Skip to main content
\(\require{xypic}\require{newpxtext}\require{newpxmath}\require{cancel}\require{mathrsfs}\require{mathtools}\require{pgfplots} \newenvironment{smallermatrix}[1] {\arraycolsep=0.5pt\def\arraystretch{0.5}\small \array{#1}} {\endarray} \def\coloneqq{\mathrel{\mathop:}\mathrel{\mkern-1.2mu}=} \def\eqqcolon{=\mathrel{\mkern-1.2mu}\mathrel{\mathop:}} \DeclarePairedDelimiter\ceil{\lceil}{\rceil} \DeclarePairedDelimiter\floor{\lfloor}{\rfloor} \newcommand{\ideal}[1]{\mathfrak{#1}} \newcommand{\lie}[1]{\operatorname{\mathfrak{#1}}} \newcommand{\sheaf}[1]{\operatorname{\mathcal{#1}}} \DeclareMathOperator{\Lie}{Lie} \newcommand{\diff}{\mathop{}\!\mathrm{d}} \newcommand{\cinf}{C^\infty} \newcommand{\inv}{^{-1}} \newcommand{\units}{^{\times}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\pair}[2]{\left\langle #1, #2 \right\rangle} \newcommand{\lb}{[} \newcommand{\rb}{]} \newcommand{\powerseries}[2]{#1[[#2]]} \newcommand{\partder}[2][]{\frac{\partial #1}{\partial #2}} \providecommand\mapsfrom{\mathrel{\reflectbox{\ensuremath{\mapsto}}}} \DeclareMathOperator{\Sha}{III} \newcommand{\NN}{\mathbf{N}} \newcommand{\ZZ}{\mathbf{Z}} \newcommand{\QQ}{\mathbf{Q}} \newcommand{\RR}{\mathbf{R}} \newcommand{\CC}{\mathbf{C}} \newcommand{\HH}{\mathbf{H}} \newcommand{\FF}{\mathbf{F}} \newcommand{\GG}{\mathbf{G}} \newcommand{\ints}{\mathcal{O}} \newcommand{\adeles}{\mathbf{A}} \newcommand{\alg}{\mathrm{alg}} \newcommand{\subgroup}{\mathrel{\subseteq}} \newcommand{\cat}[1]{\mathcal{#1}} \newcommand{\catname}[1]{{\mathrm{\textbf{#1}}}} \newcommand{\Rings}{\mathrm{Rings}} \newcommand{\Ar}{\mathrm{Ar}} \newcommand{\dR}{\mathrm{dR}} \newcommand{\crys}{\mathrm{crys}} \newcommand{\cris}{\mathrm{cris}} \newcommand{\et}{\mathrm{\acute{e}t}} \newcommand{\rig}{\mathrm{rig}} \newcommand{\sing}{\mathrm{sing}} \newcommand{\Pet}{\mathrm{Pet}} \newcommand{\pinf}{{1/p^\infty}} \newcommand{\colim}{\operatornamewithlimits{\underset{\longrightarrow}{colim}}} \newcommand{\acts}{\circlearrowright} \newcommand\rightrightrightarrows{ \mathrel{\substack{\textstyle\rightarrow\\[-0.6ex] \textstyle\rightarrow \\[-0.6ex] \textstyle\rightarrow}} } \newcommand{\ab}{\mathrm{ab}} \newcommand{\alm}{\mathrm{a}} \newcommand{\an}{\mathrm{an}} \newcommand{\alt}{\mathrm{alt}} \newcommand{\cyc}{\mathrm{cyc}} \newcommand{\divisible}{\mathrm{div}} \newcommand{\id}{\mathrm{id}} \newcommand{\un}{\mathrm{un}} \newcommand{\nr}{\mathrm{nr}} \newcommand{\ur}{\mathrm{ur}} \newcommand{\tamer}{\mathrm{tr}} \newcommand{\ns}{\mathrm{ns}} \newcommand{\op}{\mathrm{op}} \newcommand{\pre}{\mathrm{pre}} \newcommand{\reg}{\mathrm{reg}} \newcommand{\spec}{\mathrm{spec}} \newcommand{\Set}{\mathrm{Set}} \newcommand{\sep}{\mathrm{sep}} \newcommand{\St}{\mathrm{St}} \newcommand{\tors}{\mathrm{tors}} \newcommand{\transpose}{\mathrm{T}} \newcommand{\semis}{\mathrm{ss}} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\Supp}{Supp} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\Diff}{Diff} \DeclareMathOperator{\Hom}{Hom} \newcommand{\sheafHom}{\mathscr{Hom}} \DeclareMathOperator{\Nat}{Nat} \DeclareMathOperator{\Br}{Br} \DeclareMathOperator{\Syl}{Syl} \DeclareMathOperator{\Tgt}{Tgt} \DeclareMathOperator{\sprep}{sp} \DeclareMathOperator{\vol}{Vol} \DeclareMathOperator{\divisor}{div} \DeclareMathOperator{\divisors}{Div} \DeclareMathOperator{\Div}{Div} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\Princ}{Princ} \DeclareMathOperator{\Cycles}{Cycles} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\Ext}{Ext} \DeclareMathOperator{\Tor}{Tor} \DeclareMathOperator{\gr}{gr} \DeclareMathOperator{\Fil}{Fil} \DeclareMathOperator{\polylog}{\mathcal{L}} \DeclareMathOperator{\disc}{disc} \DeclareMathOperator{\Tan}{Tan} \DeclareMathOperator{\Cotan}{Cotan} \DeclareMathOperator{\Sing}{Sing} \DeclareMathOperator{\Sel}{Sel} \DeclareMathOperator{\redu}{red} \DeclareMathOperator{\Reg}{Reg} \DeclareMathOperator{\Rep}{Rep} \DeclareMathOperator{\rk}{rk} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\coim}{coim} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\Span}{span} \DeclareMathOperator{\characteristic}{char} \DeclareMathOperator{\orient}{or} \DeclareMathOperator{\leadterm}{lt} \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\Stab}{Stab} \DeclareMathOperator{\tr}{tr} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\ad}{ad} \DeclareMathOperator{\Ad}{Ad} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\Spf}{Spf} \DeclareMathOperator{\Spv}{Spv} \DeclareMathOperator{\Spa}{Spa} \DeclareMathOperator{\Spm}{Spm} \DeclareMathOperator{\specialisation}{sp} \DeclareMathOperator{\Max}{Max} \newcommand{\Gal}[2]{\operatorname{Gal}(#1/#2)} \newcommand{\absgal}[1]{\operatorname{Gal}(\overline{#1}/#1)} \newcommand{\sepgal}[1]{\operatorname{Gal}(#1^\sep/#1)} \DeclareMathOperator{\Ind}{Ind} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\res}{res} \DeclareMathOperator{\power}{\mathcal{P}} \DeclareMathOperator{\aff}{\mathbf{A}} \DeclareMathOperator{\PP}{\mathbf{P}} \DeclareMathOperator{\norm}{Norm} \DeclareMathOperator{\trace}{Tr} \DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\Frob}{Frob} \DeclareMathOperator{\NS}{NS} \DeclareMathOperator{\Der}{Der} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Out}{Out} \DeclareMathOperator{\Inn}{Inn} \DeclareMathOperator{\vf}{\mathcal{V}} \DeclareMathOperator{\krulldim}{krulldim} \DeclareMathOperator{\trdeg}{trdeg} \DeclareMathOperator{\Frac}{Frac} \DeclareMathOperator{\Prob}{Prob} \DeclareMathOperator{\Mat}{Mat} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\PSL}{PSL} \DeclareMathOperator{\PGL}{PGL} \DeclareMathOperator{\specialorthogonal}{SO} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\USp}{USp} \DeclareMathOperator{\orth}{O} \DeclareMathOperator{\unitary}{U} \DeclareMathOperator{\specialunitary}{SU} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\Aff}{Aff} \DeclareMathOperator{\ch}{ch} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)
BUNTES:
BU Number Theory Expository Seminar
BUNTES Attendees (notes by Alex)
Contents
Prev
Up
Next
Contents
Prev
Up
Next
Front Matter
1
Abelian Varieties
Basics
Introduction (Angus)
Abelian varieties over \(\CC\) (Alex)
Rational Maps into Abelian Varieties (Maria)
Theorem of the Cube (Ricky)
The Adventures of BUNTES (Sachi)
Line Bundles and the Dual Abelian Variety (Angus)
Endomorphisms and the Tate module (Berke)
Polarizations and Étale cohomology (Alex)
Weil pairings (Maria)
The Rosati involution (Alex)
Abelian Varieties over finite fields (Ricky)
Tate's Isogeny Theorem (Sachi)
The Honda Tate Theorem (Angus)
2
Dessins d'Enfants
Overview (Angus)
Riemann Surfaces I (Ricky)
Riemann Hurwitz Formula (Sachi)
Riemann Surfaces and Discrete Groups (Rod)
Riemann Surfaces and Discrete Groups II (Jim)
Belyi's theorem (Maria)
Dessins (Berke)
A Sandwich Table of Dessins d'Enfants
Belyi's theorem, effective Mordell and ABC (Angus)
Dessins, integer points on elliptic curves and a proof of the ABC conjecture (Alex)
Three Short Stories about Belyi's theorem (Ricky)
Dessins in Physics (Jim)
3
Supersingular isogeny graphs and Quaternion Algebras
Isogeny graphs: background and motivation (Maria Ines)
Supersingular isogeny graph cryptography (Asra)
Quaternion Algebras (Alex)
The Deuring Correspondence (Maria Ines)
4
\(p\)-divisible groups
\(p\)-divisible groups (Sachi)
5
Shimura varieties
Modular curves (Aash)
Modular forms (Asra)
Abelian varieties and Jacobians (Angus)
Ricky Show
Variations of Hodge Structures (Sachi)
Moduli of linearized \(\CC\)-structures (RICKY)
What is ... a Shimura Variety? (Angus)
Canonical models (Alex)
6
Gross-Zagier
An Overview of Gross-Zagier and Related Objects / Formulas of interest (Sachi)
Modular Curves Background I (John)
Modular Curves and Heegner Points (Ricky)
Archimedean Local Heights I (Aash)
Archimedean Local Heights II (Stevan)
Deuring's theory of lifts (Angus)
Serre-Tate theory (Alex)
Non-archimidean local heights and intersection theory (Oana)
Wrap Up of Non-Archimedean Local Heights (Sachi)
Rankin-Selberg (Aash)
A gallimaufry of applications (of Gross-Zagier) I (Alex)
A gallimaufry of applications (of Gross-Zagier) II (Alex)
7
Abhyankar's conjecture
What is Abhyankar's conjecture? (Alex)
Ramification of curves (John)
A cohomological interlude (Ricky)
Serre's proof in the solvable case (Angus)
Rigid analytic spaces (Aash)
Rigid GAGA (Aash)
Raynaud 3) example?
8
CM abelian varieties
Back Matter
References
Feedback
Authored in PreTeXt
Section
6.8
Non-archimidean local heights and intersection theory (Oana)
¶
See Oana's notes