\( \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\Map}{Map} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\Tor}{Tor} \DeclareMathOperator{\Ext}{Ext} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\CC}{\mathbf{C}} \DeclareMathOperator{\QQ}{\mathbf{Q}} \DeclareMathOperator{\RR}{\mathbf{R}} \DeclareMathOperator{\ZZ}{\mathbf{Z}} \DeclareMathOperator{\RP}{\mathbf{RP}} \DeclareMathOperator{\C}{C_*} \DeclareMathOperator{\U}{\mathcal{U}} \)

Section2.1Homology with Coefficients and Cohomology

Subsection2.1.1Hom and \(\otimes\) for modules

Definition2.1.1Tensor product of \(R\)-modules
Let \(M,N\) be \(R\)-modules. Then the tensor product \(M\otimes N\) is the \(R\)-modules generated by all pairs \(m\otimes n\) for \(m\in M,\,n\in N\) modulo the relations:
  1. \((m_1+m_2)\otimes (n_1 + n_2) = \sum m_i \otimes n_j.\)
  2. \(r(m\otimes n) = (rm)\otimes n = m\otimes (rn).\)

We have the following properties of this definition:

  1. \((M_1\oplus M_2) \otimes (N_1\oplus N_2) = \bigoplus M_i\otimes N_j\).
  2. \(M\otimes N \cong N \otimes M\).
  3. \(M\otimes R = M\)

Example2.1.2Tensor products
  1. \(R^n \otimes R^m \cong R^{mn}\).
  2. Letting \(R = \ZZ\), \( \QQ \otimes \ZZ/a\cong 0\).
  3. \(\ZZ/a\otimes\ZZ/b\cong \ZZ/(a,b)\).

If \(f\colon M_1 \to M_2\) and \(g\colon N_1 \to N_2\) then there is a map \begin{align*} f\otimes g \colon M_1 &\otimes N_1 \to M_2 \otimes N_2,\\ m&\otimes n \mapsto f(m) \otimes g(n). \end{align*}

Example2.1.3
If \( f\colon R^n \to R^m\) is given by multiplication by \(A\in \operatorname{Mat}_{n\times m}(R)\) then \(f\otimes 1_M\colon M^n \to M^m\) is given by multiplication by \(A\).
Definition2.1.4Hom
\[\Hom(M, N) = \{f\colon M\to N : f \text{ is } R \text{-linear}\}\] is an \(R\)-module, via \((f + rg)(m) = f(m) + rg(m)\).

From this definition we see that

  1. \(\Hom(\bigoplus M_i, \bigoplus N_j)\cong \bigoplus_{i,j} \Hom(M_i, N_j)\).
  2. \(\Hom(R, M) \cong M\).

Note however that we do not have \(\Hom(M,N) = \Hom(N,M)\) as for example \(\Hom(\ZZ/2,\ZZ) = 0\) but \(\Hom(\ZZ, \ZZ/2) = \ZZ/2\).

Definition2.1.5Dual module
Given an \(R\)-module \(M\) the dual of \(M\) is \(M^* = \Hom(M,R)\).

Now if we have \(f\colon M \to N\) we get a map \[f^*\colon \Hom(N, O) \to \Hom(M, O)\] given by \(f^*g = g\circ f\).

Example2.1.6
If \(f\colon R^n \to R^m\) is multiplication by \(A\) then \[f^*\colon \Hom(R^m , O) \cong O^m \to \Hom(R^n, O) \cong O^n\] is multiplication by \(A^\top\).

Subsection2.1.2Hom and \(\otimes\) for chain complexes

If \((C, d)\) is a chain complex defined over \(R\) then so are \((C_*\otimes M, d\otimes 1_M) = C_* \otimes M\) and \((\Hom(C_*,M),d^*) = \Hom(C_*, M)\).