Skip to main content

References References

[1]
  
Apostol, Tom M. Introduction to analytic number theory. Springer Science & Business Media, 2013.
[2]
  
Arul, V., Best, A. J., Costa, E., Magner, R., & Triantafillou, N. Computing zeta functions of cyclic covers in large characteristic.Proceedings of the Thirteenth Algorithmic Number Theory Symposium, The Open Book Series, 2(1), 37-53, 2019.
[3]
  
Balakrishnan, Jennifer S., Robert W. Bradshaw, and Kiran S. Kedlaya. Explicit Coleman Integration for Hyperelliptic Curves. In ANTS-IX 2010, LNCS 6197, pp. 16-31, 2010.
[4]
  
Balakrishnan, Jennifer S. Coleman integration for even-degree models of hyperelliptic curves. LMS Journal of Computation and Mathematics 18.1 (2015): 258-265.
[5]
  
Balakrishnan, Jennifer S. Iterated Coleman integration for hyperelliptic curves. The Open Book Series 1.1 (2013): 41-61.
[6]
  
Balakrishnan, Jennifer S., and Netan Dogra. Quadratic Chabauty and Rational Points, I: \(p\)-Adic Heights. Duke Mathematical Journal 167, no. 11 (August 15, 2018): 1981–2038. https://doi.org/10.1215/00127094-2018-0013.
[8]
  
Balakrishnan Jennifer S., and Jan Tuitman. Explicit Coleman integration for curves. arXiv preprint arXiv:1710.01673. 2020 Jan 13.
[9]
  
Balakrishnan, J., Dan-Cohen, I., Kim, M., and Wewers, S. (2012). A non-abelian conjecture of Birch and Swinnerton-Dyer type for hyperbolic curves. arXiv preprint arXiv:1209.0640.
[10]
  
Baldassarri, Francesco, and Bruno Chiarellotto. Algebraic Versis Rigid Cohomology with Logarithmic Coefficients. In Barsotti Symposium in Algebraic Geometry, edited by Valentino Cristante and William Messing, 15:11–50. Perspectives in Mathematics. Academic Press, 1994. https://doi.org/10.1016/B978-0-12-197270-7.50007-3.
[11]
  
Banagl, Markus. Topological invariants of stratified spaces. Springer Science & Business Media, 2007.
[12]
  
Berkovich, Vladimir G. Integration of One-forms on P-adic Analytic Spaces. (AM-162). No. 162. Princeton University Press, 2007.
[13]
  
Berthelot, Pierre.Cohomologie Cristalline des Schémas de Caractéristique \(p\gt 0\) LNM 407, Springer, 1974.
[15]
  
Besser, Amnon. Coleman integration using the Tannakian formalism. Mathematische Annalen 322, no. 1 (2002): 19-48.
[16]
  
Besser, Amnon. Heidelberg lectures on Coleman integration. In The Arithmetic of Fundamental Groups, pp. 3-52. Springer, Berlin, Heidelberg, 2012.
[17]
  
Besser, Amnon, and Rob De Jeu. \(Li^{(p)}\)-Service? An Algorithm for Computing p-Adic Polylogarithms. Mathematics of Computation 77, no. 262 (2008): 1105–34.
[18]
  
Besser, Amnon. Syntomic regulators and \(p\)-adic integration I: Rigid syntomic regulators. Israel Journal of Mathematics 120, no. 2 (2000): 291-334.
[19]
  
Besser, Amnon. Syntomic regulators and \(p\)-adic integration II: K 2 of curves. Israel Journal of Mathematics 120, no. 2 (2000): 335-359.
[20]
  
Best, Alex J. Explicit Coleman integration in larger characteristic. Proceedings of the Thirteenth Algorithmic Number Theory Symposium, The Open Book Series, 2(1), 85-102, 2019.
[22]
  
S. Bosch, U. Güntzer, R. Remmert. Non-Archimedean Analysis, Grundlehren der mathematischen Wissenschaften 261, Springer, 1984. MR 86b:32031
[23]
  
Bloch, Spencer. Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. Vol. 11. American Mathematical Soc., 2000.
[25]
  
Borel, Armand. Sur La Cohomologie Des Espaces Fibres Principaux Et Des Espaces Homogenes De Groupes De Lie Compacts. Annals of Mathematics, Second Series, 57, no. 1 (1953): 115-207. doi:10.2307/1969728.
[26]
  
Bostan, Alin, Gaudry, Pierrick, and Schost, Éric. Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator. SIAM Journal on Computing 36, no. 6 (2007): 1777-1806.
[27]
  
Boston, Nigel. Explicit deformation of Galois representations. Inventiones mathematicae 103.1 (1991): 181-196.
[28]
  
Boston, Nigel, and Barry Mazur. Explicit universal deformations of Galois representations. Algebraic Number Theory—in honor of K. Iwasawa. Mathematical Society of Japan, 1989.
[29]
  
Booker, Andrew R., Jeroen Sijsling, Andrew V. Sutherland, John Voight, and Dan Yasaki. A Database of Genus 2 Curves over the Rational Numbers. LMS Journal of Computation and Mathematics 19, no. A (2016): 235–54. https://doi.org/10.1112/S146115701600019X.
[30]
  
Bosma, Wieb, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235–265.
[31]
  
Castryck, Wouter, and Jan Tuitman. Point Counting on Curves Using a Gonality Preserving Lift. ArXiv:1605.02162 [Math], May 7, 2016. http://arxiv.org/abs/1605.02162.
[32]
  
Chen, Kuo-Tsai. Algebras of iterated path integrals and fundamental groups. Transactions of the American Mathematical Society 156 (1971): 359-379.
[33]
  
Coleman, Robert F. Torsion points on curves and p-adic abelian integrals. Annals of Mathematics 121.1 (1985): 111-168.
[34]
  
Coleman, Robert F. Effective Chabauty Duke Math. J 52.3 (1985): 765-770.
[35]
  
Coleman, Robert, and Ehud De Shalit. \(p\)-adic regulators on curves and special values of \(p\)-adic \(L\)-functions. Inventiones mathematicae 93, no. 2 (1988): 239-266.
[36]
  
Coleman, Robert F. Dilogarithms, regulators and \(p\)-adic \(L\)-functions. Inventiones mathematicae 69, no. 2 (1982): 171-208.
[37]
  
Coleman, Robert F., and B. Gross. p-adic Heights on Curves Math. Sciences Research Inst., Berkeley, Calif. (1987).
[38]
  
Cohen, H., Frey, G., et al.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca Raton (2005)
[39]
  
Conrad, Brian David. Arithmetic algebraic geometry. Vol. 9. American Mathematical Soc., 2001.
[41]
  
Edixhoven, Bas. Point Counting after Kedlaya, EIDMA-Stieltjes Graduate Course, Leiden, September 22–26, 2003, n.d., 23.
[42]
  
Elkik, Renée. Solutions d’équations à Coefficients Dans Un Anneau Hensélien. Annales Scientifiques de l’École Normale Supérieure 6, no. 4 (1973): 553–603. https://doi.org/10.24033/asens.1258.
[43]
  
Fieker, Claus, William Hart, Tommy Hofmann, and Fredrik Johansson. Nemo/Hecke: Computer Algebra and Number Theory Packages for the Julia Programming Language. In: Proceedings of ISSAC '17, pages 157-164, New York, NY, USA, 2017. ACM, http://doi.acm.org/10.1145/3087604.3087611.
[44]
  
Fresnel, Jean, and Marius Van der Put Rigid analytic geometry and its applications Vol. 218. Springer Science & Business Media, 2012.
[45]
  
Gabber O, Ramero L. Almost ring theory. Springer; 2003 Dec 15.
[46]
  
Gaudry, Pierrick, and Nicolas Gürel. An extension of Kedlaya's point-counting algorithm to superelliptic curves. Advances in Cryptology - ASIACRYPT 2001, Springer, Berlin, Heidelberg, 2001.
[48]
  
Gerritzen, L. and Van der Put, M., 2006. Schottky groups and Mumford curves (Vol. 817). Springer.
[49]
  
Gonçalves, Cécile. A point counting algorithm for cyclic covers of the projective line. Contemporary mathematics 637 (2015): 145.
[50]
  
Goncharov, Alexander. Mixed elliptic motives. London Mathematical Society Lecture Note Series (1998): 147-222.
[51]
  
Goncharov, Alexander B., and Andrey M. Levin. Zagier's conjecture on L (E, 2). Inventiones mathematicae 132, no. 2 (1998): 393-432.
[52]
  
González, Josep, Jordi Guardia, and Victor Rotger. Abelian surfaces of GL2-type as Jacobians of curves. arXiv preprint math/0409352 (2004).
[53]
  
Harrison, Michael C. An extension of Kedlaya's algorithm for hyperelliptic curves. Journal of Symbolic Computation 47.1 (2012): 89-101.
[54]
  
Hartshorne, Robin. Algebraic geometry. Vol. 52. Springer Science & Business Media, 2013.
[55]
  
Harvey, David. Counting points on hyperelliptic curves in average polynomial time. Annals of Mathematics 179, no. 2 (2014): 783-803.
[56]
  
Harvey, David. Kedlaya's Algorithm in Larger Characteristic. IMRN: International Mathematics Research Notices 2007 (2007).
[57]
  
Harvey, David, and Andrew V. Sutherland. Computing Hasse–Witt matrices of hyperelliptic curves in average polynomial time. LMS Journal of Computation and Mathematics 17, no. A (2014): 257-273.
[58]
  
Harvey, David, and Andrew V. Sutherland. Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time II. Frobenius distributions: Lang-Trotter and Sato-Tate conjectures, Contemporary Mathematics 663 (2016): 127-148.
[59]
  
Hasegawa, Yuji, and Mahoro Shimura. Trigonal Modular Curves. Acta Arithmetica 88, no. 2 (1999): 129–40. https://doi.org/10.4064/aa-88-2-129-140.
[60]
  
Hashimoto, Sachi, and Travis Morrison. Chabauty-Coleman Computations on Rank 1 Picard Curves, preprint.
[61]
  
Hida, Haruzo. Geometric modular forms and elliptic curves. World Scientific, 2012.
[62]
  
Hulsbergen, Wilfred WJ. Conjectures in arithmetic algebraic geometry. Braunschweig: Vieweg, 1992.
[63]
  
Jannsen, Uwe. Continuous Étale Cohomology. Mathematische Annalen 280.2 (1988): 207-246.
[64]
  
Katz, Nicholas. Serre-Tate local moduli. In Surfaces algébriques, pp. 138-202. Springer, Berlin, Heidelberg, 1981.
[65]
  
Katz, Eric, and David Zureick-Brown. The Chabauty–Coleman Bound at a Prime of Bad Reduction and Clifford Bounds for Geometric Rank Functions. Compositio Mathematica 149, no. 11 (November 2013): 1818–38. https://doi.org/10.1112/S0010437X13007410.
[66]
  
Kedlaya, Kiran S. Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology, J. Ramanujan Math. Soc. 16 (2001), no. 4, 323-338; errata, ibid. 18 (2003), 417--418.
[67]
  
Lang, Serge, Algebra, Graduate Texts in Mathematics 1.211 (2002): ALL-ALL.
[68]
  
Lang, Serge. Algebraic number theory. Vol. 110. Springer Science & Business Media, 2013.
[69]
  
Lee, John M. Smooth manifolds. Springer, New York, NY, 2003. 9780387954486.
[70]
  
Le Gall, François. Faster algorithms for rectangular matrix multiplication. In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pp. 514-523. IEEE, 2012.
[71]
  
Qing Liu. Algebraic geometry and arithmetic curves. Vol. 6. Oxford University Press, 2002.
[72]
  
Matsumura, Hideyuki. Commutative ring theory. Vol. 8. Cambridge university press, 1989.
[73]
  
Matsumura, Hideyuki. Commutative algebra. Vol. 120. New York: WA Benjamin, 1970.
[74]
  
Mazur, Barry, William Stein, and John Tate. Computation of p-adic heights and log convergence. Doc. Math (2006): 577-614.
[75]
  
McCallum, William, and Bjorn Poonen. The Method of Chabauty and Coleman. Explicit Methods in Number Theory 36 (2012): 99–117.
[76]
  
Mazur, Barry, John Tate, and Jeremy Teitelbaum. On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Inventiones mathematicae 84, no. 1 (1986): 1-48.
[77]
  
Milne, James S. Etale cohomology (PMS-33). Vol. 33. Princeton university press, 2016.
[78]
  
Minzlaff, Moritz. Computing zeta functions of superelliptic curves in larger characteristic. Mathematics in Computer Science 3.2 (2010): 209-224.
[79]
  
Mumford, David. Abelian varieties. Vol. 5. Oxford University Press, USA, 1974.
[80]
  
Narkiewicz, Wladyslaw Elementary and Analytic Theory of Algebraic Numbers. Springer, 2004.
[81]
  
Polishchuk, Alexander. Abelian varieties, theta functions and the Fourier transform. Vol. 153. Cambridge University Press, 2003.
[82]
  
Rolshausen, Klaus, and Norbert Schappacher. On the second K-group of an elliptic curve. Journal für die reine und angewandte Mathematik 495 (1998): 61-77.
[83]
  
SageMath, the Sage Mathematics Software System (Version 8.1.0), The Sage Developers, 2017, http://www.sagemath.org.
[84]
  
Serre, Jean-Pierre. A course in arithmetic. Vol. 7. Springer Science & Business Media, 2012.
[85]
  
Serre, Jean-Pierre. Galois cohomology. Springer Science & Business Media, 2013.
[86]
  
Serre, Jean-Pierre. Linear representations of finite groups. Springer Science & Business Media, 1977.
[87]
  
Serre, Jean-Pierre. Local algebra. Springer Science & Business Media, 2000.
[88]
  
Serre, Jean-Pierre, Martin Brown, and Michel Waldschmidt. Lectures on the Mordell-Weil theorem. Vol. 2. Braunschweig: Vieweg, 1990.
[89]
  
Shafarevich, Igor R., and Alexey O. Remizov. Linear algebra and geometry. Springer Science & Business Media, 2012.
[90]
  
Silverman, Joseph H. The arithmetic of elliptic curves. Vol. 106. Springer Science & Business Media, 2009.
[91]
  
Silverman, Joseph H. Advanced topics in the arithmetic of elliptic curves. Vol. 151. Springer Science & Business Media, 2013.
[94]
  
Stoll, Michael. Uniform Bounds for the Number of Rational Points on Hyperelliptic Curves of Small Mordell–Weil Rank. Journal of the European Mathematical Society 21, no. 3 (December 12, 2018): 923–56. https://doi.org/10.4171/JEMS/857.
[96]
  
Tamme, Günter. Introduction to étale cohomology. Springer Science & Business Media, 2012.
[97]
  
Towse, Christopher. Weierstrass Points on Cyclic Covers of the Projective Line. Transactions of the American Mathematical Society 348, no. 8 (1996): 3355–3378.
[98]
  
Tuitman, Jan. Counting points on curves using a map to \(\PP^1\). Mathematics of Computation 85.298 (2016): 961-981.
[99]
  
Tuitman, Jan. Counting points on curves using a map to \(\PP^1\text{,}\) II. Finite Fields and Their Applications 45 (2017): 301-322.
[100]
  
Vélu, Jacques. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A 273 (1971): 305-347.
[102]
  
Washington, Lawrence C. Introduction to cyclotomic fields. Vol. 83. Springer Science & Business Media, 1997.
[103]
  
Waterhouse, William C. Profinite groups are Galois groups. Proceedings of the American Mathematical Society 42.2 (1974): 639-640.
[104]
  
Weng, L., and Nakamura, I. Arithmetic geometry and number theory, World Scientific, 2006.
[105]
  
Zagier, Don. The Bloch-Wigner-Ramakrishnan polylogarithm function. Mathematische Annalen 286, no. 1 (1990): 613-624.
[106]
  
Zagier, D. Modular Points, Modular Curves, Modular Surfaces and Modular Forms. In Arbeitstagung Bonn 1984, edited by Friedrich Hirzebruch, Joachim Schwermer, and Silke Suter, 225–48. Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1985.