Skip to main content

Section 5.3 Abelian varieties and Jacobians (Angus)

Subsection 5.3.1 Background

Definition 5.3.1.

An elliptic curve is any one of the following

  1. Smooth projective curve of genus 1 with a marked rational point.
  2. A smooth projective curve with a group law
  3. if \(k \subseteq \CC\) we have
    \begin{equation*} E(\CC) = \CC/ \Lambda \end{equation*}
    \begin{equation*} \Lambda = \ZZ \omega_1 \oplus \ZZ \omega_2,\, \omega_1/\omega_2 \not\in \RR \end{equation*}
  4. if \(\characteristic k \ne 2,3\) A smooth projective curve specified by
    \begin{equation*} y^2= x^3+ ax + b\text{.} \end{equation*}

Aash showed that 1 implies 4 and 3 implies 1.

One can view the group law on \(E\) either via the chord-tangent method (Bezout's theorem). Or via the isomorphism

\begin{equation*} E \to \Pic^0(E) \end{equation*}
\begin{equation*} P \mapsto [P] - [0]\text{.} \end{equation*}
Definition 5.3.2.

An abelian variety is a proper irreducible variety with a group law given by regular functions.

Remark 5.3.3.
  1. In this definition proper is equivalent to projective.
  2. The rigidity theorem tells us:

    1. Any morphism of abelian varieties that preserves the identity is a homomorphism.
    2. Abelian varieties are abelian

Subsection 5.3.2 Ablelian varieties over \(\CC\)

The lie algebra \(\Lie(A(\CC))\) is a complex vector space of dimension \(g\text{.}\) We have the exponential

\begin{equation*} \exp \colon \Lie(A(\CC)) \to A(\CC) \end{equation*}

which is surjective onto the connected component of the identity, and locally at \(0\) a diffeomorphism. So \(\exp\) surjects. Since its locally isomorphic at \(0\) we have \(\ker(\exp)\) discrete and hence a lattice. \(A \) proper means \(A(\CC)\) is compact so

\begin{equation*} \rank \ker (\exp) = 2g\text{.} \end{equation*}

We have a map

\begin{equation*} \{\text{AVs}/\CC\} \to \{\text{complex tori}\} \end{equation*}

but this is not surjective. Which lattices give AVs?

Definition 5.3.5. Hermitian forms.

Let \(V\) be a \(\CC\)-vector space and \(\Lambda \subseteq V\) be a full lattice. A Hermitian form on \(V\) is a function

\begin{equation*} H \colon V\times V \to \CC \end{equation*}

which is \(\CC\)-linear in the first component, \(\CC\)-antilinear in the second (i.e. a sesquilinear form). And satisfies

\begin{equation*} H(u,v) = \overline{H(v,u)} \end{equation*}

A Riemann form on \((V,\Lambda)\) is a positive definite Hermitian form on \(V\) s.t. \(\im(H|_V) \colon \Lambda \to \ZZ\text{.}\)

Swinnerton-Dyer analytic theory of AVs ch.2.

Example 5.3.7.

For an elliptic curve \(E(\CC) = \CC/ \ZZ \omega_1 + \ZZ \omega_2\)

\begin{equation*} H(u,v) = u\bar v/ \im(\omega_1 \bar \omega_2)\text{.} \end{equation*}

Subsection 5.3.3 Jacobian varieties

Definition 5.3.8.

Given \(X\) a curve

\begin{equation*} \Pic^0(X) = \divisors^0(X)/\{(f) : f \in K(X)\} \end{equation*}

this is some abelian group.

Remark 5.3.10.

This is false as stated unless \(X(k) \ne \emptyset\text{.}\)

Idea: Pick \(P_0 \in X(k)\) we have a bijection

\begin{equation*} \divisors^0(X) \to \divisors^r(X) \end{equation*}
\begin{equation*} D \mapsto D + r[P_0] \end{equation*}

we have a map

\begin{equation*} X^r \to X^r/ S_r = X^{(r)} \to \divisors^r(X) \end{equation*}

we can construct \(\Jac(X)\) as a quotient of \(X^{(r)}\) full details Milne AVs ch. 2.

Jacobians over \(\CC\).

Given \(X\) a compact Riemann surface of genus \(g\) then

\begin{equation*} H^0(X, \Omega_X^1) \simeq \CC^g \end{equation*}

one might wish to consider, for \(P,Q \in X\text{,}\) \(\omega\in H^0(X, \Omega_X^1)\)

\begin{equation*} \int_P^Q \omega \end{equation*}

this is not well defined as there are choices of path \(P\to Q\text{.}\)

\begin{equation*} H_1(X,\ZZ) = \ZZ^{2g} \end{equation*}

have a map

\begin{equation*} H_1(X,\ZZ) \to H^0(X, \Omega_X^1) ^\vee \end{equation*}
\begin{equation*} \gamma \mapsto (\omega \mapsto \int_\gamma \omega) \end{equation*}

Let

\begin{equation*} J(X) = H^0(X, \Omega_X^1) ^\vee/H_1(X,\ZZ) \end{equation*}

For the first claim we need a Riemann form on

\begin{equation*} (H^0(X, \Omega_X^1)^\vee , H_1(X,\ZZ)) \end{equation*}

we have

\begin{equation*} H_1(X, \ZZ) \times H_1(X, \ZZ) \to \ZZ \end{equation*}
\begin{equation*} (\gamma_1, \gamma_2) \mapsto -(\gamma_1\cap \gamma_2)\text{.} \end{equation*}
Remark 5.3.12.

In this case we see

\begin{equation*} \Lie(\Jac(X)) = H^0(X, \Omega_X^1) \end{equation*}

this is true in general.

Subsection 5.3.4 Some constructions/properties of AVs

Let \(A,B\) be AVs\(/k\text{.}\) Any identity preserving morphism \(\phi \colon A \to B\) is a homomorphism. Such a homomorphism is called an isogeny if it surjective with finite kernel. i.e. \(\lb n \rb \colon A \to A\) is an isogeny and for \(\characteristic(k) \nmid n\text{.}\)

\begin{equation*} A[n] \simeq (\ZZ/n)^{2g} \end{equation*}

then we have the Tate module for \(l\) prime

\begin{equation*} T_lA = \varprojlim_n A[l^n] \simeq \ZZ_l^{2g} \end{equation*}

in fact

\begin{equation*} H^1_{\et} (A, \ZZ_l) \simeq T_lA ^\vee \end{equation*}

we can also consider \(\Pic^0(A)\text{.}\) There exists an abelian variety

\begin{equation*} \hat A/l \end{equation*}

s.t.

\begin{equation*} \hat A (L) = \Pic^0(A \otimes L) \end{equation*}

this is called the dual abelian variety. So earlier we saw \(\hat E \simeq E\text{.}\) in general \(\hat A \not \simeq A\text{.}\)

However for an ample divisor \(D\) we get an isog

\begin{equation*} \phi_D \colon A \to \hat A \end{equation*}
\begin{equation*} P \mapsto t_P^* D -D \end{equation*}

an isogeny \(\phi\colon A\to \hat A\) is a polarization if

\begin{equation*} \phi = \phi_D /\bar k \end{equation*}

over \(\CC\) a polarization is equivalent to a choice of Riemann form.

A principal polarization is a polarization which is an isomorphism. e.g.

\begin{equation*} \phi_{[0]} \colon E \to \hat E \end{equation*}
\begin{equation*} P \mapsto [P] - [0] \end{equation*}
Remark 5.3.13.

Jacobian varieties always admit principal polarizations.

On \(T_lA \) we have a Weil pairing

\begin{equation*} T_lA \times T_lA^\vee \to \ZZ_l \end{equation*}
Maps between Jacobians.

Let \(X,Y/k\) be curves and \(f\colon X \to Y\) a morphism.

Definition 5.3.14.

We have a pushforward map

\begin{equation*} f_*\colon \Pic^0(X) \to \Pic^0(Y) \end{equation*}
\begin{equation*} \sum n_x [x] \mapsto \sum n_x[f(x)] \end{equation*}

if \(f\) is finite then we have a pullback

\begin{equation*} f^* \colon \Pic^0(Y) \to \Pic^0(X) \end{equation*}
\begin{equation*} \sum n_y[y] \mapsto \sum n_y [f\inv (y)] \end{equation*}

(with multiplicity).

We want further maps between jacobians

Definition 5.3.15.

A correspondence between \(X,Y\) is a curve \(Z\) and a pair of finite morphisms.

\begin{equation*} X \leftarrow Z \to Y \end{equation*}

then we get induced maps

\begin{equation*} T_* = g_* f^* \colon \Pic^0(X) \to \Pic^0(Y) \end{equation*}
\begin{equation*} T^* = f_* g^* \colon \Pic^0(Y) \to \Pic^0(X) \end{equation*}
Modular jacobians and Hecke correspondences.

Consider \(p\nmid N\) we have

\begin{equation*} X_0(N) = \{ (E,C_N) : E\text{ e.c. }, C_N \text{ cyclic sub order } N\} \end{equation*}
\begin{equation*} X_0(pN) = \{(E,C_{pN})\} = \{(E,C_N,C_p)\} \end{equation*}

so we have

Definition 5.3.16.

the Hecke correspondence \(T_p\) on \(X_0(N)\) is

\begin{equation*} X_0(N) \mapsfrom X_0(pN) \to X_0(N) \end{equation*}
\begin{equation*} (E,C_N)\mapsfrom (E,C_N,C_p)\to (E/C_p, C_p + C_N)\text{.} \end{equation*}

We have the modular jacobian \(J_0(N)\) and the induced map

\begin{equation*} T_p \colon J_0(N) \to J_0(N) \end{equation*}
\begin{equation*} [E] \mapsto \sum_{C_p \subseteq E} [E/C_p] \end{equation*}

One can consider \(J_0(N)_{\FF_p}\)