Section 1.10 Weil pairings (Maria)
¶Subsection 1.10.1 Weil pairings on elliptic curves
Start with elliptic curves, later repeat for abelian varieties. \(E/k\) an elliptic curve, \(m\ge 2\text{,}\) if \(\characteristic(k) = p \gt 0\) \((m,p) = 1\text{.}\) The Weil \(e_m\)-pairing \(e_m \colon E\lb m\rb \times E\lb m \rb \to \mu_m\) is defined as follows: Fix \(T\in E\lb m \rb\) then \(f\in \overline k (E)\) s.t. \(\divisor(f) = m(T) - m(0)\text{.}\) Fix \(T' \in E\) with \(mT' = T\) and \(g\in \overline k(E)\) s.t. \(\divisor(g) = \lb m \rb^*(T) = \lb m \rb^*(0)= \sum_{R\in E\lb m \rb} (T+R) - (R)\text{.}\) Check \(\divisor (f\circ \lb m \rb) = \divisor(g^m)\text{,}\) hence
so can assume \(f\circ \lb m \rb = g^m\text{.}\) For \(s \in E\lb m \rb\text{,}\) \(x\in E\text{:}\)
is then a constant function, since not surjective. So we define
will state many properties later, but for now. \(e_m\) is compatible:
so for any \(l\ne \characteristic(k)\) prime we can combine \(e_{l^n}\)-pairings into an \(l\)-adic Weil pairing on \(T_l E\)
Subsection 1.10.2 Weil pairings on abelian varieties
Story will be broadly similar to before but we must use the dual, which doesn't appear in the presentation for elliptic curves.
Let \(A/k\) be an abelian variety \(k = \overline k\text{.}\) We construct a Weil \(e_m\)-pairing
Fix \(a\in A\lb m\rb,\,a'\in A^\vee\lb m\rb\) say \(a'\) corresponds to \(\sheaf L\) and a divisor \(D\) then \(\sheaf L^m \) and \(m_A^* \sheaf L\) are trivial so \(\exists f,g \in k(A)\) s.t.
again we have
Proposition 1.10.1.
The Weil \(e_m\)-pairing has the following properties
- \(e_m\) is bilinear\begin{equation*} e_m(a_1+a_2,a') = e_m(a_1,a')e_m(a_2, a') \end{equation*}\begin{equation*} e_m(a,a'_1+a'_2) = e_m(a,a'_1)e_m(a,a'_2) \end{equation*}
- \(e_m\) is non-degenerate: if \(e_m(a,a') = 1 \forall a\in A\lb m\rb\) then \(a' = 0\) (and likewise for the reverse).
- \(e_m\) is Galois-invariant... but we assume \(\overline k =k\) so we ignore this.
- \(e_m\) is compatible\begin{equation*} e_{mm'} (a,a')^{m'} = e_m(m'a, m'a') \ \forall a \in A[mm'], a'\in A^\vee [mm'] \end{equation*}\((mm',\characteristic k) = 1\)
Corollary 1.10.2.
There exists a bilinear non-degenerate (Galois invariant) pairing
For a homomorphism \(\lambda \colon A \to A^\vee\) we define
Notation.
If \(\lambda = \lambda_{\sheaf L} e^{\sheaf L} = e^{\lambda_{\sheaf L}}\text{.}\)
Proposition 1.10.3.
For a homomorphism \(\alpha \colon A \to B\)
- \begin{equation*} e(a,\alpha^\vee(b)) = e(\alpha (a), b) \forall a \in T_lA,\,b\in T_l B \end{equation*}
-
\begin{equation*} e^{\alpha^\vee \lambda \alpha}(a,a') = e ^\lambda (\alpha(a), \alpha(a')) \end{equation*}for \(a,a' \in T_l(A)\text{,}\) \(\lambda \in \Hom(B,B^\vee)\text{.}\)
-
\begin{equation*} e^{\alpha^* \sheaf L} (a,a') = e^{\sheaf L}(\alpha (a),\alpha(a')) \end{equation*}\(a,a'\in T_lA\) \(\sheaf L\in \Pic(B)\text{.}\)
-
\begin{equation*} \Pic A \to \Hom( \bigwedge^2 T_lA , T_l\mu) \end{equation*}\begin{equation*} \sheaf L \mapsto e^{\sheaf L} \end{equation*}is a homomorphism (in particular \(e^{\sheaf L}\) is skew-symmetric).
Proof.
- \(a = (a_n) \in T_lA\) \(b\in (b_n) \in T_l B^\vee\) fix a divisor \(D \) on \(B\) representing \(b_n\) and \(g\in k(B)\) s.t. \(\divisor (h) = (l^n_B)^* D\text{.}\) Then \(\alpha^* D\) represents \(\alpha^\vee(b_n)\) so:\begin{equation*} \divisor(g\circ \alpha) = \alpha^*\divisor (g) = \alpha^*(l^n_B)^* D = (l_A^n)^* \alpha^* D\text{.} \end{equation*}So
- \begin{equation*} e^{\alpha^{\vee}\lambda \alpha} (a,a') = e(a, \alpha^\vee\lambda \alpha(a')) = e(\alpha(a),\lambda (\alpha(a'))) = e^\lambda (\alpha(a), \alpha(a'))\text{.} \end{equation*}
- \begin{equation*} \lambda_{\alpha^* \sheaf L} = \alpha^\vee \lambda_{\sheaf L} \alpha \end{equation*}
- Follows from \(\lambda_{\sheaf L\otimes \sheaf L'} = \lambda_{\sheaf L} + \lambda_{\sheaf L'}\text{.}\)
Example 1.10.4. Computation over \(\CC\).
\(A/\CC\) be an abelian variety
induces
and
so we get an exact sequence
then we can regard \(E_\lambda\) as a skew-symmetric 2-form on \(H_1(A(\CC), \ZZ)\text{.}\) Mumford pg. 237 proves
commutes with - sign so \(e^\lambda (a,a') = \zeta^{-E(a,a')}\)
Subsection 1.10.3 Results about polarizations
\(k = \overline k\) \(p = \characteristic (k) \ge 0\text{.}\)
Theorem 1.10.5. 13.4.
Let \(\alpha\colon A\to B\) be an isogeny of degree prime to \(\characteristic k\) and \(\lambda \in \NS(A)\) then \(\lambda = \alpha^* \lambda '\) for \(\lambda ' \in \NS(B) \iff \forall l |\deg(\alpha)\) \(l\) prime there exists a skew-symmetric form \(f\colon T_lB\times T_lB \to T_l\mu\) s.t. \(e^\lambda(a,a') = f(\alpha(a), \alpha(a'))\) for all \(a,a' \in T_l(A)\text{.}\)
Proof.
Milne 1986 16.4
Corollary 1.10.6. 13.5.
\(l \ne \characteristic (k)\) \(\lambda \in \NS(A) \) is divisible by \(l^n \iff e^\lambda\) is divisible by \(l^n\) in \(\Hom (\bigwedge^2 T_lA, T_l \mu)\text{.}\)
Proof.
Apply theorem 13.4 with \(\alpha = l^n\text{.}\)
Lemma 1.10.7. 13.7.
Let \(\sheaf P\) be the Poincaré sheaf on \(A\times A^\vee\) then
for all \(a,a' \in T_l A\text{,}\) \(b,b' \in T_l A^\vee\text{.}\)
Proof.
Milne 1986 16.7. Use:
Proposition 1.10.8. 13.6.
Assume \(\characteristic k \ne l,2\) then a homomorphism \(\lambda\colon A\to A^\vee\) is \(\lambda = \lambda_{\sheaf L}\) for some \(\sheaf L \in \Pic A\) iff \(e^\lambda\) is skew-symmetric.
Proof.
Case.
Clear.
Case.
\(e^\lambda\) is skew-symmetric, define \(\sheaf L = (1 \times \lambda)^* \sheaf P\) then \(\forall a,a' \in T_l A\)
so \(2\lambda = \lambda_{\sheaf L}\text{.}\) So by corollary 13.5 \(\lambda_{\sheaf L} = 2\lambda_{\sheaf L'}\) for some \(\sheaf L' \in \Pic A\) so \(\lambda = \lambda_{\sheaf L'}\text{.}\)
Definition 1.10.9.
For a polarization \(\lambda \colon A\to A^\vee\) define
where \(m \) kills \(\ker(\lambda)\) and \(b \in A\) s.t.\(mb = a'\text{.}\)
Check: this is well defined.
Note 1.10.10.
\(e^\lambda\) is skew-symmetric.
Proposition 1.10.11. 13.8.
\(\alpha\colon A \to B\) is an isogeny of degree prime to \(p\text{,}\) \(\lambda\colon A\to A^\vee\) polarization then \(\lambda = \alpha^* \lambda', \,\lambda' \colon B\to B^\vee\) polarization iff
Note 1.10.12.
If \(\lambda = \alpha^* \lambda'\) then
Corollary 1.10.13. 13.10.
\(A\) an abelian variety, \(\lambda \colon A \to A^\vee\) is a polarization with \((\deg (\lambda), p) = 1\) then \(A\) is isogenous to a principally polarized abelian variety.
Proof.
Fix \(l |\deg(\lambda)\) prime. Choose a subgroup \(N\subseteq \ker \lambda\) of order \(l\) let \(\alpha \colon A\to A/N = B\) \(N\) is cyclic and \(e^\lambda\) is skew-symmetric so \(e^{\lambda}\) is trivial on \(N\times N\) so \(B\) has a polarization of degree \(\deg(\lambda) / l^2\) by 13.8.
Corollary 1.10.14. 13.11.
Let \(\lambda\) be a polarization of \(A\) s.t. \(\ker (\lambda) \subseteq A\lb m \rb\) for some \((m,p)=1\text{.}\) If \(\exists \alpha \colon A \to A\) s.t. \(\alpha(\ker (\lambda)) \subseteq \ker(\lambda)\) and \(\alpha^\vee \lambda \alpha = - \lambda\) on \(A\lb m^2\rb\) then \(A\times A^\vee\) is principally polarized.
Theorem 1.10.15. 13.12 (Zarhin's trick).
For any abelian variety \(A\) \((A\times A^\vee)^4\) is principally polarized.
Proof.
Fix \(\lambda \colon A\to A^\vee\) polarization, assume \(\ker (\lambda) \subseteq A\lb m \rb\) \((m, p) = 1\) there exists \(a,b,c,d \in \ZZ\) s.t. \(a^2 + b^2 + c^2 + d^2 = m^2 - 1 = -1 \pmod {m^2}\) then
works.
Corollary 1.10.16. 13.13.
Let \(k\) be a finite field, then for each \(g \in \ZZ\) there exist only finitely many isomorphism classes of abelian varieties of dimension \(g\) over \(k\text{.}\)
Proof.
\(A/k\) an abelian variety of dimension \(g\text{,}\) so \((A\times A^\vee)^4\) is an abelian variety of dimension \(8g\) with a principal polarization so using theorem 11.2 there are finitely many (up to \(\simeq\)) of those. Also \((A\times A^\vee)^4\) has finitely many direct factors (theorem 15.3).