\( \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\Map}{Map} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\Tor}{Tor} \DeclareMathOperator{\Ext}{Ext} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\CC}{\mathbf{C}} \DeclareMathOperator{\QQ}{\mathbf{Q}} \DeclareMathOperator{\RR}{\mathbf{R}} \DeclareMathOperator{\ZZ}{\mathbf{Z}} \DeclareMathOperator{\RP}{\mathbf{RP}} \DeclareMathOperator{\C}{C_*} \DeclareMathOperator{\U}{\mathcal{U}} \)

Section2.3Products

Definition2.3.1Product of chain complexes
If \(A,B\) are chain complexes the \(C=A \otimes B\) is the chain complex with \[C_i = \bigoplus_{j+k = i}A_j \otimes B_k\] and \[d(a\otimes b) = (da)\otimes b + (-1)^{|a|} a\otimes (db)\] where \(|a| = j\) if \(a \in A_j\).

The following theorem is true but we will not prove it.

Given \(H_*(A)\) and \(H_*(B)\) how can we compute \(H_*(A\otimes B)\).

Definition2.3.6Poincare polynomial
The Poincare polynomial of \(X\) with coefficients in \(k\) is \[P_k(X) = \sum_{i\ge 0} \dim H_i(X; k) t^i.\]
Example2.3.7
\[P_{\ZZ/2} (\RP^2) = 1 + t + t^2.\]

2.3.5 tells us that \[P_k(X\times Y) = P_k(X)P_k(Y).\]

Example2.3.8
\[P_{\ZZ/2}(\RP^3 \times \RP^2) = (1+t+t^2)(1+t+t^2+t^3).\]

For now we will suppose that \(A,B\) are finitely generated chain complexes over a PID \(R\).

Fact: If \(C_1\) is a free resolution of \(M\) and \(C_2\) is a free resolution of \(N\). Then \[\Tor_i(M,N) \cong H_i(C_1 \otimes C_2) \cong H_i(C_1 \otimes N) \cong H_i(M\otimes C_2).\]