Skip to main content

Section 4 \(\GL_2\) (and up)

This will be an overview.

Subsection 4.1 Change of perspective: Representation theory

Definition 4.1

A unitary representation of a topological group \(G\) is a pair \((\pi, V)\) with \(V\) a Hilbert space and

\begin{equation*} \pi\colon G\times V \to V \end{equation*}
\begin{equation*} g,v \mapsto \pi(g) v \end{equation*}

continuous, where \(\pi\) acts unitarily.

Example 4.3

If \(G(K) = H\) and \(G(\adeles) = G\) then we can take

\begin{equation*} L^2( G(K) \backslash G(\adeles)) \end{equation*}
\begin{equation*} g f(x) = f(xg)\text{.} \end{equation*}

Now if \(\pi, V\) is finite dimensional with

\begin{equation*} V = V_1 \oplus \cdots \oplus V_n \end{equation*}
\begin{equation*} \pi, \chi_1,\ldots, \pi, \chi_n \end{equation*}

then

\begin{equation*} \RR \acts L^2(\RR) = \oint_{i\RR} e^{\pi t} \diff t\text{.} \end{equation*}

Subsubsection 4.1.1 Automorphic forms/representations

We are concerned with

\begin{equation*} L^2(G(\QQ) \backslash G(\adeles)) \end{equation*}

for \(G\) a reductive algebraic group \(/\QQ\text{.}\)

Heads up

\begin{equation*} G = \GL(1) \end{equation*}
\begin{equation*} L^2(\QQ\units\backslash \adeles\units) = \oint \end{equation*}

instead we would like to look at a piece of

\begin{equation*} L^2( G(\QQ) \backslash G(\adeles)) \end{equation*}

where the center

\begin{equation*} Z(\adeles) \hookrightarrow G(\adeles) \end{equation*}

acts by a fixed character \(\omega\text{.}\) For \(G= \GL(1)\) this is called the Nebentypus.

\begin{equation*} (\rho_\omega, L^2(\underbrace{G(\QQ)\backslash G(\adeles)}_{\lb G(\adeles)\rb}, \omega))\text{.} \end{equation*}
Definition 4.4 Constant term (along a parabolic)
\begin{equation*} f \in L^2([G(\adeles)], \omega) \end{equation*}

then

\begin{equation*} f_N(g) = \int_{N(\QQ)\backslash N(\adeles)} f(ng) \diff n \end{equation*}

for example

\begin{equation*} N_B = \begin{pmatrix} 1 \amp \cdots \amp * \\ 0 \amp \ddots \amp \vdots \\ 0 \amp 0 \amp1 \end{pmatrix} \end{equation*}

for \(G = \GL(2)\)

\begin{equation*} N = \begin{pmatrix} 1 \amp n \\ 0 \amp 1 \end{pmatrix}\text{.} \end{equation*}
Definition 4.5 Cusp form

If \(f_N(g) \equiv 0\) \(\forall' g \in G(\adeles)\text{.}\)

\(\rho_\omega\) is the right regular representation on \(L^2(\lb G \rb, \omega)\text{.}\) Let \(L^2_0\) denote the space of cusp forms.

Properties:

Subsubsection 4.1.2 Modular forms correspond to automorphic forms

We will make a bunch of groups by letting

\begin{equation*} \Gamma(N) = \ker( \SL_2(\ZZ) \to \SL_2(\ZZ/N\ZZ)) \end{equation*}

then we say \(\Gamma\) is a congruence subgroup if there exists \(N\) such that \(\Gamma \supseteq \Gamma(N)\text{.}\) For example

\begin{equation*} \Gamma_0(N) = \left\{\begin{pmatrix} a \amp b \\ c \amp d \end{pmatrix} \in \SL_2(\ZZ) : c \equiv 0 \pmod N\right\} \end{equation*}
\begin{equation*} \Gamma_1(N) = \left\{\begin{pmatrix} a \amp b \\ c \amp d \end{pmatrix} \in \SL_2(\ZZ) : c \equiv 0 \pmod N,\,a \equiv d\equiv 1 \pmod N\right\} \lhd \Gamma_0(N) \end{equation*}

we have an action

\begin{equation*} \Gamma_1(N) \backslash \Gamma_0(N) \acts L^2(\Gamma_1(N) \backslash \SL_2( \RR)) = L^2(N)\text{.} \end{equation*}
Remark 4.9
\begin{equation*} \Gamma_1(N) \backslash \Gamma_0(N) \simeq (\ZZ/ N\ZZ)\units \end{equation*}
\begin{equation*} \chi \colon {\ZZ/N\ZZ}\units \to \CC\units \leadsto \chi\colon \Gamma_1(N) \backslash \Gamma_0(N) \to \CC\units \end{equation*}

via

\begin{equation*} \begin{pmatrix} a \amp b \\ c \amp d \end{pmatrix} \mapsto \chi(d)\text{.} \end{equation*}

Then \(L^2_\chi(N)\) is the \(\chi\)-eigenspace of \(L^2(N)\text{.}\) Now as in Tate

\begin{equation*} \chi \leadsto \chi \text{ (adelic)} \end{equation*}

can view this as

\begin{equation*} \QQ\units\backslash \adeles \units \simeq Z(\QQ) \backslash Z(\adeles) \to \CC\units \end{equation*}

for \(Z\le \GL(2)\text{.}\)

\begin{equation*} \SL_2(\RR)\acts L^2(\chi) \end{equation*}

where \(\chi\) is adelic now, via

\begin{equation*} g\hookrightarrow (g,1,1,\ldots) \end{equation*}

so

\begin{equation*} K \colon G(\widehat \ZZ) \twoheadrightarrow \GL_2(\ZZ/N\ZZ)\text{.} \end{equation*}

Now embed

\begin{equation*} L^2_\chi(N) \hookrightarrow L^2(N) \end{equation*}

via

\begin{equation*} f \leadsto \phi_f \end{equation*}

with

\begin{equation*} \phi_f(\gamma(z_\infty g_\infty \times k))= \chi(k) f(g_\infty)\text{.} \end{equation*}

From modular forms to automorphic forms

\begin{equation*} f\in S_k(N,\chi) \leadsto \phi_f \end{equation*}
\begin{equation*} \phi_f\gamma(z_\infty g_\infty \times k)) = \chi(k) j(g_\infty, i)^{-k} f(g_\infty(i))\text{.} \end{equation*}

Subsubsection 4.1.3 Brief overview of local representation theory

Why?

\begin{equation*} L^2(G(\QQ)\backslash G(\adeles)) = \bigoplus \pi \oplus \oint \end{equation*}
\begin{equation*} \pi = \otimes' \pi_v \end{equation*}

for \(\pi_v\) local representations.

We will consider non-archimidean admissible representations, i.e. \((\pi, V)\) such that \(\pi^{K'}\) is finite dimensional for all \(K'\) compact.

Representations of \(\GL_2(\QQ_p)\)

Assume smooth, note that smooth implies admissible, possibly true for all \(G\text{.}\)

  1. 1-dimensional representations \(\chi (\det)\text{.}\)
  2. Principal series, let \(\chi_i = |\cdot|^{s_i} \omega, s_i \in \CC\) \(\omega \colon \QQ_p\units \to \CC\text{.}\) Let
    \begin{equation*} \chi\left( \begin{array}{cc} t_1 \amp b \\ 0\amp t_1\end{array}\right) = \chi_1(t_1) \chi_2(t_2) \end{equation*}