Section 6.11 A gallimaufry of applications (of Gross-Zagier) I (Alex)
¶Subsection 6.11.1 Heegner points on rank 1 curves
So let's do some examples of Heegner point computations, and see how Gross-Zagier gives us important information in a few ways. Following the algorithm in Cohen, Number theory part I. Fix an elliptic curve E(\QQ) of conductor N\text{,} we are interested in finding E(\QQ)\text{.} All elliptic curves over \QQ are now known to be modular and hence we may make use of the parameterisationThe fun of the subject seems to me to be in the examples.
―Gross - Letter to Birch 1982
\begin{equation*}
\phi_N \colon X_0(N) \hookrightarrow J_0(N) \twoheadrightarrow E\text{.}
\end{equation*}
Over \CC the modular curve is classically
\begin{equation*}
\mathcal H / \Gamma_0(N)
\end{equation*}
and if E = E_f for f= \sum a_n q^n we have \Phi_w \colon \CC/\Lambda_E \to E(\CC)\text{.} Then the modular parameterisation comes down to
\begin{equation*}
\phi(\tau) = \phi_w(z_\tau) = \phi_w\underbrace{\left( c\int_{i\infty}^\tau 2\pi i f(z) \diff z\right)}_{c\sum_{n=1}^\infty \frac{a_n}{n} q^n}
\end{equation*}
\begin{equation*}
\phi \colon X_0(N) \to \CC/\Lambda \text{.}
\end{equation*}
So integrating the q-expansion of a modular form and plugging in \tau gives us the corresponding point in the complex uniformization of the curve because the Abel-Jacobi map is defined by integration.
Definition 6.11.1.
We have \tau \in \HH CM points if they satisfy an equation
\begin{equation*}
A \tau ^2 + B'\tau + C = 0
\end{equation*}
\begin{equation*}
A,B,C \in \ZZ
\end{equation*}
\begin{equation*}
\Delta (\tau ) = B^2 - 4AC \lt 0
\end{equation*}
when we choose
\begin{equation*}
A \gt 0
\end{equation*}
\begin{equation*}
(A,B,C) = 1
\end{equation*}
then
\begin{equation*}
Ax^2 + Bxy + Cy^2
\end{equation*}
is the associated quadratic form. A Heegner point of level N is one for which
\begin{equation*}
\Delta (N\tau ) = \Delta (\tau )\text{.}
\end{equation*}
- \begin{equation*} \operatorname{gcd}(A / N, B, C N)=1 \end{equation*}
- \begin{equation*} \operatorname{gcd}(N, B, A C / N)=1 \end{equation*}
- There exists F \in \mathbb{Z} such that B^{2}-4 N F=D with \operatorname{gcd}(N, B, F)=1
Corollary 6.11.2.
If \tau is heegner level N disc D so is
\begin{equation*}
W(\tau ) = -1/(N\tau )\text{.}
\end{equation*}
\begin{equation*}
P=\sum_{\sigma \in \operatorname{Gal}(H / K)} \varphi((\beta,[\mathfrak{a}]))^{\sigma}=\sum_{[\mathfrak{b}] \in \Cl(K)} \varphi\left(\left(\beta,\left[\mathfrak{a} \mathfrak{b}^{-1}\right]\right)\right)=\sum_{[\mathfrak{b}] \in \Cl(K)} \varphi((\beta,[\mathfrak{b}]))
\end{equation*}
Lemma 8.6.8. If \varepsilon=-1\text{,} then in fact P \in E(\mathbb{Q}) Proof. Indeed, it is easy to see that \varepsilon=-1 is equivalent to saying that \varphi \circ W=\varphi, so that
\begin{equation*}
\varphi((\beta,[\mathfrak{b}]))=\overline{\varphi(W(\beta,[\mathfrak{b}]))}=\overline{\varphi\left(\left(-\beta,\left[\ideal b \mathfrak{n}^{-1}\right]\right)\right)}=\varphi\left(\left(\beta,\left[\mathfrak{b}^{-1} \mathfrak{n}\right]\right)\right)
\end{equation*}
hence
\begin{equation*}
\begin{aligned} \bar{P}=\amp \sum_{[\mathfrak{b}] \in \Cl(K)} \varphi\left(\left(\beta,\left[\mathfrak{b}^{-1} \mathfrak{n}\right]\right)\right)=\sum_{[\mathfrak{b}] \in Cl(K)} \varphi((\beta,[\mathfrak{b}]))=P \end{aligned}
\end{equation*}
so by Galois theory once again we deduce that P \in E(\mathbb{Q})
Similarly if \epsilon =1 then P+ \overline P is torsion.
We have the Gross-Zagier formula
\begin{equation*}
\widehat{h}(P)=\frac{\sqrt{|D|}}{4 \operatorname{Vol}(E)} L^{\prime}(E, 1) L\left(E_{D}, 1\right)
\end{equation*}
which tells us the height of Heegner
In rank 1 P = \ell G for some generator G of mordell-weil then GZ + BSD
\begin{equation*}
\frac{\ell^{2}}{|\operatorname{III}(E)|}=\omega_{1}(E) \frac{c(E) \sqrt{|D|}}{4 \operatorname{Vol}(E)\left|E_{t}(\mathbb{Q})\right|^{2}} L\left(E_{D}, 1\right)
\end{equation*}
To compute we evaluations of \phi ((-B+ D)/(2A)) for the |Cl(K)| classes of quadratic forms (A, B, C)\text{.}
the convergence of the series for \phi(\tau) is essentially that of a geometric series with ratio \exp (-2 \pi \Im(\tau))=\exp (-2 \pi \sqrt{|D|} /(2 A))
We can use
\begin{equation*}
\overline{\varphi((\beta,[\mathfrak{a}]))}=\varphi\left(\left(\beta,\left[\mathfrak{a}^{-1} \mathfrak{n}\right]\right)\right)
\end{equation*}
to halve the work we do.
So the heegner point method is
- via BSD find\begin{equation*} |\operatorname{III}(E)| R(E)=\frac{\left|E_{t}(\mathbb{Q})\right|^{2} L^{\prime}(E, 1)}{c(E) \omega_{1}(E)} \end{equation*}
- find HB the height difference bound between canonical and naive heights\begin{equation*} HB = h(j(E)) / 12+\mu(E)+1.946 \end{equation*}
-
\begin{equation*} d=2(|\operatorname{III}(E)| R(E)+H B) \end{equation*}\begin{equation*} d d=\lceil d / \log (10)\rceil+10 \end{equation*}this is the number of decimal digits we will work with
- Run through fundamental discs D for each. Check D square mod 4N all primes split and\begin{equation*} L\left(E_{D}, 1\right)=2 \sum_{n \geq 1} \frac{a_{n}}{n}\left(\frac{D}{n}\right) \exp \left(\frac{-2 \pi n}{\sqrt{N D^{2} / \operatorname{gcd}(D, N)}}\right) \end{equation*}not too close to zero if this is not satisfied, choose the next fundamental discriminant. Otherwise fix \beta \in \mathbb{Z} /(2 N) \mathbb{Z} such that D \equiv \beta^{2}(\bmod 4 N) and compute m>0 such that\begin{equation*} m^{2}=\omega_{1}(E) \frac{c(E) \sqrt{|D|}(w(D) / 2)^{2}}{4 \operatorname{Vol}(E)\left|E_{t}(\mathbb{Q})\right|^{2}} 2^{\omega(\operatorname{gcd}(D, N))} L\left(E_{D}, 1\right) \end{equation*}This m should be very close to an integer, or at least to a rational number with small denominator.
- Find List of Forms below, compute a list L of |\Cl(K)| representatives (A, B, C) of classes of positive definite quadratic forms of discriminant D\text{,} where A must be chosen divisible by N and minimal, and B \equiv \beta(\bmod 2 N) (this is always possible). Whenever possible pair elements (A, B, C) and \left(A^{\prime}, B^{\prime}, C^{\prime}\right) of this list such that \left(A^{\prime}, B^{\prime}, C^{\prime}\right) is equivalent to (C N, B, A / N) by computing the unique canonical reduced form equivalent to each.
-
\begin{equation*} z=\sum_{(A, B, C) \in \mathcal{L}} \phi\left(\frac{-B+\sqrt{D}}{2 A}\right) \in \mathbb{C} \end{equation*}taking a few more than A d /(\pi \sqrt{|D|}) terms for \phi \text{.}
- Find Rational Point Let e be the exponent of the group E_{t}(\mathbb{Q}), let \ell= \operatorname{gcd}\left(e, m^{\infty}\right)=\operatorname{gcd}\left(e, m^{3}\right), and m^{\prime}=m \ell . For each pair (u, v) \in\left[0, m^{\prime}-\right. 1^{2},] set z_{u, v}=\left(\ell z+u \omega_{1}(E)+v \omega_{2}(E)\right) / m^{\prime}\text{.} Compute x=\wp\left(z_{u, v}\right), where \left(\wp, \wp^{\prime}\right) is the isomorphism from \mathbb{C} / \Lambda to E(\mathbb{C})\text{.} For each (u, v) such that the corresponding point (x, y) \in E(\mathbb{C}) has real coordinates.
\begin{equation*}
E_n \colon y^2 = x^3 - n^2 x\text{.}
\end{equation*}
E.g. for n = 157 BSD predicts rank 1, but how do we find the point? Using standard techniques can compute real period, period volume (0.209262974439979^2) and torsion order (4), conductor (788768 outside LMFDB range) and Tamagawa product (8). Together we get
\begin{equation*}
|\Sha(E)|R(E) \approx 54.6
\end{equation*}
\begin{equation*}
HB = 10.6
\end{equation*}
\begin{equation*}
d \approx 130.4
\end{equation*}
need 67 decimal digits.
Up to D = -40 we have D =-31,-39 are squares modulo 4N\text{.}
For both of these D we try to compute m^2(D)\text{.} When we take -31 we get a number close to 0. For -39 we get \approx 16 so fix D = -39 and m=4\text{.}
A square root b of D mod 4N is
\begin{equation*}
b = 1275547\text{.}
\end{equation*}
The class group of
\begin{equation*}
\QQ(\sqrt{-39})
\end{equation*}
is
\begin{equation*}
\ZZ/4\text{.}
\end{equation*}
\begin{equation*}
z = 2\Re(\phi (x_1) + \phi (x_2))
\end{equation*}
for
\begin{equation*}
x_i = (-b + \sqrt{-39})/(2j N)
\end{equation*}
So we have four classes of quadratic forms, of these the largest value of A is 2N\text{.} So we need
\begin{equation*}
\approx 10 500 000
\end{equation*}
terms of the series
\begin{equation*}
\phi (\tau ) = \sum_{n=1}^\infty \frac{a_n}{n} q^n,\,q = \exp(2\pi i \tau )
\end{equation*}
applying this we get
\begin{equation*}
z = -5.63911127500831766007696166307316036323562406574706\ldots
\end{equation*}
we can add multiples of the period lattice to make it smaller, as
\begin{equation*}
z/\omega \approx -26.9469552131277
\end{equation*}
we find that
\begin{equation*}
z' = z + 27 \omega \approx 0.0111003098794358
\end{equation*}
so that
\begin{equation*}
\wp(\Lambda , (2 z' + 2 \omega )/8) \approx 344.99665832468973990799841297983141563953148876481
\end{equation*}
this we can recognise as
\begin{equation*}
\frac{95732359354501581258364453}{526771095761^2}
\end{equation*}
(using the fact we are looking for something with square denominator) and compute the point
\begin{equation*}
\left(\frac{95732359354501581258364453}{526771095761^2} : \frac{834062764128948944072857085701103222940}{526771095761^3} : 1\right)
\end{equation*}
which is quite a big triangle. This is saturated and of height 54.6008892940170\text{.}
Remark 6.11.3.
Calling the sage function gens()
fails on this example!