Skip to main content

Section 2 Abelian varieties

What about generalising this method to abelian varieties?

For \(p\) odd Coates et. al. (ppav with \(p\)-cyclic isogenies and local constraints)

For \(p = 2\text{.}\)

Recall let \(X,Y/K\) be abelian varieties over a number field and suppose that \(\Psi\colon X\to Y\) is an isogeny, then \(\Psi^\vee \colon Y^\vee \to X^\vee\) its dual. Then

\begin{equation} \frac{Q(\Psi^\vee)}{Q(\Psi)} = \frac {|Y(K)_\tors|}{|X(K)_\tors|}\frac {|Y^\vee(K)_\tors|}{|X^\vee(K)_\tors|} \frac{\prod_v c(X/K_v)}{\prod_v c(Y/K_v)} \frac{\Omega_X}{\Omega_Y} \prod_{p| \deg \Psi} \frac{|\Sha_0(X) \lb p^\infty\rb |}{|\Sha_0(Y) \lb p^\infty\rb |}\label{eqn-parity-dagger}\tag{2.1} \end{equation}

on the other hand we showed that if \(\Psi \Psi^\vee = \lb p \rb\) then

\begin{equation*} \frac{Q(\Psi^\vee)}{Q(\Psi)}\equiv p^{\rk_p(X/K)} \pmod {{K^\times}^2} \end{equation*}

note that in this case \(\deg \psi = p^{\dim (X)}\text{.}\)

To be able to use the same method we need to compute the RHS of (2.1).

For \(E\) since \(E\simeq E^\vee\) and \(|\Sha_0(E)| = \square \text{,}\) this only meant computing

\begin{equation*} \prod_v \frac{c(E/k)}{c(E'/k)} \frac{\Omega_E}{\Omega_{E'}}\text{.} \end{equation*}

First consider a ppav \(X/K\) s.t.

\begin{gather} \knowl{./knowl/eqn-parity-dagger.html}{\text{(2.1)}} \equiv \frac{\prod_v c(X/K_v)}{\prod_v c(Y/K_v)} \frac{\Omega_X}{\Omega_Y} \frac{|\Sha_0(X) \lb p^\infty\rb |}{|\Sha_0(Y) \lb p^\infty\rb |} \pmod{{K^\times}^\vee}\tag{2.2} \end{gather}
  1. Can we compute

    \begin{equation} \frac{\prod_v c(X/K_v)}{\prod_v c(Y/K_v)} \frac{\Omega_X}{\Omega_Y}\text{?}\tag{2.3} \end{equation}

    Leads us to Jacobians of hyperelliptic curves of genus \(g\)

  2. Can we compute

    \begin{equation} \frac{|\Sha_0(X) \lb p^\infty\rb |}{|\Sha_0(Y) \lb p^\infty\rb |}\text{?}\tag{2.4} \end{equation}

    Leads us to Jacobians of hyperelliptic curves of genus \(g\)

  3. Need an isogeny \(\Psi\) of degree \(2^g\) s.t.

    \begin{equation*} \Psi \colon J \to J' \end{equation*}

    i.e. the codomain must be a Jacobian of a hyperelliptic curve otherwise we cannot compute 1. or 2.

To satisfy 1., 2. and 3. we take \(g = 2\) because of the following:

Remark 2.2.

The parity of the rank of \(A/K\) in the last two cases can be computed from that of the underlying elliptic curves.

We will concentrate on \(A\simeq_K J(C)\text{,}\)

\begin{equation*} C\colon y^2 = f(x) \end{equation*}

for \(\deg (f ) = 6\text{.}\)

The generalisation of a 2-isogeny is called a Richelot isogeny.

Plan:

  1. Review of hyperelliptic curves and their Jacobians.
  2. Richelot isogeny
  3. Compute contribution of the real places
  4. Compute Tamagawa numbers/local root numbers
  5. Compute \(|\Sha_0(J) \lb 2^\infty \rb|\) up to squares
  6. Find and prove the right error term

Subsection 2.1 Review of hyperelliptic curves and Jacobians

See Stoll's notes.

By a hyperelliptic curve \(C\) over a number field \(K\) given my

\begin{equation*} C/K \colon y^2 = f(x) \end{equation*}

of genus \(g\) where \(f(x) \in K\lb x\rb\) of degree \(2g+1\) or \(2g+2\) with no multiple roots, we mean the pair of affine patches

\begin{equation*} U_x \colon y^2 = f(x) \end{equation*}
\begin{equation*} U_t \colon v^2 = t^{2g+2} f\left(\frac 1t\right) \end{equation*}

glued together along the maps

\begin{equation*} x = \frac 1t,\, y= \frac{v}{t^{g+1}}\text{.} \end{equation*}

We refer to as the points at \(\infty\) (i.e. \(C \smallsetminus U_x\)) the points with \(t = 0\) on \(U_t\text{.}\)

Explicitly denote by \(c\) the leading term of \(f(x)\text{.}\)

If \(f(x)\) is of degree \(2g+1\) then

\begin{equation*} U_x \colon y^2= c\prod_{i=1}^{2g+1} (x- r_i) \end{equation*}
\begin{equation*} U_t \colon v^2= tc\prod_{i=1}^{2g+1} (tr_i- 1) \end{equation*}

we denote \(P_\infty = (0,1)\) the only point at infinity with \(t=0\text{.}\)

Otherwise if \(f(x)\) is of degree \(2g+2\) then

\begin{equation*} U_x \colon y^2= c\prod_{i=1}^{2g+2} (x- r_i) \end{equation*}
\begin{equation*} U_t \colon v^2= c\prod_{i=1}^{2g+2} (tr_i- 1) \end{equation*}

we denote \(P_\infty^\pm = (0,\pm \sqrt{c})\) the two points on \(U_t\) with \(t = 0\text{.}\)

Divisors and the picard group.

Let \(G_K\) be the absolute galois group of \(K\text{,}\) recall that \(G_K\) acts on

\begin{equation*} C(K^\sep) \end{equation*}

via its action on coordinates.

Definition 2.3.

A divisor \(D\) on \(C\) is a formal sum

\begin{equation*} \sum_{P\in C(K^\sep)} n_P P \end{equation*}

where \(n_P \in \ZZ\) and \(n_P = 0\) for all but finitely many \(P \in C(K^\sep)\text{.}\) The integer \(n_P\) is called the multiplicity of \(P\) in \(D\) and \(\deg(D) = \sum_{P} n_P\) is the degree of \(D\text{.}\)

Divisors on \(C\) are elements of the free abelian group on the set of points \(P\in C(K^\sep)\text{.}\) Denote by \(\Div(C)\) the group of divisors on \(C\text{.}\)

Definition 2.4.

A divisor

\begin{equation*} D = \sum_{P\in C(F)} n_P P \end{equation*}

for some Galois extension \(F|K\text{.}\) We say it is \(K\)-rational, or defined over \(K\) if

\begin{equation*} D^\sigma = D \,\forall \sigma \in \Gal F K\text{.} \end{equation*}
Example 2.5.
\begin{equation*} C \colon y^2 = f(x) \end{equation*}
\begin{equation*} \alpha \in K \end{equation*}
\begin{equation*} P = (\alpha, \sqrt {f(\alpha)}) \end{equation*}
\begin{equation*} \bar P = (\alpha, -\sqrt {f(\alpha)}) \end{equation*}

then

\begin{equation*} D = P + \bar P \end{equation*}

is a \(K\)-rational divisor.

Definition 2.6.

Let \(f\) be a non-zero rational function on \(C\text{.}\) Define

\begin{equation*} \lb f \rb = \sum_{P \in C} \ord_P (f) P \end{equation*}

where the multiplicity of \(P \) in \(\lb f\rb\) is given by the order of vanishing of \(f \) at \(P\text{.}\) These divisors are called principal divisors, the group of such is denote \(\Princ(P)\text{.}\) Note that these are all of degree 0.

Definition 2.7.

The picard group of \(C\) is defined to be

\begin{equation*} \Pic(C) = \Div(C)/ \Princ(P)\text{.} \end{equation*}

Note that this inherits a notion of degree from \(\Div(C)\text{.}\)

Definition 2.9.

\(J\) is called the Jacobian variety of \(C\text{.}\)

Remark 2.10.

\(J\) is a projective variety (abelian), thus it can be embedded in some projective space \(\PP^N\) over \(K\text{.}\) One can show that

\begin{equation*} N = 4^g - 1 \end{equation*}

always works for hyperelliptic curves.

This is too large to work with an explicit model for \(J\) instead we will work with the curve \(C\text{.}\)

Jacobians of genus 2 curves.

Let \(C\) be a hyperelliptic curve of genus 2 defined over \(K\text{.}\)

\begin{equation*} C\colon y^2 = f(x) \end{equation*}

with \(f(x) \in K\lb x \rb\) of degree 6.

Points on \(C(\overline K)\) and \(J(\overline K)\text{:}\)

A point \(D\) on \(J(\overline K)\) is given by a divisor on \(C\) of the form

\begin{equation*} D = P + Q - P_{\infty}^+ - P_\infty^{-} \end{equation*}

for some \(P,Q \in C(\overline K)\text{.}\) For \(D\) to be defined over \(K\) either \(P,Q \in C(K)\) or \(P = Q^\sigma\) for \(\sigma \in \Gal F K\) where \(\lb F : K \rb = 2\text{.}\)

Remark 2.11.

If \(P = (x,y)\) and \(P' = (x,-y)\) then

\begin{equation*} D = P + Q - P_\infty^+ - P_\infty^- \end{equation*}

is zero in \(J(\overline K)\text{.}\)

Addition:

Choose 4 points \(P,P',Q,Q'\in C(\overline K)\) (in general position to make it easier).

Figure 2.12.

We can find a cubic polynomial \(y = p(x)\) through the four points. It also intersects at two additional points \(S,S'\) so that

\begin{equation*} [y - p(x)] = P + P' + Q + Q' + S + S' - 3P_\infty^+ - 3P_\infty^- \end{equation*}
\begin{equation*} (P + P' - P_\infty^+ - P_\infty^-)+( Q + Q' - P_\infty^+ - P_\infty^-) =-( S + S' - P_\infty^+ - P_\infty^-) \end{equation*}

hence

\begin{equation*} \underbrace{\lb P , P'\rb}_{=P + P' - P_\infty^+ - P_\infty^-} + \lb Q , Q' \rb = \lb R, R'\rb \end{equation*}

where \(\lb R , R'\rb = -\lb S, S'\rb\text{.}\) Where negation is taking negative of all \(y\)-coordinates.

So what is 2-torsion?

Remark 2.14.

For the Richelot isogeny \(\phi\text{:}\)

\begin{equation*} \xymatrix{ J \ar[r]^\phi & J' \ar[r]^{\phi^\vee} & J\\ C \ar@{^{(}->}[u] \ar[r]_{\Gamma} & C' \ar@{^{(}->}[u] & } \end{equation*}

where \(\phi^\vee \circ \phi = \lb 2 \rb\) and \(\Gamma\) is a correspondence.

Subsection 2.2 Richelot isogenies and the Richelot construction

Richelot isogenies are defined for Jacobians of genus 2 curves, they split multiplication by 2. Their codomain is the Jacobian of a curve, a model of which is explicitly given by the Richelot construction.

Definition 2.15. The Richelot operator.

Given two polynomials \(P(x), Q(x)\in K\lb x\rb\) of degree at most 2 we define the Richelot operator \(\lb -, - \rb\) by

\begin{equation*} \lb P(x),Q(x) \rb = P'(x) Q(x) - Q'(x) P(x)\text{.} \end{equation*}
Definition 2.16. Richelot polynomials.

We say that a polynomial \(G(x) \in K \lb x \rb\) of degree 5 or 6 is a Richelot polynomial over \(K\) if we can fix a factorisation

\begin{equation*} G(x) = G_0(x) G_1(x) G_2(x) \end{equation*}

where each \(G_i\) is of degree at most 2, defined over \(\overline K\) and defined over \(K\) as a set.

Write

\begin{equation*} G_i(x) = g_{i2} x^2+ g_{i1} x +g_{i0} = g_i(x-\alpha_i)(x-\beta_i) \end{equation*}

for its factorisation over \(\overline K\) and define

\begin{equation*} \Delta_G = \det((g_{ij})_{0\le i, j \le2})\text{.} \end{equation*}
Definition 2.17. Richelot dual polynomials.

To a Richelot polynomial \(G(x)\) with a fixed factorisation

\begin{equation*} G(x) =G_0(x) G_1(x) G_2(x) \end{equation*}

such that \(\Delta_G \ne 0\text{.}\) We associate its Richelot dual polynomial \(F(x)\) given by

\begin{equation*} F(x) = \prod_{i=1}^3 F_i(x),\,F_i(x) =\frac{1}{\Delta_G} \lb G_{i+1}(x), G_{i+2}(x)\rb \end{equation*}

where we take indices mod 3. Write \(F_i(x) = f_i(x-A_i)(x-B_i)\)

\(\Delta_G\) may not be defined over \(K\) but \(\Delta_G^2\) is.

Definition 2.18. Richelot (dual) curves.

We say that a hyperelliptic curve \(C/K\) of genus 2 is a Richelot curve over \(K\) if it is given by \(y^2 = G(x)\) together with the factorisation

\begin{equation*} G(x) =G_0(x) G_1(x) G_2(x) \end{equation*}

as a Richelot polynomial over \(K\) such that \(\Delta_G \ne 0\text{.}\)

To a Richelot curve \(C/K\) we associate its Richelot dual curve \(\widehat C\) given by

\begin{equation*} \widehat C \colon y^2 =F(x) \end{equation*}

where \(F(x)\) is the Richelot dual polynomial of \(G(x)\) with respect to the given factorisation.

Remark 2.19.

Let \(G(x) \in K \lb x \rb\) be a polynomial of degree 5 or 6. Denote by \(K_G\) its splitting field. Then the conditions for \(G(x) \) to be a Richelot polynomial can be rephrased as

\begin{equation*} \Gal{K_G}{K} \subseteq C_2^3 \rtimes S_3 \subseteq S_6 \end{equation*}
\begin{equation*} G(x) =G_0(x) G_1(x) G_2(x) \end{equation*}
Richelot isogenies.
Definition 2.20. Richelot isogenies.

Let \(C/ K\) be a Richelot curve with fixed factorisation

\begin{equation*} G(x) =G_0(x) G_1(x) G_2(x)\text{.} \end{equation*}

Let \(J\) be its Jacobian, consider the 2-torsion points of \(J(\overline K)\) defined by the quadratic factorisation of \(G(x)\text{.}\)

\begin{equation*} D_i = \lb P_i, Q_i\rb \end{equation*}

where \(P_i = (\alpha_i, 0)\text{,}\) \(Q_i = (\beta_i, 0)\text{.}\) Then the isogeny over \(K\) for \(J\) whose kernel is \(\{0, D_1, D_2, D_3\}\) is called a Richelot isogeny.

We say that a Jacobian admits a Richelot isogeny over \(K\) if its underlying curve is a Richelot curve \(/K\text{.}\)

Brauer groups Galois cohomology and local invariants (Angus).

Reference Milne's CFT.

Central simple algebras:

We will consider finite dimensional \(k\)-algebra for \(k\) a field.

Definition 2.22.

A \(k\)-algebra \(A\) is central if the center \(Z(A) = k\text{.}\) A \(k\)-algebra is simple if the only two sided ideals are \(A\) and \((0)\text{.}\)

Example 2.23.

The matrix algebra \(M_n(k)\) is central simple for \(k\text{.}\)

Example 2.24.

A quaternion algebra like \(\HH = \RR \{i,j,k\}\) is central simple for \(k\text{.}\)

Example 2.25.

A division algebra is simple.

Definition 2.26.

Two central simple \(k\)-algebras \(A,B\) are similar, if there exists \(m,n \in \ZZ_{\gt 0}\) s.t. \(A \otimes_k M_m(k) \simeq B \otimes_k M_n(k)\text{.}\) Denote this by \(A\sim B\text{.}\)

Definition 2.27. Brauer groups.

The Brauer group of a field \(k\) denoted \(\Br(k)\) is the set of similarity classes of central simple algebras \(\lb A \rb\) with operation

\begin{equation*} \lb A \rb \lb B \rb = \lb A \otimes B \rb\text{.} \end{equation*}
Remark 2.28.
  1. The class \(\lb M_n(k)\rb\) is the identity for all \(n\text{.}\)
  2. The operation is well defined.
  3. Given \(A\) let \(A^\op\) be the algebra with order of multiplication reversed. Then
    \begin{equation*} A \otimes_k A^\op \xrightarrow \sim \End_k(A) \simeq M_{\dim_k(A)} (k) \end{equation*}
    \begin{equation*} (a\otimes a') \mapsto (v \mapsto a v a')\text{.} \end{equation*}
    So
    \begin{equation*} \lb A \rb\inv = \lb A^\op \rb\text{.} \end{equation*}

Galois cohomology:

Let \(A\) be a central simple \(k\)-algebra with maximal subfield \(L/k\text{.}\)

Let \(\sigma \in \absgal k\text{,}\) it induces a map

\begin{equation*} \sigma \colon A \to A\text{,} \end{equation*}

comparing this to the identity Noether-Skolem gives an element

\begin{equation*} e_\sigma \text{ s.t. } \sigma a = e_\sigma a e_\sigma\inv,\,\forall a \in L \end{equation*}

defined up to multiplication by \(L^\times\text{.}\)

Given another \(\tau \in \absgal k\) I have

\begin{equation*} e_{\sigma\tau} a e_{\sigma\tau}\inv = \sigma(\tau a) = e_\sigma e_\tau a e_\tau\inv e_\sigma\inv \end{equation*}

thus there exists

\begin{equation*} \phi(\sigma,\tau) \in L^\times \end{equation*}

s.t.

\begin{equation*} e_{\sigma\tau} = \phi(\sigma,\tau) e_\sigma e_\tau \end{equation*}

this gives a map

\begin{equation*} \{\text{central simple algebras}/k \} \to H^2( \absgal k, \overline k ^\times)\text{.} \end{equation*}

Some special \(k\text{.}\)

Let \(k\) be a non-archimidean local field with valuation

\begin{equation*} v \colon k^\times \to \ZZ \end{equation*}

for a central division algebra \(D\) there exists \(n \in \ZZ\) s.t.

\begin{equation*} v \colon D ^\times \to \frac 1n \ZZ\text{.} \end{equation*}

Consider a maximal unramified subfield

\begin{equation*} K \subseteq L \subseteq D \end{equation*}

with \(\sigma\in \Gal LK\) lifting frobenius.

Noether-Skolem gives \(\alpha \in D^\times\) s.t.

\begin{equation*} \sigma x = \alpha x \alpha \inv,\,\forall x \in L \end{equation*}

up to \(L^\times\text{.}\)

If we take \(\alpha ' = c\alpha \) for \(c\in L^\times\) we can compute

\begin{equation*} v(\alpha ') = v (c) + v(\alpha ) \equiv v(\alpha ) \pmod \ZZ\text{.} \end{equation*}

We get a map

\begin{equation*} \{\text{central division algebras}/k \} \to \QQ/\ZZ\text{.} \end{equation*}

If \(F\) is a number field with a place \(v\in |F|\) get a map

\begin{equation*} \mathrm{inv}_v \colon \Br(F) \to \Br(F_v) \simeq \begin{cases} 0 ,\amp F_v = \CC,\\ \ZZ/2,\amp F_v = \RR,\\ \QQ/\ZZ,\amp F_v\text{ nonarch}.\end{cases}\text{.} \end{equation*}

Global CFT gives an exact seq

\begin{equation*} 0 \to \Br(F) \to \bigoplus_v \Br(F_v) \to \QQ/\ZZ \to 0\text{.} \end{equation*}
Root numbers of elliptic curves (Ricky).

Based on Rohrlich's article elliptic curves and the Weil-Deligne group

\(K\) non-archimidean local field, \(\overline K\) is its separable closure.

\begin{equation*} \phi = (x\mapsto x^q)\inv\in \absgal k,\,q = |k| \end{equation*}

\(\Phi\) some lift of \(\phi\) in \(\absgal K\text{.}\)

\(W(\overline K / K) = \) Weil group, the preimage of \(\langle \phi\rangle\) in \(\absgal k\) under \(G_K \twoheadrightarrow G_k\text{.}\)

We consider \(\sigma \colon W( \overline K/K) \to \GL(V)\text{,}\) representations over \(V/\CC\) (always cts.)

Say \(\sigma\) is of Galois type if it factors through a finite quotient.

Another source of examples is

\begin{equation*} \omega \colon W \to \CC^\times \end{equation*}

given by

\begin{equation*} \omega(I) = \{1\} \end{equation*}

where

\begin{equation*} I =\ker(G_K \to G_k) \end{equation*}

and \(\omega(\Phi) = q\inv\text{.}\)

Fact, all irreducible \(\sigma \cong \rho \otimes \omega^s\) for some \(s \in \CC\) and \(\rho\) of Galois type.

Definition 2.36. The Weil-Deligne group.

The Weil-Deligne group is

\begin{equation*} W'(\overline K / K) = W(\overline K/K) \ltimes \CC \end{equation*}

where \(W\) acts on \(\CC\) via \(\omega\)

\begin{equation*} g z g\inv = \omega(g) z,\,g\in W(\overline K/ K),z \in \CC\text{.} \end{equation*}

Upshot: Representations \(\sigma'\) of \(W'\) are the same as \((\sigma, N)\) where

\begin{equation*} \sigma\colon W \to \GL(V) \end{equation*}

a representation and \(N\) is a nilpotent linear operator on \(V\text{.}\) Satisfying

\begin{equation*} \sigma(g) N \sigma(g)\inv = \omega(g) N\text{.} \end{equation*}

One motivation for studying those is a general construction of Grothendieck and Deligne which turn an \(l\)-adic representation of \(G_K\) into a representation of \(W'\) (given \(i\colon \QQ_l \hookrightarrow \CC\)).

Example 2.37.
\begin{equation*} \sprep(n) = \CC^n \end{equation*}

with action of \(W'\) given by

\begin{equation*} \sigma(g) e_j = \omega(g)^j e_j,\,\forall g \in W \end{equation*}
\begin{equation*} Ne_ j = e_{j+1},\, Ne_n = 0 \end{equation*}

check relation \(\sigma N \sigma\inv = \omega N\text{.}\)

We want to define \(\epsilon \)-factors for representations of \(W'\text{.}\) We need two choices:

\begin{equation*} \psi \colon K\to \CC^\times \end{equation*}

an additive character of \(K\text{.}\) And

\begin{equation*} \diff x \end{equation*}

a Haar measure on \(K\text{.}\)

Then

\begin{equation*} \epsilon (\sigma ', \psi , \diff x) = \epsilon ( \sigma , \psi ,\diff x) \delta (\sigma ') \end{equation*}

where

\begin{equation*} \delta (\sigma ') = \det(-N | V^I / V_N^I) \end{equation*}

and \(\epsilon (\sigma , \psi , \diff x)\) is defined by the following proposition.

Definition 2.39. Root numbers.

The root number of \(\sigma '\) is defined to be

\begin{equation*} w(\sigma ', \psi ) = \frac{\epsilon (\sigma ', 'y, \diff x)}{|{\epsilon (\sigma ', 'y, \diff x)}|}\text{.} \end{equation*}

For \(E/K\) an elliptic curve we have a representation on \(V_l^*\) (\(l \ne p\)).

Using the Grothendieck-Deligne construction, let \(\sigma _{E/K}\) be a representation of \(W'\) it has the following property

  • \(E\) pot. good reduction then
    \begin{equation*} N_{E/K} = 0 \end{equation*}
    and \(\sigma_{E/K}\) is semisimple. \(E\) has good reduction iff \(\sigma _{E/K}\) is unramified.
  • \(E\) has potential multiplicative reduction implies that we can take \(\chi \) a character of \(W\) with \(\chi ^2 = 1\text{,}\) so that
    \begin{equation*} E^\chi \end{equation*}
    has split multiplicative reduction. Then
    \begin{equation*} \sigma _{E/K}' \simeq \chi \omega \inv \otimes \sprep(2) \end{equation*}
    \(\chi \) is trivial / unramified and non-trivial / ramified according to \(E\) having split / non-split / additive reduction.
  • \(\sigma _{E/K}'\) is essentially symplectic. \(W(E/K) = W(\sigma _{E/K}')\) is independent of \(\psi \) and must be \(\pm 1\text{.}\)
\(\Sha\) (Sachi).

Suppose \(G\) is a finite abelian group with a non-degenerate alternating, bilinear paring

\begin{equation*} \Gamma \colon G \times G \to \QQ/\ZZ \end{equation*}

then there exists \(H\) s.t. \(G \cong H\times H\text{.}\)

Nondegeneracy is the property that: If \(\Gamma (v,w) = 0\) for all \(w \in G\) then \(w= 0\text{.}\)

Alternating: For all \(v \in G\text{,}\) \(\Gamma (v,v ) = 0\text{.}\) (this implies skew-symmetry).

Analogous theorem:

Symplectic space if \(V\) a vector space with non-degenerate alternating bilinear pairing, \(\omega \) has a decomposition.

\begin{equation*} V = W \oplus W^* \end{equation*}

where \(W\) is Lagrangian.

Proof is via induction on the dimension of \(V\text{.}\) Fix \(v\in V\text{.}\) \(\exists W\) s.t. \(\omega (v,w) = 1\text{,}\) scalar nondegeneracy.

Define \(W = \{z\in V : \omega (z,w) = 0, \omega (v,z) = 0\}\text{.}\)

\begin{equation*} \space(W,V) \cap W = 0 \end{equation*}

so restrict \(\omega \) to \(W\text{,}\) induct.

Trivial group \(\checkmark\text{.}\)

Reduce to the case of a \(p\)-group, \(G\) a \(p\)-group. Fix \(x\) of maximal order in \(G\text{,}\) \(p^n\text{.}\) There exists \(y\) such that \(\Gamma (x,y) = \frac 1{p^n}\text{.}\) If not then \(\Gamma (p^{n-1}x,y) = 0\) for all \(y \in G\) so this contradicts non-degeneracy. Any \(y\) has maximal order also since

\begin{equation*} 0 \ne p^{n-1} \Gamma (x,y) = \Gamma (x, p^{n-1} y)\text{.} \end{equation*}

Next we want to show \(\langle x \rangle \cap \langle y \rangle = 0\text{.}\) If \(mx = ny\) for some \(0 \lt m, n \lt p^n\) then

\begin{equation*} 0 = m\Gamma (x,y) = \Gamma (x, mx) = n\Gamma (x,y) \ne 0\text{.} \end{equation*}

Define

\begin{equation*} H = \{ z : \Gamma (x,z) = \Gamma (y,z) = 0\} \end{equation*}

claim:

\begin{equation*} G \cong ( \langle x\rangle \oplus \langle y \rangle ) \oplus H\text{.} \end{equation*}

Proof of claim: If \(g \in G\)

\begin{equation*} \gamma \coloneqq g - p^n \Gamma (y,g) x - p^n\Gamma (x, g) y \end{equation*}

so

\begin{equation*} \Gamma (x,\gamma ) = \Gamma (x,g) - p^n \Gamma (y, g) \cancelto{0}{\Gamma (x,x)} - p^n \Gamma (x,g) \underbrace{\Gamma (x,y)}_{1/p^n} = 0 \end{equation*}

here we used alternating.

Then \(\Gamma \) restricts to a non-degenerate alternating bilinear pairing on \(H\text{.}\)

Remark 2.41.

For a PPAV we do not always have an alternating pairing, sometimes just skew-symmetric, or nothing! So Sha can be square, twice a square, or arbitrary. See Poonen-Stoll, Stein?

Complete 2-descent (Oana).

Let

\begin{equation*} y^2 = x(x-5)(x+5) \end{equation*}

http://www.lmfdb.org/EllipticCurve/Q/800/d/3, then

\begin{equation*} \Delta = 10^6 \end{equation*}

so the bad primes are \(2,5\text{.}\)

\(\#\tilde E(\FF_3) = 4\text{.}\)

\begin{equation*} E_\tors(\QQ) \hookrightarrow \tilde E(\FF_3) \end{equation*}

so

\begin{equation*} E_\tors(\QQ) [2] = \{0, (0,0), (5,0), (-5,0)\}\text{.} \end{equation*}
\begin{equation*} E\lb 2 \rb \subseteq E(\QQ)\text{.} \end{equation*}

\(S = \{2,5, \infty \} \subseteq M_\QQ\text{.}\)

\begin{equation*} \QQ(S, 2) = \{ b\in \QQ^\times / (\QQ^\times)^2 : \ord_p(b) \equiv 0 \pmod 2,\,\forall p\not\in S\} \end{equation*}

a complete set of coset representatives is

\begin{equation*} \{\pm 1, \pm 2, \pm 5, \pm 10\} \end{equation*}

which has 8 elements. Consider

\begin{equation*} E(\QQ)/2E(\QQ) \to \QQ(S,2)\times \QQ(S,2) \end{equation*}
\begin{equation*} e_0 = 0, e_1=5, e_2 =-5\text{.} \end{equation*}
\begin{equation*} 0 \mapsto (1,1) \end{equation*}
\begin{equation*} (0,0) \mapsto (-1,-5) \end{equation*}
\begin{equation*} (0,5) \mapsto (5,2) \end{equation*}
\begin{equation*} (0,-5) \mapsto (-5,10) \end{equation*}

does the system

\begin{equation*} b_1 z_1^2 - b_2 z_2^2 = 5 \end{equation*}
\begin{equation*} b_1 z_1^2 - b_1 b_2 z_3^2 = -5 \end{equation*}

have a solution for pairs \((b_1, b_2) \in \QQ(S,2)^2\) and \(z_1, z_2, z_3 \in \QQ\text{?}\)

If \(b_1 \lt 0, b_2 \gt 0\) or \(b_1 \gt 0 , b_2 \lt 0\) then we have no solution.

\(b_1\) \(b_2 \) reason/point?
1 1 point 0
1 2
1 5
5 2 point (0,5)
-1 -1 point (-4,6)
-5 -2 point (0,5) + (-4,6)
Table 2.42. Images

Reason if \(\legendre ap = -1\) and \(x^2 = ay^2 \pmod p\) then

\begin{equation*} x \equiv 0 \equiv y \pmod p \end{equation*}

then

\begin{equation*} b_1(z_1^2 - b_2 z_3^2) = -5 \end{equation*}

If \(5\nmid b_1\) and \(\legendre{b_2} 5 = -1\) then

\begin{equation*} 5|z_3 \end{equation*}

we have \(z_3 \in 5\ZZ_3 \cap \QQ\)

\begin{equation*} |z_3 |_5 \le \frac 15\text{.} \end{equation*}

We reverse engineer \((-4,6) \in E(\QQ)\text{.}\)

Weil-Châtelet groups (Aash, Asra).

I have an elliptic curve \(E/K\text{,}\) then \(C/K\) a smooth curve is a PHS if

\begin{equation*} \exists \mu \colon E(\overline K) \times C(\overline K) \to C(\overline K) \end{equation*}
\begin{equation*} (P,p) \mapsto p+ P\text{.} \end{equation*}

Such that \(\mu \) is defined over \(K\) and \((P+Q) + p = P+(Q+p)\) and for all \(p,q \in C(\overline K)\) there exists a unique \(P\in E(\overline K)\) s.t. \(\mu (P,p) = q\text{.}\)

We say two PHS \(C,C'\) are equivalent if

\begin{equation*} \phi /K \colon C \to C' \end{equation*}

which respects the action of \(E\text{.}\)

\(\forall P \in E, p\in C\)

\begin{equation*} \phi (P+ p) = P+ \phi (p) \end{equation*}
\begin{equation*} \phi ( \mu _C (P,p)) = \mu _{C'} (P, \phi (P))\text{.} \end{equation*}

\(\operatorname{WC}(E)\) is set of the equivalence classes of PHS's.

\begin{equation*} WC(E/K) \leftrightarrow H^1(G_{\overline K/K}, E)\text{.} \end{equation*}
\begin{equation*} C \colon y^2 = f(x) = p_1(x)p_2(x) p_3(x) \to C' \colon y^2 = \frac 1\Delta g_1(x)g_2(x)g_3(x) \end{equation*}
\begin{equation*} J(C) \xrightarrow{\text{Richelot isogeny}} J'(C') \end{equation*}

We showed

\begin{equation*} (-1)^{\rk_2(J)} = (-1)^{\ord_2\left(\prod_v \frac {c_v(J)}{c(J')} \frac{\Omega _J}{\Omega _{J'}} \right)} \end{equation*}

Missed ????????

Take \(a \in \Sha(A/K)\) then \(a\) can be represented by a locally trivial PHS \(X\) over \(K\text{.}\) Let \(K^\sep(X)\) be the function field of \(X\otimes_K K^\sep\text{.}\) Have an exact sequence

\begin{equation*} 0 \to (K^\sep)^\times \to (K^\sep(X))^\times \to K^\sep(X)^\times/(K^\sep)^\times \to 0 \end{equation*}

which yields

\begin{equation*} \Br(K) = H^2(G_K, (K^\sep)^\times) \to H^2(G_K, K^\sep(X)^\times) \twoheadrightarrow H^2(G_K, K^\sep(X)^\times/(K^\sep)^\times) \to 0 \end{equation*}

the last 0 is as \(H^3(G_K, (K^\sep)^\times) = 0\) as \(X\) is locally trivial (c.f. Mlne Arithmetic duality theory rmk. 6.11) we have

\begin{equation*} 0 \to \prod_v\Br(K_v) \to \prod_v H^2(G_{K_v}, K^\sep(X)^\times) \to H^2(G_{K_v}, K^\sep(X)^\times/(K^\sep)^\times) \to \cdots \end{equation*}

On the other hand from the exact sequence

\begin{equation*} 0 \to K^\sep(X)^\times/(K^\sep)^\times \to \Div^0(X\otimes_K K^\sep) \to \Pic^0(X\otimes_K K^\sep) \to 0 \end{equation*}

we have

\begin{equation*} H^1(G_K, \Div^0(X\otimes_K K^\sep)) \to H^1(G_K, \Pic^0(X\otimes_K K^\sep)) \to H^2(G_k, K^\sep(X)^\times/(K^\sep)^\times) \to \cdots \end{equation*}

now over \(K^\sep\text{,}\) \(A\otimes_K K^\sep \simeq X\otimes_K K^\sep\) hence

\begin{equation*} \Pic^0(X\otimes K^\sep) \simeq \Pic^0(A\otimes K^\sep) \end{equation*}

hence one gets a map

\begin{equation*} H^1(G_K, \Pic^0(A\otimes K^\sep)) \to H^2(G_K, (K^\sep(X))^\times/(K^\sep)^\times) \end{equation*}

Noted by Poonen and Stoll.

Definition 2.46. Deficient places.

We say that \(C\) is deficient at a place \(v\) if \(C\) doesn't have a \(K_v\) rational divisor of degree \(g-1\text{.}\)

Hence for genus \(g\) curves this says that \(C\) has no \(K_v\) rational divisor of degree \(1\text{.}\) Equivalently \(C\) has no \(K_v\)-rational point over any odd degree extension of \(K_v\text{.}\)

E.g. if \(K_v = \RR\) we have \(C\) deficient iff \(C(\RR) \ne \emptyset\text{.}\)

\begin{equation*} y^2 = cq_1(x) q_2(x) q_3(x),\,c\gt 0\text{ and }q_i\text{ irred over }\RR \end{equation*}
Figure 2.47.

Here \(c \gt 0\) and \(C(\RR) \ne \emptyset\) and \(C\) is not deficient over \(\RR\text{.}\)

Alternatively \(c \lt 0\) and \(C(\RR) = \emptyset\) and \(C\) is deficient over \(\RR\text{.}\)

Infinite places.
Definition 2.48.

Let \(J/K\) be a jacobian admitting a Richelot isogeny \(\phi \) over \(K\) for a place of \(K\) such that \(v | \infty \text{,}\) we denote \(\phi _v\) the map induced by \(\phi \) on \(J(K_v)\) and define

\begin{equation*} \varphi \colon J(K_v)^0 \to J(K_v)^0 \end{equation*}

the restriction of \(\phi _v\) to the identity component.

Same as the elliptic curve case.

Case \(K_v = \CC\) here \(n(J(\CC)) = 1 = n(J'(\CC))\) and \(|\ker \varphi | = 4\)

Figure 2.52.
Figure 2.53.

\(D_1= \lb (r_1, 0), (r_2,0)\rb\) with \(r_1,r_2\) the smallest roots. Then \(D_1\in \ker \varphi\text{.}\)

\(D_2= \lb (r_1, 0), (r_3,0) \rb \) with \(r_3\) the next smallest root. Then \(D_2\not\in \ker \varphi\text{.}\)

Missed

Clear since

\begin{equation*} \delta _i' = \frac {4}{\Delta _G^2} (\alpha _{i+1} - \alpha _{i+2})(\alpha _{i+1} - \beta _{i+2})(\beta _{i+1} - \alpha _{i+2})(\beta _{i+1} -\beta_{i+2}) \end{equation*}

for \(i = 1,2,3\text{.}\)

Remark 2.55.

\(m_G'\) follows from the signs of \(\delta _1', \delta _2', \delta _3'\) and the leading term of \(F(x)\text{.}\)

Example 2.56.

Let \(G_1(x) = x^2 - 16, G_2(x) + x^2 + x + \frac{17}4, G_3 = x^2 - 2x + 9\text{.}\) We have \(\delta _1=64, \delta _2 = -16, \delta _3 = -32\text{.}\) \(C\) has one real connected component hence \(n(J(\RR)) = 1\) and \(m_v = 1\text{.}\)

Now

\begin{equation*} D_1 = \lb (\alpha _1,0), (\beta _1, 0)\rb \in \ker \phi \end{equation*}
\begin{equation*} D_2 = \lb (\alpha _2,0), (\overline \alpha_2, 0)\rb \end{equation*}
\begin{equation*} D_3 = \lb (\alpha _3,0), (\overline \alpha_3, 0)\rb \in \ker \phi \end{equation*}

so \(|\ker \phi | = 4\text{.}\)

Also \(\delta _{1}' ,\delta _{2}', \delta _{3}'\in \RR\) all \(k_{i,j} \gt 0\) so \(\delta _{1}' ,\delta _{2}', \delta _{3}'\gt 0\) so that \(C'\) has \(3\) connected components and \(n(J'(\RR)) = 4\) and \(m_v' = 1\text{.}\)

Tamagawa numbers (\(v \nmid \infty \)).

We need to compute \(\frac{c_v(J)}{c_v(J')}\) (we won't at \(v | 2\)).

Recall that for an abelian variety \(A/K\) over a number field

\begin{equation*} c_v(A) = |A(K_v)/A_0(K_v)| \end{equation*}
\begin{equation*} \int_{A(K_v)} | \omega |_v \mu _v^d = \left | \frac{\omega }{\omega _0} \right | \int_{A(K_v)} | \omega_0 |_v \mu _v^d \end{equation*}
\begin{equation*} = \left | \frac{\omega }{\omega _0} \right | \left| A(K_v)/A_0(K_v)\right| \int_{A_0(K_v)} | \omega_0 |_v \mu _v^d \end{equation*}
\begin{equation*} = \left | \frac{\omega }{\omega _0} \right | c_v \left| A_0(K_v)/A_1(K_v)\right| \int_{A_1(K_v)} | \omega_0 |_v \mu _v^d \end{equation*}
\begin{equation*} = \left | \frac{\omega }{\omega _0} \right | c_v \left| \widetilde A_v(\FF_{q_v})\right| q_v^{-d}\text{.} \end{equation*}

How to compute \(c_v\text{?}\) Need to compute \(|\widetilde A_v(\FF_{q_v})|\text{.}\)

Example 2.58.

Consider an elliptic curve \(E\text{.}\) Recall that by Hensel's lemma, \(E_0(K_v) \twoheadrightarrow \widetilde E_{ns}(\FF_{q_v})\) let

\begin{equation*} f(x,y) = y^2 + a_1 xy + a_3y - x^3 - a_2 x^2 - a_4 x - a_6 = 0 \end{equation*}

be the minimal Weierstraß equation for \(E\text{.}\) Let \(\tilde f(x,y) \) be the reduced polynomial mod \(\pi _v\text{.}\) and \(\tilde P(\tilde \alpha , \tilde \beta ) \in \widetilde E_{ns}(\FF_{q_v})\) a point. Since \(P\) is non-singular either

\begin{equation*} \partder[\tilde f]{x}(\tilde P) \ne 0 \text{ or } \partder[\tilde f]{y}(\tilde P) \ne 0 \end{equation*}

say the latter, then choose any \(x_0 \in \ints_{K_v}\) with \(x_0 \equiv \tilde \alpha \pmod{\pi _v}\) then \(f(x_0, y) = 0\) has \(\tilde f(x_0, \tilde \beta ) = 0\) as \(\beta \) is a simple root. By Hensel's lemma there exists \(y_0 \in \ints_{K_v}\) such that \(\tilde y_0 = 0\) and \(f(x_0,y_0) = 0\text{.}\) So \(P=(x_0, y_0) \in E_0(K)\) reduces to \(\widetilde P\text{.}\)

For non-singular points get points over \(\ints_{K_v}\text{.}\)

Example 2.59.
\begin{equation*} E \colon y^2 = (x+1)(x-p^2)(x+p^2), \,p\gt 3 \end{equation*}
\begin{equation*} \widetilde E \colon \widetilde y^2 = (\widetilde x+1)\widetilde x^2 \end{equation*}

Missed more sorry

Remark 2.60.

We are interested in “good” models, i.e. we require that

\begin{equation*} \mathcal E (\ZZ)_p = E(\QQ_ p)\text{.} \end{equation*}

Our model \(\mathcal E /\ZZ\colon y^2=(x+1)(x-p^2)(x+p^2)\) is proper since \(\mathcal E \subseteq \PP^2_{\ZZ_p}\) so that \(\mathcal E (\ZZ_p) = E(\QQ_p)\) but it is singular since its special fibre is.

We need to manipulate \(\mathcal E/\ZZ_p \colon y^2 = (x+1)(x-p^2)(x+p^2)\) s.t.

  1. \(\mathcal E\) is a model of \(\ZZ_p\text{.}\)
  2. The generic fibre is \(E/\QQ_p\)
  3. Only non-singular points of its special fibre can be lifted to points over \(\QQ_p\) on \(E\)

To satisfy 1 and 2, we can do change of variables of the form

\begin{equation*} x= x_1p,\,y=y_1p,\,x=x_1y,\, p=p_1y,\,y= y_1x, p=p_1x\text{.} \end{equation*}

We will use only \(y=y_1p\) for now.

\begin{equation*} \mathcal C_1 \colon y^2 = (x+p^2)(x-p^2) (x + 1) \end{equation*}
\begin{equation*} \widetilde{\mathcal C}_1\colon \tilde y^2 = \tilde x^2 (\tilde x + 1) \simeq \PP^1 \end{equation*}
Figure 2.61.
\begin{equation*} \mathcal C_{2,3} \colon y_1^2 = (x_1+p)(x_1-p) (px_1 + 1),\,x=x_1p,\,y=y_1p \end{equation*}
\begin{equation*} \widetilde{ \mathcal C}_{2,3} \colon \tilde y_1^2 = \tilde x_1^2 \simeq \PP^1 \cup \PP^1 \eqqcolon \Gamma _2 \cup \Gamma _3 \end{equation*}
\begin{equation*} \mathcal C_{4} \colon y_2^2 = (x_2+1)(x_2-1) (p^2x_2 + 1),\,x_1=x_2p,\,y_1=y_2p \end{equation*}
\begin{equation*} \widetilde {\mathcal C}_{4} \colon \tilde y_2^2 = (\tilde x_2 - 1)(\tilde x_2 + 1) \end{equation*}

The collection of these charts (together with their counterpart at infinity) give a regular model \(\mathcal E\) of \(E/\QQ_p\text{.}\)

So we have four components, all \(\PP^1\) meeting in a square. (There are still singularities on \(\mathcal E\) at intersection points in the special fibre, but they are regular singularities, i.e. the local ring at these points is regular, i.e. we have \(\ideal m_P/ \ideal m_P^2\) dimension 2).

Example 2.62.

Let \(a\in \ZZ_p\text{,}\) \(E \colon y^2 = x^3 + a\text{.}\) \(E\) might be singular at \(P = (0,0)\text{,}\) if \(a\equiv 0\pmod p\) then we degenerate to a cusp. The maximal ideal \(\ideal m_P\) of the local ring is generated by \(x,y,p\text{.}\) If \(a\not \equiv 0 \pmod {p^2}\) then \(v(a) = 1\) and \(p \in a\ZZ_p\text{.}\) But \(a = y^2 - x^3\) so, \(p \in (y^2 - x^3)\ZZ_p \subseteq \ideal m_P^2\text{.}\) So \(x,y\) generate \(\ideal m_P/\ideal m_P^2\) and \(P\) is regular. If \(a \equiv 0 \pmod{p^2}\) then \(\ideal m_P/\ideal m_P^2\) cannot be generated by fewer than 3-elements so \(P\) is not regular.

Remark 2.64.

The smooth part of a proper regular arithmetic surface is large enough to contain all of the rational points on the generic fibre.

Definition 2.65. Neron models.

The Neron model of \(E/K\) is an arithmetic surface \(\mathcal E/K\) whose generic fibre is the given elliptic curve. It is such that every point of \(E\) gives a point of \(\mathcal E\) and such that the group law on \(E\) extends to make \(\mathcal E\) into a group (as a scheme over \(R\)).

Remark 2.66.

Neron models are smooth \(R\)-schemes i.e. for every point \(p\in \Spec (R)\) the fibre is a non-singular variety. However it might have several components and may not be complete. So in general \(\mathcal E\) will not be proper over \(R\text{.}\)

\begin{equation*} \mathcal E/\ZZ_p \colon y^2 = (x-1)(x-2)(x-3),\,p\gt 3 \end{equation*}

Recall we need to compute \(|E(\QQ_p)/E_0(\QQ_p)|\) and we considered the example

\begin{equation*} E/\QQ_p\colon y^2 = x(x-p^2)(x+p^2)\text{.} \end{equation*}
\begin{equation*} \overline{ \mathcal C}_{1} \colon \tilde y^2 = \tilde x + 1 \eqqcolon \Gamma _2 \cup \Gamma _1 \end{equation*}
\begin{equation*} \overline{ \mathcal C}_{2,3} \colon \tilde y_1^2 = \tilde x_1^2 \simeq \PP^1 \cup \PP^1 \eqqcolon \Gamma _2 \cup \Gamma _3 \end{equation*}
\begin{equation*} \overline {\mathcal C}_{4} \colon \tilde y_2^2 = (\tilde x_2 - 1)(\tilde x_2 + 1) \end{equation*}

Write \(\mathcal E^0\) for \(\mathcal E \smallsetminus \{\text{singularities in special fibre}\}\) then

\begin{equation*} \mathcal E(\ZZ_p) = \mathcal E^0(\ZZ_p) = E(\QQ_p)\text{.} \end{equation*}

We saw that the Neron model of \(E/\QQ_p\) can be obtained from \(\mathcal E/\ZZ_p\) be removing the singularities in the special fibres.

In our case the Tamagawa number is

\begin{equation*} c_p = \left| \left(\overline {\mathcal E}(\overline \FF_p)\middle/ \overline{\mathcal E}^0(\overline {\FF_p})\right)^{\absgal {\FF_p}}\right| = 4 \end{equation*}

To actually calculate this use Tate's algorithm.

Subsection 2.3 Jacobians of hyperelliptic curves

Let \(A/\QQ_p\) be such a Jacobian. \(A\) admits a Neron model \(\mathcal A/\ZZ_p\text{.}\) The open subscheme whose special fibre is the connected component of the identity \(\widetilde {\mathcal A}^0\text{.}\)

As for an elliptic curve write \(A_0(\QQ_p)\) for the points reducing to \(\widetilde {\mathcal A}^0(\FF_p)\text{,}\) then

\begin{equation*} A(\QQ_p)/A_0(\QQ_p) \end{equation*}

is finite and

\begin{equation*} c_p(A/\QQ_p) = |A(\QQ_p)/A_0(\QQ_p)| = \left| \left(\widetilde {\mathcal A}(\overline \FF_p)\middle/ \widetilde{\mathcal A}^0(\overline {\FF}_p)\right)^{\absgal {\FF_p}}\right| = 4\text{.} \end{equation*}

How to compute \(c_p\text{?}\)

Example 2.70.
\begin{equation*} N_{ij} = \begin{pmatrix} -2 \amp 1 \amp 0 \amp 1 \\ 1 \amp -2 \amp 1 \amp 0 \\ 0 \amp 1 \amp -2 \amp 1 \\ 1 \amp 0 \amp 1 \amp -2 \\ \end{pmatrix} \end{equation*}
\begin{equation*} M = \begin{pmatrix} -2 \amp 1 \amp 0 \\ 1 \amp -2 \amp 1 \\ 0 \amp 1 \amp -2 \\ \end{pmatrix} \end{equation*}
\begin{equation*} \det(M) = -4\text{.} \end{equation*}

In order to compute \(c_p\) for \(J\) need to construct special fibre of minimal regular model for \(C\text{.}\)

Namikawa-Ueno classification of types of semistable reductions of genus 2 curves.

  1. Good reduction: \(g = 2\)
  2. One node.
  3. Two nodes.
  4. Three nodes.
  5. One cusp (triple root).
  6. Two cusps (triple root).
Cassels-Tate pairing (Maria).
\begin{equation*} \phi _D \colon A\to A^\vee \simeq \Pic^0(A) \end{equation*}

by sending \(a\in A(K^\sep)\text{,}\) \(\phi _D(a) = \lb D_a- D\rb\text{,}\) where \(D_a= D+a\) is the translate of \(D\) by \(a\text{.}\)

Assume \(D\) is a rational divisor, what we'll prove is that \(\pair a{\phi _D(a)} = 0\) for all \(a \in A\text{.}\) Where

\begin{equation*} \pair \cdot \cdot \colon \Sha(A) \times \Sha(A^\vee) \to \QQ/\ZZ \end{equation*}

Fix \(a \in \Sha(A,K) \subseteq H^1(G_K, A)\) and let \(X\) be the corresponding PHS of \(A\text{.}\) Then for any \(P \in X(K^\sep)\text{,}\) \(a\) is represented by the cocycle

\begin{equation*} \alpha (\sigma )\colon G_K \to A \end{equation*}
\begin{equation*} \sigma \mapsto \sigma (P) - P\text{.} \end{equation*}

Denote \(a' = \phi _D(a)\text{.}\) Then \(a'\) is represented by

\begin{equation*} \alpha '(\sigma ) \colon G_K \to A^\vee = \Pic^0(A) \end{equation*}
\begin{equation*} \sigma \mapsto [D_{\alpha (\sigma )} - D] \end{equation*}

this lifts to

\begin{equation*} \beta \colon G_K\to \Div^0(A) \end{equation*}
\begin{equation*} \sigma \mapsto D_{\alpha (\sigma )} - D\text{,} \end{equation*}

which is a cocycle:

\begin{equation*} \beta (\sigma \tau ) = \beta (\sigma ) + \sigma \beta (\tau ) \end{equation*}
\begin{equation*} \beta (\sigma \tau ) = D_{\alpha (\sigma \tau ) } - D = D_{\alpha (\sigma ) + \sigma \alpha (\tau )} - D = D_{\alpha (\sigma )} - D = D_{\alpha (\sigma )} - D + D_{\sigma \alpha (\tau )} - D \end{equation*}
\begin{equation*} = D_{\alpha (\sigma )} - D + \sigma (D_{\alpha (\tau )} - D) = \beta (\sigma ) + \sigma (\beta (\tau )) \end{equation*}

using \(K\)-rationality of \(D\text{.}\)

Using

\begin{equation*} A\otimes K^\sep \xrightarrow\sim X\otimes K^\sep \end{equation*}
\begin{equation*} Q\mapsto P + Q \end{equation*}

we can regard

\begin{equation*} \alpha '\colon G_K \to \Pic^0(X) \end{equation*}
\begin{equation*} \beta '\colon G_K \to \Div^0(X) \end{equation*}

now use

\begin{equation*} H^1(G_K, \Div^0(X\otimes K^\sep)) \to H^1(G_K, \Pic^0(X\otimes K^\sep)) \to H^2(G_K, K^\sep(X)^\times/K^{\sep, \times}) \end{equation*}
\begin{equation*} b = (\beta ) \mapsfrom a' = (\alpha ') \mapsto 0 \end{equation*}

Big diagram to conclude.

Subsection 2.4 Semistable models of hyperelliptic curves of genus 2

Recall: Can compute Tamagawa numbers of semistable Jacobians of genus 2 curves from the special fibre of their minimal regular models (i.e. there exists a formula for them.

Definition 2.72.

A model is semistable if its special fibre is geometrically reduced and has only ordinary double points as singularities. When such a model exists over \(K\) we say that the curve is semistable over \(K\text{.}\) Or has semistable reduction \(/K\text{.}\)

Example 2.73.

\(p \ge 7\) and

\begin{equation*} C\colon y^2 = (x-p^2)(x+p^2)(x-1)(x-2)(x-3)(x-4) \end{equation*}

a node

Figure 2.74.

Have 1 genus 1 component meeting 3 genus 0 in a square on the special fibre of minimal regular model

Example 2.75.

\(p \ge 7\) and

\begin{equation*} C\colon y^2 = (x-p^2)(x+p^2)(x-1- p^2)(x-1+p^2)(x-3)(x-4) \end{equation*}

two nodes.

Figure 2.76.

Have 7 genus 0 components meeting in a pair of squares with one common line.

Example 2.77.

\(p \ge 7\) and

\begin{equation*} C\colon y^2 = (x-p^2)(x+p^2)(x-1- p^2)(x-1+p^2)(x-2+p^2)(x-2-p^2) \end{equation*}

two nodes.

Figure 2.78.

Have 8 genus 0 components, two non-intersecting lines joined by 3 chains of two \(\PP^1\)s.

Example 2.79.

\(p \ge 7\) and

\begin{equation*} C\colon y^2 = (x-p^2)(x-2p^2)(x-3p^2)(x-4)(x-5)(x-6) \end{equation*}

a cusp.

Figure 2.80.

Have 2 genus 1 components meeting.

Example 2.81.

\(p \ge 7\) and

\begin{equation*} C\colon y^2 = (x-p^2)(x-2p^2)(x-3p^2)(x-1-4p^2)(x-1-5p^2)(x-1-6p^2) \end{equation*}

two cusps.

Figure 2.82.

Have 2 genus 1 components joined by a \(\PP^1\text{.}\)

Places of \(K\) above \(2\).

Here it is very difficult to compute a minimal regular model for \(C\text{,}\) hence can't compute the Tamagawa numbers.

One way around is to use the definition of the local contribution

\begin{equation*} (-1)^{\ord_2 \left| \frac{\coker \phi_v}{\ker \phi_v}\right|}\text{.} \end{equation*}

So combining \(v | \infty \text{,}\) \(v\nmid 2\infty \text{,}\) \(v | 2\) if \(C \in \mathcal F\) over \(K_v\) for \(v| 2\) and semistable at \(v \nmid 2\infty \) with \(C\) a Richelot curve then we can compute the parity of the \(\rk_2(J)\text{.}\)

Example 2.84.
\begin{equation*} C \colon y^2 =(x^2 - 16)(x^2 + x + \frac{17}{4} ) (x^2 -2x + 9) \end{equation*}
\begin{equation*} C/\RR \implies (-1)^{\ord_2|n(J) m_\RR / n(J')/ m'_\RR |\ker \phi | | }= (-1)^{\ord_2(1\cdot 1 / 4 \cdot 4 \cdot 1)} = 1 \end{equation*}

have \(C/\QQ_p\) for \(p = 3,5,11,13, 17, 97, 1201\) and \(p = 131\) is good reduction for \(C\) but not for \(C'\text{.}\) For \(p =3,17\) have \(c_p=2, m_p=1\text{.}\) For \(p =5, 11, 13, 97, 1201\) have similar with non-split nodes. \(p =131\) have \(c_p = 1,m_p = 1\text{,}\) \(c'_p = 1, m'_p =2\text{.}\) Two e.c.s swapped.

\begin{equation*} (-1)^{\ord_2\left( \frac {c_p}{c'_p} \frac{m_p}{m'_p}\right)} = -1 \end{equation*}

for \(p = 2\)

\begin{equation*} (-1)^{\ord_2\left( \frac {\coker(\phi _2)}{\ker \phi _2}\right)} = 1 \end{equation*}

hence

\begin{equation*} (-1)^{\rk_2(J)} = \prod_v (-1)^{\ord_2\left( \frac {\coker(\phi _v)}{\ker \phi _v}\right)} = 1 \end{equation*}

so \(J\) has even \(\rk_2(J)\text{.}\)