Section 7.4 Serre's proof in the solvable case (Angus)
¶\(k = \bar k\) field of char \(p \gt 0\text{.}\)
Definition 7.4.1.
A quasi \(p\)-group is a group that is generated by its Sylow-\(p\) subgroups.
Let \(\Pi(\aff^1)\) be the set of groups occurring as Galois groups of covers
\begin{equation*}
X \to \aff^1\text{.}
\end{equation*}
Theorem 7.4.2. Abhyankar.
\(G \in \Pi(\aff^1) \implies G\) is a quasi-\(p\) group.
Conjecture 7.4.3. Abhyankar.
\(G\) is a quasi-\(p\) group \(\implies\) \(G \in \Pi(\aff^1) \text{.}\)
Today we will prove this when \(G\) is solvable.
Definition 7.4.4. Solvable groups.
A group \(G\) is called solvable if there exists a series
\begin{equation*}
G = G_{k} \triangleright G_{k-1}\triangleright \cdots \triangleright G_0 = 1
\end{equation*}
such that each \(G_k/G_{k-1}\) is abelian.
Reminders/background:
\begin{equation*}
\{\text{covers } X\to \aff^1 \text{ w/ gal. gp. }G\}
\end{equation*}
\begin{equation*}
\updownarrow
\end{equation*}
\begin{equation*}
\{L/k(T) : \text{Gal. extn. w/ gp. }G\text{ unram. outside }\infty \}
\end{equation*}
\begin{equation*}
\updownarrow
\end{equation*}
\begin{equation*}
\{\text{surjections }\pi _1^\et(aff^1) \twoheadrightarrow G\}\text{.}
\end{equation*}
Fixing \(\bar x\in X\) we have an equivalence of categories
\begin{equation*}
\{\text{loc. const. }\FF_\ell\text{-sheaves on }X\text{ w/ finite stalks}\}
\end{equation*}
\begin{equation*}
\updownarrow
\end{equation*}
\begin{equation*}
\{\text{finite dim. }\pi _1^\et(X, \bar x)\text{ reps over }\FF_\ell\}
\end{equation*}
given by
\begin{equation*}
\sheaf F \mapsto \sheaf F_{\bar x}\text{.}
\end{equation*}
Etale cohomology satisfies:
Exactness axiom: Let \(Z\subseteq X\) a closed subscheme with \(U = X\smallsetminus Z\text{.}\) Let
\begin{equation*}
\Gamma _Z (X, \sheaf F) = \ker(\Gamma (X, \sheaf F) \to \Gamma (U, \sheaf F))
\end{equation*}
the right derived functor of
\begin{equation*}
\Gamma _Z(X, -)
\end{equation*}
is
\begin{equation*}
H^* _Z(X, -)
\end{equation*}
the cohomology with support on \(Z\text{.}\) Then we have a LES
\begin{equation*}
\cdots \to H_Z^i(X, \sheaf F) \to H^i(X, \sheaf F) \to H^i(U, \sheaf F) \to H_Z^{i+1}(X, \sheaf F)\to \cdots\text{.}
\end{equation*}
For \(X\) an affine curve, \(\pi _1(X)\) has cohomological dimension \(\le 1\text{.}\) In particular given a surjection
\begin{equation*}
\pi _1(X) \twoheadrightarrow G/H
\end{equation*}
we can lift to a map
\begin{equation*}
\pi _1(X) \to G\text{.}
\end{equation*}
Theorem 7.4.5. Serre.
Let \(\widetilde G\) be a quasi-\(p\) group and \(N\) a normal subgroup with \(G = \widetilde G/N\text{,}\) if \(G \in \Pi(\aff^1)\) and \(N\) is solvable, then \(\widetilde G \in \Pi(\aff^1)\text{.}\)
Corollary 7.4.6.
Abhyankar's conjecture in the solvable case.
Proof.
Let \(\widetilde G = N\text{.}\)
The advantage of this is the following:
Lemma 7.4.7.
It is sufficient to prove the theorem in the case
\begin{equation*}
N = (\ZZ/\ell)^n
\end{equation*}
and
\begin{equation*}
G\acts N
\end{equation*}
is irreducible.
Proof.
Consider a SES
\begin{equation*}
1 \to K \to N \to H \to 1
\end{equation*}
where
\begin{equation*}
G = \widetilde G/N = (\widetilde G/ K) / (N / K) = (\widetilde G/K)/H\text{.}
\end{equation*}
Since \(N\) is solvable, given a sequence of subgroups with abelian quotients we can reduce to the abelian case, which can then be reduced to \((\ZZ/\ell)^n\text{.}\) Further can be reduced to the irreducible \(G\)-module case.
\(\widetilde G\) is an extension of \(G\) by \(N\) which gives a class
\begin{equation*}
e \in H^2(G, N)
\end{equation*}
we have cases
\begin{equation*}
e\ne 0\text{ essential extension}
\end{equation*}
\begin{equation*}
e= 0,\,\widetilde G = N\rtimes G
\end{equation*}
Proof of the theorem in case 1:
\begin{equation*}
G \in \Pi(\aff^1) \leadsto \phi \colon \pi \to G
\end{equation*}
by the cohomological dimension argument there exists a lift
\begin{equation*}
\tilde \phi \colon \pi \to \widetilde G
\end{equation*}
with \(H = \im(\tilde \phi) \) so \(NH = \widetilde G\) and \(N\cap H \) is a sub-\(G\)-module of \(N\text{.}\) If \(N\cap H = 1\) then \(\widetilde G = N\rtimes G\text{,}\) a contradiction with the fact we are in case 1.
Then by irreducibility of \(N\text{,}\) \(N \cap H = N\) and
\begin{equation*}
N \subseteq H \implies H = NH = \widetilde G\text{.}
\end{equation*}
In case 2. Choose a surjection
\begin{equation*}
\phi \colon \pi \twoheadrightarrow G
\end{equation*}
this endows \(N\) with a \(\pi \)-module structure, \(N_\phi \) we get a corresponding sheaf \(\sheaf N_\phi \) on \(\aff^1\text{.}\) We have
\begin{equation*}
H^1(G, N) \hookrightarrow H^1(\pi , N_\phi) \xrightarrow\sim H^1(\aff^1, \sheaf N_\phi )\text{.}
\end{equation*}
Proposition 7.4.8.
There exists a surjection
\begin{equation*}
\tilde \phi \colon \pi \to \widetilde G
\end{equation*}
lifting \(\phi \) iff
\begin{equation*}
H^1(G, N)\subsetneq H^1(\pi , N_\phi )\text{.}
\end{equation*}
Proof.
We only need (\(\Leftarrow\)) today. Let \((a \colon \pi \to N_\phi ) \in H^1(\pi , N_\phi ) \smallsetminus H^1(G, N)\text{.}\) Then, combined with \(\phi \) with we construct a morphism
\begin{equation*}
\tilde \phi \colon \pi \to N\cdot G = \widetilde G\text{.}
\end{equation*}
Assume that
\begin{equation*}
\im(\tilde \phi ) = H \subsetneq \widetilde G
\end{equation*}
then
\begin{equation*}
N\cap H = 1,\,NH = \widetilde G\text{.}
\end{equation*}
Given this, \(a \) arises from a cocycle in \(H^1(G, N)\) a contradiction.
We are reduced to finding
\begin{equation*}
\phi \colon \pi \to G
\end{equation*}
such that
\begin{equation*}
\dim_{\FF_\ell} H^1(G, N) \lt \dim _{\FF_\ell} H^1(\pi , N_\phi )
\end{equation*}
two cases, \(\ell \ne p\) and \(\ell = p\text{.}\)
In the \(\ell \ne p\) case we must have
\begin{equation*}
G \acts N
\end{equation*}
non-trivial else
\begin{equation*}
\widetilde G = N\times G
\end{equation*}
is not quasi-\(p\text{.}\)
Let \(I \subseteq G\) be the inertia group at \(\infty \text{,}\) consider the ramification groups
\begin{equation*}
I \supseteq I_1\supseteq I_2 \supseteq I_3 \supseteq \cdots
\end{equation*}
we have the swan conductor of \(N_\phi \) is
\begin{equation*}
\operatorname{Swan}_{\infty } (N_\phi ) = \sum_{n \ge 1 } \frac{1}{\lb I:I_n\rb } \dim (N/N^{I_n})\text{.}
\end{equation*}
Proposition 7.4.9.
\begin{equation*}
\dim H^1(\pi , N_\phi ) = \operatorname{Swan}_\infty (N_\phi ) - \dim N
\end{equation*}
Proof.
Note
\begin{equation*}
H^0( \pi , N_\phi ) = 0
\end{equation*}
since nontrivial irreducible
\begin{equation*}
H^{i\ge 2}( \pi , N_\phi ) = 0
\end{equation*}
by cohomological dimension. Then
\begin{equation*}
\dim H^1(\pi , N_\phi ) = - \chi ( H^*(\pi , N_\phi ))= - \chi ( H^*(\aff^1 , \sheaf N_\phi ))
\end{equation*}
let
\begin{equation*}
i\colon \aff^1 \hookrightarrow \PP^1
\end{equation*}
then exactness gives
\begin{equation*}
\chi (H^*(\aff^1, \sheaf N_\phi )) = \chi (H^*(\PP^1, i_* \sheaf N_\phi )) - \chi (H^*_\infty (\PP^1,i_* \sheaf N_\phi ))
\end{equation*}
now
\begin{equation*}
\chi (H^*_\infty (\PP^1,i_* \sheaf N_\phi )) = \dim N^I\text{.}
\end{equation*}
Grothendieck-Ogg-Shafarevich gives
\begin{equation*}
\chi (H^*(\PP^1, i_* \sheaf N_\phi )) = \dim N + \dim N^I - \operatorname{Swan}_\infty (N_\phi )\text{.}
\end{equation*}
We are reduced to
\begin{equation*}
\dim_{\FF_\ell} H^1(G, N) \lt \operatorname{Swan}_\infty (N_\phi ) - \dim _{\aff_\ell} N
\end{equation*}
there exists \(\phi \) for which this can be an equality (Artin-Schreier). We can always introduce extra ramification. Consider
\begin{equation*}
(m)\colon \aff^1 \to \aff^1
\end{equation*}
\begin{equation*}
T \mapsto T^m
\end{equation*}
and write \(\psi \colon Y \to \aff^1\) the cover corresponding to \(\phi \text{.}\) Take the pullback to get \(\psi _m\colon Y_m \to \aff^1\) a Galois cover with group \(G\text{.}\) \(\leadsto \phi _m \colon \pi \twoheadrightarrow G\text{.}\) One can show that
\begin{equation*}
\operatorname{Swan}_\infty (N_{\phi _m}) = m \operatorname{Swan}_\infty (N_\phi )
\end{equation*}
so choosing \(m \gt 1\) forces the inequality to be strict.
In this case we show
\begin{equation*}
\dim H^1(\pi , N_\phi ) = \infty
\end{equation*}
exactness gives
\begin{equation*}
H^1(\pi , N_\phi ) = H^1(\aff^1, \sheaf N_\phi ) \to H^2_\infty (\PP^1, i_*\sheaf N_\phi ) \to H^2(\PP^1, i_* \sheaf N_\phi ) = 0
\end{equation*}
\begin{equation*}
H^2_\infty (\PP^1, i_*\sheaf N_\phi ) = H^2_\infty (\Spec k \lb \lb t\inv \rb \rb , i_*\sheaf N_\phi ) = H^1 (k ((T\inv )) , N_\phi )\text{.}
\end{equation*}
Proposition 7.4.10.
Let \(F = k((t))\) and \(G_F =\Gal {F^\sep}{F}\text{.}\) Then let \(V\) be a finite dimensional \(G_F\)-representation over \(\FF_p\text{.}\) then
\begin{equation*}
H^1(G_F, V) = \infty \text{.}
\end{equation*}
Proof.
We can take
\begin{equation*}
G_F \acts V
\end{equation*}
irreducible, then if \(I_1\) is the pro-\(p\)-Sylow subgroup of \(G_F\) then the action of
\begin{equation*}
I_1\acts V
\end{equation*}
is trivial so the action factors through the tame quotient
\begin{equation*}
I_t = G_F/I_1\text{.}
\end{equation*}
Choosing an identification of \(V\) with
\begin{equation*}
\FF_q / \FF_p
\end{equation*}
then
\begin{equation*}
I_t \acts V
\end{equation*}
is determined by a character
\begin{equation*}
\psi \colon I_t \to \FF_q^\times
\end{equation*}
let \(m = \operatorname{order}(\psi)\text{,}\) \(t_m = t^{1/m}\) and \(F_m = k((t_m))\text{.}\) The Galois group
\begin{equation*}
C_m = \Gal{F_m}F
\end{equation*}
is identified with the group of \(m\)-th roots of unity by a character
\begin{equation*}
\chi \colon C_m \to k^\times\text{.}
\end{equation*}
Choosing \(\FF_q \hookrightarrow k\) gives
\begin{equation*}
\psi = \chi ^i
\end{equation*}
for some \(i \in (\ZZ/m)^\times\text{,}\) then
\begin{equation*}
H^1(G_F, V)\simeq H^0(C_m, H^1(I_m, V)) = H^0(C_m, \Hom(I_m, \FF_p) \otimes V
\end{equation*}
when \(I_m = \Gal {F^\sep}{F_m}\text{.}\) We have
\begin{equation*}
\Hom(I_m, \FF_p) = F_m / \wp F_m
\end{equation*}
for \(\wp\) the Artin-Schreier map, so it is sufficient to show that any character of \(C_m\) occurs in the \(C_m\)-representation
\begin{equation*}
F_m/ \wp F_m) \otimes \FF_p
\end{equation*}
infinitely often. The group \(F_m / \wp F_m\) has representatives Laurent series
\begin{equation*}
\sum a_j t_m^j
\end{equation*}
for \(a_j \in k,\,j \gt 0,(j,p) = 1\text{.}\) Consider the subgroup
\begin{equation*}
k \{t_m^{-j}\}
\end{equation*}
on which \(C_m\) acts by \(\chi ^{-j}\text{.}\) Since \(\lb k : \FF_q \rb = \infty \text{,}\) \(\chi ^{-j}\) occurs infinitely often.
So
\begin{equation*}
\dim H^1(\pi , N_\phi ) = \infty
\end{equation*}
and the desired inequality is satisfied and we have a surjective lift
\begin{equation*}
\pi \to \widetilde G
\end{equation*}
in all cases giving the original theorem.