness of class group,

Dirichlet’s unit theorem, Kummer-Dedekind
• (Absolute) Galois groups (and some cohomology thereof)
• Ideles and Adeles
• Witt Vectors (and p-adic fields)
• L-series, and modular forms
• p-adic L-functions
• Ostrowski’s theorem (again at LFTCM last week!)
• Divided power structures (towards BdR)
• Schemes
• Elliptic Curves, group law in all characteristics

Roblot, de Frutos Fernandez, Baanen, Dahmen, Narayanan, Nuccio,
Chambert-Loir, Loeffler, Stoll, Commelin, Lewis, Livingston,
Birkbeck, etc
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In the (near) future

Alex Kontorovich and Terrence Tao have started a project to
formalize the PNT+ project, to formalize the Prime Number
theorem in Lean, and other related results such as Chebotarev and
Dirichlet’s theorem on primes in arithmetic progressions.

We will hear more on this from either Michael Stoll or Alex
Kontorovich in this seminar!

Chebotarev is a vital technical tool for Arithmetic Geometry,
underpinning many important results and techniques so this is likely
to be very useful.

Kevin Buzzard is starting a longer term project to formalize much
of the mathematics around Fermat’s Last Theorem

10



In the (near) future

Alex Kontorovich and Terrence Tao have started a project to
formalize the PNT+ project, to formalize the Prime Number
theorem in Lean, and other related results such as Chebotarev and
Dirichlet’s theorem on primes in arithmetic progressions.

We will hear more on this from either Michael Stoll or Alex
Kontorovich in this seminar!

Chebotarev is a vital technical tool for Arithmetic Geometry,
underpinning many important results and techniques so this is likely
to be very useful.

Kevin Buzzard is starting a longer term project to formalize much
of the mathematics around Fermat’s Last Theorem

10



Algebraic number theory: FLT-regular

With Birbeck, Brasca, Rodriguez, Yang we formalized the proof due
to Kummer of Fermat’s last theorem for regular primes.

• It pays to take the time to find the right proof, a proof
reducing the main technical tool, Kummer’s Lemma, to
Hilbert’s theorem 92 avoiding CFT was in the exercises of
Swinnerton-Dyer’s textbook!

• Required developing a theory of cyclotomic fields and rings, its
much easier to work with abstract generality than with the
model you actually need.
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Kummer: Let p be a regular prime and let u ∈ Z [ζp]

×. If
u ≡ a mod p for some a ∈ Z, then there exists
v ∈ Z [ζp]

×such that u = vp.
Hilbert: Let K/F be a Galois extension of F = Q (ζp) with
Galois group Gal(K/F ) cyclic with generator σ. Then there
exists a unit η ∈ OK such that NK/F (η) = 1 but does not
have the form ϵ/σ(ϵ) for any unit ϵ ∈ OK .
See: https://leanprover-community.github.io/
flt-regular/blueprint/
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Basic Diophantine equations

With Baanen, Coppola and Dahmen (2023) we wanted to try some
classic examples of arithmetic geometry: determining explicitly the
integral points on some elliptic curves. E.g.

y2 = x3 − 5, y2 = x3 − 17

this is via Mordell-style descent

Lessons learned:

• theory can be easier than calculation, when calculating we
tend to make a lot more steps implicitly e.g. when saying the
product of two explicit ideals in some number field is nontrival
in class group

• Having the system automatically do calculations in explicit
rings (given by a times table, or in positive characteristic), is a
massive help, as is being able to add this sort of of
functionality as a user is essential.
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Certification

Lessons learned (cont):

• More generally importing results from computer algebra
systems will be useful when formalizing explicit type results.

• How do you “certify” a class or unit group computation? What
is the shortest/simplest proof that a given class group is what
is claimed assuming that checking takes a lot more work than
finding. With the analytic class number formula this becomes
easier, but then leads to how to do numerics for L-functions
with verified bounds.

• Doing things in a low-tech way can lead you to look at some
very pretty mathematics. Previously I would never have
thought about how to bound class groups of quadratic fields
with anything other than Minkowski, but it turns out there is a
fascinating connection to the Farey sequence there.
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Tate’s algorithm

Sacha Huriot-Tattegrain (+B.+Dahmen) has implemented Tate’s
algorithm in Lean(4).

• Complete algorithm to compute local invariants of an elliptic
curve, including the cp(E ), ordp(∆E ), ordp(NE )

• Works in characteristic 2 and 3.
• Based on Cohen’s description of the algorithm, but at times

consulting other sources and even the GP source code was
necessary to get it right.

• It runs fast!
• Partly generalized to base rings beyond Z.

Without an independent definition of the Kodaira types and
conductor exponent we cannot actually check the algorithm does
what it says. But we could prove certain properties of the algorithm
in future, such as invariance under change of model. 14



Thanks for listening

Formalization of mathematics (including number theory) is still
slow and painful at times.

But we have several thousand years of mathematics, and learning
how to think about, and explain mathematics, to catch up on.

Thinking about these issues and finding nice arguments and general
techniques can be a lot of fun, and the tool may occasionally
surprise you.

If you are interested in getting more actively involved check out
https://leanprover-community.github.io/ and
https://leanprover.zulipchat.com/ also see if there is a
“Lean for the curious mathematician” or even a “Lean for the
curious arithmetic geometer” near you.
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Perfectoids

Peter Scholze won a Fields medal in 2018 for “transforming
arithmetic algebraic geometry over p-adic fields through his
introduction of perfectoid spaces, with application to Galois
representations, and for the development of new cohomology
theories.”

The definition is highly nontrivial, an unusual geometric
object created from an extremely non-Noetherian ring.

In 2020ish Kevin Buzzard, Johan Commelin, Patrick Massot
(building on others) completed a long term project to define a
perfectoid space formally in Lean.
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Perfectoids

Lean has accepted the chain of definitions that lead to this are all
valid, topological spaces, sheaves, valuations, adic spaces,
perfectoid rings,...

It is difficult to estimate the amount of human effort expended to
achieve this. Their work relied on that of many others who are
building mathlib, a general purpose library of mathematics from
the ground up.

However, it also takes a long time for a human with no
mathematical background to learn such a definition.
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One side effect: "new" algebraic structures

One ingredient of the theory surrounding perfectoid spaces (adic,
spectral, Huber rings, etc.) is the notion of a valuation

K → Γ ∪ {0}

sending 0 to 0.

In the course of the project the authors noticed they were having to
repeat a lot of work on basic lemmas that were true both for fields
and the value group above, inspired the creation of a new
definition, a group with zero (and monoid with zero, etc.).

“Every sufficiently good analogy is yearning to become a
functor.” – John Baez
Every sufficiently similar proof is yearning to become a new
algebraic structure.
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Niche algebraic structures

There is even a lot of duplication between lemmas about groups,
and those about groups with a zero.

Earlier this year Yaël Dillies introduced a new algebraic structure, a
division monoid, to be the correct setting for theorems, this is a
monoid with an involutive inverse operation that doesn’t always
have a · a−1 = 1, but does have a · b = 1 implies a−1 = b.

Upshot: In order to formalize effectively and reduce duplication of
effort generalizing proofs to unfamiliar algebraic structures is
helpful.
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Backing up

Despite there being impressive progress on very advanced number
theory, at least in the mathlib library there was not even the
definition of a number field in Lean at the time

Baanen, Dahmen, Ashvni Narayanan, Filippo Nuccio added
Dedekind domains, and proved finiteness of the class group last
year.

Interestingly this formalization is uniform in the number field and
function field cases, and avoids Minkowski’s theorem in favour of
simpler pigeonhole-type principles.

But the basics of algebraic number theory are not really complete
(Kummer-Dedekind, Kummer theory, Kronecker-Weber) in any
formal system that I know.
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Some progress

María Inés de Frutos Fernández has formalized the ring of Adèles
(and Idèles) and given the statement of the main theorem of global
CFT in Lean:

Theorem

Let K be a number field. Denote by C 1
K the quotient of CK by

the connected component of the identity. There is an
isomorphism of topological groups C 1

K ≃ G ab
K .
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Descent

With Anne Baanen, Nirvana Coppola, Sander Dahmen, we have
been formalizing some Mordell-style descent to find integral points
on elliptic curves: for example the non-existence of integral points
on

y2 = x3 − 5

Basically works, except, we still need to compute the class group of
Q(

√
−5)!

This sort of proof necessarily involves some amount of hands on
calculation, this is often harder to formalize than clean theory.

In order to work conveniently with such calculations we have added
tactics to handle calculations in rings with a finite “multiplication
table” automatically, and write formal proofs that aren’t
significantly longer than paper ones.

The other strategy is to leverage existing computer algebra systems
where possible but still checking the output.
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Certifying number theoretic computations

Eventually would be helpful to have code that computes class
groups implemented in a formal system.

Right now this is a lot of work repeating the excellent pre-existing
algorithms in a new language.

Question: Is it possible to compute the class group with a
computer algebra system (e.g. Sage), and write down a certificate
of the result that is easily checkable (fast to check, not too long,
and mathematically simple!)

Ideally the certificate would be a text file, other users shouldn’t
need to install the CAS to repeat the calculation, but it should be
provable in the system.

But the certification itself should not rely on GRH etc.
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The Hasse Norm theorem

Suppose we want to check that an explicitly given ideal in a
number field is non-principal, can we give a certificate for this.

One idea: If an ideal is principal, it’s norm must be equal to the
norm of an element (and this holds everywhere locally too).

Theorem (Hasse Norm theorem)

If K/Q is a cyclic Galois extension and x ∈ Q is everywhere
locally a norm, then x is globally a norm.

There are counterexamples to this in the biquadratic case due to
Hasse (and Serre-Tate) (and for any non-cyclic case Frei, Loughran,
Newton).

Number fields for which this property holds are said to satisfy the
Hasse norm principle.
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The Hasse Norm theorem

Theorem (Frei, Loughran, Newton)
Let k be a number field and G a finite abelian group. Then 100%
of G -extensions of k , ordered by conductor, satisfy the Hasse
norm principle.

But if we order by discriminant:

Theorem (Frei, Loughran, Newton)
Let G be a non-trivial finite abelian group and let Q be the
smallest prime dividing |G |. Assume that G is not isomorphic to a
group of the form Z/nZ⊕ (Z/QZ)r for any n divisible by Q and
r ≥ 0. Then a positive proportion of G -extensions of k fail the
Hasse norm principle, ordered by discriminant.

So locally verifying non-principality might be viable for abelian
number fields.

25



The Hasse Norm theorem

Theorem (Frei, Loughran, Newton)
Let k be a number field and G a finite abelian group. Then 100%
of G -extensions of k , ordered by conductor, satisfy the Hasse
norm principle.

But if we order by discriminant:

Theorem (Frei, Loughran, Newton)
Let G be a non-trivial finite abelian group and let Q be the
smallest prime dividing |G |. Assume that G is not isomorphic to a
group of the form Z/nZ⊕ (Z/QZ)r for any n divisible by Q and
r ≥ 0. Then a positive proportion of G -extensions of k fail the
Hasse norm principle, ordered by discriminant.

So locally verifying non-principality might be viable for abelian
number fields. 25



Other ideas

There are many useful algorithms with "obvious" certificates:

• Ideal membership

• Matrix normal forms (SNF, HNF, LU, RREF)

• Factoring

• Checking solubility modulo primes

Have a tool that talks to Sage to certify some of these in Lean
already, working on others.

I’d be happy to learn of other instances of this pattern!

This might be independently a nice check for CASes, when further
advanced.
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Implementing number theoretic algorithms

Alternatively we can implement algorithms within a proof assistant,
as efficient functions that give the same output as what we want to
compute

• Gives us a guaranteed correct implementation.

• We can experiment with modifying / improving the algorithm,
and prove correctness or equality with the original one.

• We can prove properties, or "run" the algorithm in families, in
ways normal code can’t.

After writing the algorithm down, it is only accepted as a genuine
mathematical function when it is shown to halt. With some
functions this is obvious, but for algorithms that use recursion or
unbounded loops, less so!
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Unit fractions

In December 2021 Thomas Bloom posted a paper: On a Density
Conjecture about Unit Fractions to arXiv (2112.03726)

Abstract: We prove that any set A ⊂ N of positive upper
density contains a finite S ⊂ A such that

∑
n∈S

1
n = 1,

answering a question of Erdős and Graham.

18 pages, quickly recognized as correct and widely applauded in
popular press (Quanta, etc), generalizes an older result of Croot.

Thomas Bloom and Bhavik Mehta are working hard to formalize
the paper.
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Many nice outputs from this project for analytic number theory and
density results too.
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Collaboration Galore

One nice aspect of formalization is community, we are building on
each others work, but the gaps have to line up precisely.

This both eases collaboration (I can not worry about the details of
your proof if it compiles and I understand the statement), but it
also makes it harder, I have to contend and work with the
community agreed upon definition of an object, rather than make
my own variant.

Nevertheless working on such a library has the feeling of
collaborating on a large textbook / reference work.
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Collaboration Galore

• Chris Birkbeck: Defining modular forms + Eisenstein series
(like Manuel!)

• David Loeffler: Defining the Gamma function, analytic
continuation

• Antoine Chambert-Loir: Finite groups, simplicity of An’s
• Amelia Livingston: Group cohomology
• Brandon H. Gomes and Alex Kontorovich: statement of the

Riemann Hypothesis
• Michael Stoll: re-doing Legendre symbols, proved Hilbert

reciprocity for quadratic Hilbert symbols over Q
• Sophie Bernard & Cyril Cohen & Assia Mahboubi &

Pierre-Yves Strub, and Thomas Browning: Insolvability of
General Higher Degree Equations

• Kevin Wilson: calculation of the density of squarefree numbers
as ζ(2)−1 = 6/π2. 31



Closing thoughts
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