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Where are we going?

... Hilbert often interrupted me... he kept interrupting
frequently– finally I could not speak any more at all – and
he said that from the start he did not even listen since he
had the impression that everything was trivial —E. Artin

Please ask questions!

Plan:

• Zeta functions:
• What are they?
• Why calculate them?
• How do you find them?

• Coleman integrals:
• What are they?
• Why calculate them?
• How do you find them?
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Curves and their points

Let C be a (smooth, projective) curve over Fq, a finite field with q

elements.

As Fq is finite C (Fq) is finite, moreover C (Fqn) is finite for all n,
what are the values for different n?

Example
If C = P1 /Fp then we have C (Fq) = Fq ∪ {∞} so

#C (Fpn) = pn + 1.
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An elliptic curve

Example
If E : y2 = x3 − 1/F5 then

n 1 2 3 4 5 6 7 8
#E (F5n) 6 36 126 576 3126 15876 78126 389376

5n 5 25 125 625 3125 15625 78125 390625
#E (F5n)− 5n − 1 0 10 0 −50 0 250 0 −1250

We need a formula that is 0 for odd n and −2 · (−5)n/2 for even n:

#E (F5n) = 5n + 1−
(√
−5n + (−

√
−5)n

)
It initially seemed like we had an infinite amount of data here:
#E (F5n) for all n ∈ N. But we don’t!
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The Weil polynomial

Rephrased: we have a polynomial

LE = t2 + 5

so that
#E (F5n) = 5n + 1−

∑
roots αi of LE

αn
i

how general a phenomenon is this?

Theorem (Schmidt?, Weil?)
Let C/Fq be a curve, there exists a monic LC (t) ∈ Z[t] of degree
2 · genus(C ). Whose roots αi come in complex conjugate pairs with
|αi | = q1/2 and

#C (Fqn) = qn + 1−
∑

roots αi of LC

αn
i
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The zeta function

The condition on the roots means αiαi = q so we may write
LC (t) = qg

∏
i (1−

αi
q t) then

log(LC (t)/qg ) = −
∑
i

∞∑
n=1

αn
i t

n

qnn
=
∞∑
n=1

−

(∑
i

αn
i

)
tn

qnn

so log(LC (qt)/qg ) almost knows the point counts, if we define:

Definition
The (Hasse-Weil) zeta function of C/Fq is

Z (C , t) := exp

( ∞∑
i=1

#C (Fqi )
t i

i

)

And we have that

Z (C , t) =
q−gLC (qt)

(1− t)(1− qt)
.
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Why bother?

Reverse engineering: Find point counts!

If we have a way to find the zeta function we can get the point
counts in a more sophisticated way.

In fact if J = Jac(C ) the Jacobian (i.e. the class group of C )

LC (1) = #J(Fq)

We can tell a lot about the Jacobian from this number!

Example (A completely random example, I promise)

C : y2 = x5 + 6x2 + x + 3/F43

LC (t) = t4 + 9t3 + 64t2 + 387t + 1849

=⇒ #J(F43) = LC (1) = 2310 = 2 · 3 · 5 · 7 · 11

so J(F43) = C2·3·5·7·11. So never use this curve for cryptography!!
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Distributional questions - Sato-Tate

Let C/Q be a genus g curve. We can reduce mod p for all primes
p of good reduction, get a polynomial LCFp

(t) for all these p. If we
normalise to have all roots of complex norm 1 we get

L̃CFp
(t) = LCFp

(
√
pt) ,

a unitary symplectic polynomial, i.e. the characteristic polynomial
of a unitary symplectic matrix.

So we get a map

good primes→ Conj(USp(2g))

the RHS has a Haar measure coming from USp(2g)

How is the image distributed as p →∞?
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Genus 1

y2 = x3 + x + 1 y2 = x3 + 1

Pictures due to Drew Sutherland. Left is a generic elliptic curve,
the right has CM (over Q). By computing enough zeta functions
we can see the endomorphism algebra of our curve.
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Genus 2

y2 = x5 − x + 1 y2 = x6 + 2

Pictures due to Drew Sutherland. Left is a generic genus 2 curve,
the right has End(Jac(C )Q)⊗ R = Mat2(C). After the work of
Fité-Kedlaya-Rotger-Sutherland we can recognise these
distributions and guess the structure of the Jacobian, the right one
should be square of a CM elliptic curve.
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Relations

Let
C1 : y2 + y = x3 + x/F2, C2 : y2 + y = x5 + x/F2

then

LC1(t) = t2 + 2t + 2, LC2 = (t2 + 2t + 2)(t2 + 2)

what does this tell us?

Theorem (Kleiman, Serre)
If there is a morphism of curves C → D over Fq then

LD(t)|LC (t)

In our example we have a map

(x , y) 7→ (x2 + x , y + x3 + x2).

11



Relations again

The converse is false!

D1 : y2 + xy = x5 + x/F2, D2 : y2 + xy = x7 + x/F2

where

LD1(t) = t4 + t3 + 2t + 4, LD2 = (t4 + t3 + 2t + 4)(t2 + 2)

but no map exists!
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How to compute?

Reverse reverse engineering: Count points for a few n (n ≤ g is
sufficient), recover LC (t). This can take a long time!

p-adic cohomology: A method due to Kedlaya relates LC (t) to
p-adic cohomology. LC (t) is the characteristic polynomial of
“Frobenius” acting on “H1

MW (C̃ )”. If we can compute this action
(as a matrix) we win!

Average time: Harvey-Sutherland have an approach to compute
LCFp

(t) for a curve over Q for all p < N at once! This works out
faster on average.
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Monsky-Washnitzer cohomology in general

Let C/Fq be an (odd) hyperelliptic curve.

First choose a lift C̃/Zq and an affine open U = Spec(A) ⊆ C .
And a lift of the q-power Frobenius on A = A/pA to φ : A† → A†.

Now the weak completion A† is the set of p-adic power series on U

that p-adically overconverge.

We have differentials Ω1
A† and a derivative id : A† → Ω1

A†

H1
MW(A) = Ω1

A† ⊗Qp/ d(A† ⊗Qp)
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Monsky-Washnitzer cohomology (for hyperelliptic curves)

Let C : y2 = Q(x)/Fq be an (odd) hyperelliptic curve.

First choose a lift C̃ : y2 = Q(x)/Zq.

The affine coordinate ring of the punctured curve is

A = Zp[x , y , y−1]/(y2 − Q(x))

A† =

{ ∞∑
i=−∞

Ri (x)y−i : Ri ∈ Zp[x ]deg≤2g where lim inf
|i |→∞

vp(Ri )/|i | > 0

}

The q-power Frobenius on A/pA can be lifted to φ : A† → A†

x 7→ xp

y 7→ y−p
∞∑
k=0

(
−1/2
k

)
(φ(Q(x))− Q(x)p)k/y2pk .
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Monsky-Washnitzer cohomology (for hyperelliptic curves)

ΩA† = A† dx ⊕ A† dy/(2y dy − Q ′(x) dx))

d : A† → Ω1
A†

∞∑
i=−∞

Ri (x)

y i
7→

∞∑
i=−∞

R ′i (x)y−i dx − Ri (x)iy−i−1 dy .
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Reductions in cohomology

{ωi = x i dx/y}i=1,...,2g are a basis for H1
MW (C ) and for each i we

get an expansion

φ∗ωi ≡
N−1∑
j=0

(2g+1)j∑
r=0

Bj ,rx
p(i+r+1)−1y−p(2j+1)+1 dx

2y
(mod pN)

We need to write this in the form

φ∗ωi ≡
2g∑
j=1

aijωj − d(fi ) (mod pN)

to do this we iteratively use relations like

d(x sy−2t+1) = (2s − (2t − 1)(2g + 1)) x2g+1x s−1y−2t dx
2y

+
(
2sP(x)− (2t − 1)xP ′(x)

)
x s−1y−2t dx

2y
.

to reduce the exponents of monomials appearing in the expansion.
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Reductions in cohomology

We end up with

φ∗ωi ≡
2g∑
j=1

aijωj − d(fi ) (mod pN)

The L-polynomial is then the characteristic polynomial of the
matrix F = (aij)i ,j .
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Interlude: Computing things quickly - a silly example

Suppose we want to evaluate N! for N large, how many ring
operations does this take? Naively: N operations, but we can break
up the product into chunks by dividing into products of length 4

√
N

(so 4
√
N

3
subproducts in total)

N! = P(0) · P(
√
N) · P(2

√
N) · · ·P((

√
N − 1)

√
N)

where
P(x) = (x + 1)(x + 2) · · · (x +

4√
N)

once we compute 4
√
N of these P(i) (for i = 0, . . . , 4

√
N) in

√
N

steps we have a degree 4
√
N polynomial evaluated at 4

√
N points. If

you know a (monic) degree n polynomial at n points, you know the
polynomial!  interpolate to find other values
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Interlude: Computing things quickly - Fancy version

In general if we have M(t) ∈ Matn×n(R[t]) a matrix with linear
polynomials as coefficients. We can evaluate lots of products

M(0)M(1) · · ·M(k − 1),

M(k)M(k + 1) · · ·M(2k − 1),

...

M((m − 1)k)M((m − 1)k + 1) · · ·M(mk − 1)

quickly in practice! (Bostan-Gaudry-Schost,Harvey)

Using this we can reduce quickly and compute LC (t) in time
roughly

√
p (Harvey).

With Arul, Costa, Magner, Triantafillou we can do this for general
cyclic covers ya = f (x).
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Part II - Coleman integrals

Take C/Zp a genus g curve and p an odd prime.

Theorem (Coleman)
There is a Qp-linear map

∫ x
b : Ω1

A† ⊗Qp → Aloc(X ) for which:

d ◦
∫ x

b
= (id : Ω1

A† ⊗Qp → Ω1
loc) “FTC”∫ x

b
◦ d = (id : A† ↪→ Aloc)∫ x

b
φ∗ω = φ∗

∫ x

b
ω “Frobenius equivariance”

Locally we can integrate power series formally.

To integrate between far away points we use Frobenius
equivariance.
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Frobenius equivariance

Switch to an odd hyperelliptic curve now, some manipulation with
the set of all

∫∞
P ωi gives: ...∫∞

P ωi

...

 = (F − I )−1

 ...
fi (P)

...


where from earlier

φ∗ωi ≡
2g∑
j=1

Mijωj − dfi
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Effective Chabauty

One consequence of Coleman’s work we saw earlier is

Theorem (Coleman’s effective Chabauty)
Let C/Q be a curve of genus g . If rank J(C )(Q) < g and p > 2 is
a prime of good reduction for C then

#C (Q) ≤ #Cp(Fp) + 2g − 2.
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Explicit Chabauty

Given an individual curve we can often compute X (Q) by explicitly
evaluating enough of these integrals.

More generally via non-abelian Chabauty we can approach more
curves, this requires computing iterated Coleman integrals.

Xs(13)

or

X0(67)+ and friends?
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A fun converse

Thinking about effective Chabauty backwards: if we have a lot of
Q-points and few Fp points, the Jacobian must have large rank!

Example
To force a curve to have many Q points and few F7 points, let

C : y2 = x(x − 7)(x − 14)(x + 7)(x + 14) + 1

this has a bunch of rational points (7n,±1) for n = −2,−1, 0, 1, 2
(and ∞ so ≥ 11 in all), but these give the same F7 points (0,±1).
In fact #C (F7) = 8 so we fail the Coleman bound as

11 ≤ 8 + 2g − 2 = 10

so we must have rank Jac(C )(Q) ≥ g = 2. (Magma tells me
rank Jac(C )(Q) = 5 in fact!)
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More generally

In fact Coleman showed:

Corollary (Coleman)
Let k ∈ Z, p - k prime and f (x)/Z monic with f (x) ≡ xk (mod p)

and b(k + 1)/2c roots over Z then the rank of the Jacobian of

y2 = f (x) + 1

is at least the genus (which is b(k − 1)/2c)

The proof is a little more serious than our example above, it shows
that the points (αi , 1) where αi are roots of f are actually linearly
independent in the Jacobian.
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Fast Coleman

Recall to compute a Coleman integral we need to find

F , {fi (P)}i

we can coerce the evaluation of fi (P) into a linear recurrence and
apply Bostan-Gaudry-Schost!
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Generalities

Coleman integration can be more general, Coleman de Shallit
define:

rC : K2(k(C ))→ Hom(H0(C ,Ω1
C/k

), k).

r(f , g)(ω) = −
∫
(g)

log(f ) ∈ k
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Where next?

• Coleman integration quickly on general curves

• Coleman integration for many primes at once?

• Distribution?
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