Subsection3.1.1Transition functions
If \(f_1\colon \pi^{-1}(U_1) \to U_1\times \RR^n\) and \(f_2\colon \pi^{-1}(U_2) \to U_2\times \RR^n\) are local trivialisations of \(E\) then the map \(f_1\circ F_2^{-1}\colon (U_1\cap U_2)\times \RR^n \to (U_1 \cap U_2)\) is linear on fibres.
So there is a map \(g_{12}\colon U_1\cap U_2 \to \GL_n(\RR)\) such that \(f_1\circ f_2^{-1}(p,v) = (p,g_{12}(p) v)\), \(g_{12}\) is called a transition function.
Exercise 3.1.2
If \(f_3\colon U_3 \to U_3\times \RR^n \) is another local trivialisation then \(g_{32}(p)\cdot g_{21}(p) = g_{31}(p)\), this is called the cocycle condition.
Example3.1.3
- \(E = B\times \RR^n\) is the \(n\)-dimensional trivial bundle over \(B\).
- The Mobius band \(M = [0,1] \times \RR/\sim\) where \((0,x)\sim (1,-x)\) is a bundle over \(S^1\) via \(\pi\colon M \to [0,1]/\sim\).
We have local trivialisations given by \(U_1 = [0-\epsilon, 1/2 + \epsilon]\times \RR\) and \(U_2 = [1/2-\epsilon, 1 + \epsilon]\times \RR\).
The transition function is \(g_{12} \colon \{0,1/2\} \to \GL_1(\RR)\) mapping \(1/2\to 1\) and \(0\to -1\).
- If \(M\) is a smooth manifold with charts \(\phi_i \colon U_i \to V_i \subset \RR^n\) and transition functions \(\psi_{ij} = \phi_i \circ \phi_j ^{-1}\) where defined.
Then the tangent bundle \(TM\) has local trivialisations \(f_i = d\phi_i\colon TM|_{U_i}\to TV_i = V_i\times \RR^n\) and transition functions
\[g_{ij} = d\phi_i\circ d\phi_j^{-1} = d(\phi_i\circ \phi_j^{-1}) = d\psi_{ij}.\]