Skip to main content

Section 1.10 Weil pairings (Maria)

Subsection 1.10.1 Weil pairings on elliptic curves

Start with elliptic curves, later repeat for abelian varieties. \(E/k\) an elliptic curve, \(m\ge 2\text{,}\) if \(\characteristic(k) = p \gt 0\) \((m,p) = 1\text{.}\) The Weil \(e_m\)-pairing \(e_m \colon E\lb m\rb \times E\lb m \rb \to \mu_m\) is defined as follows: Fix \(T\in E\lb m \rb\) then \(f\in \overline k (E)\) s.t. \(\divisor(f) = m(T) - m(0)\text{.}\) Fix \(T' \in E\) with \(mT' = T\) and \(g\in \overline k(E)\) s.t. \(\divisor(g) = \lb m \rb^*(T) = \lb m \rb^*(0)= \sum_{R\in E\lb m \rb} (T+R) - (R)\text{.}\) Check \(\divisor (f\circ \lb m \rb) = \divisor(g^m)\text{,}\) hence

\begin{equation*} f\circ [m] = c g^m \end{equation*}

so can assume \(f\circ \lb m \rb = g^m\text{.}\) For \(s \in E\lb m \rb\text{,}\) \(x\in E\text{:}\)

\begin{equation*} g(x + s) = f([m]x + [m]s) = f([m]x) = g(x)^m \end{equation*}
\begin{equation*} \frac{g(\cdot + s)^m}{g(\cdot)} \colon E \to \PP^1 \end{equation*}

is then a constant function, since not surjective. So we define

\begin{align*} e_m\colon E[m]\times E[m] \amp\to \mu_m\\ (s,t)\amp \mapsto \frac{g_t(x+s)}{g_t(x)} \end{align*}

will state many properties later, but for now. \(e_m\) is compatible:

\begin{equation*} e_{mm'} (a,a')^{m'} = e_m(m'a, m'a') \ \forall a,a' \in E[mm'] \end{equation*}

so for any \(l\ne \characteristic(k)\) prime we can combine \(e_{l^n}\)-pairings into an \(l\)-adic Weil pairing on \(T_l E\)

\begin{equation*} e \colon T_l E\times T_lE \to T_l \mu = \ZZ_l(1) \end{equation*}

Subsection 1.10.2 Weil pairings on abelian varieties

Story will be broadly similar to before but we must use the dual, which doesn't appear in the presentation for elliptic curves.

Let \(A/k\) be an abelian variety \(k = \overline k\text{.}\) We construct a Weil \(e_m\)-pairing

\begin{align*} e_m \colon A[m]\times A^\vee [m] \amp\to \mu_m\\ (a,a') \amp\mapsto \frac{g\circ t_a(x)}{g(x)} = \frac{g(x+a)}{g(x)} \end{align*}

Fix \(a\in A\lb m\rb,\,a'\in A^\vee\lb m\rb\) say \(a'\) corresponds to \(\sheaf L\) and a divisor \(D\) then \(\sheaf L^m \) and \(m_A^* \sheaf L\) are trivial so \(\exists f,g \in k(A)\) s.t.

\begin{equation*} \divisor (f) = m D \end{equation*}
\begin{equation*} \divisor (g) = m_A^* D \end{equation*}

again we have

\begin{equation*} \divisor( f\circ m_A) = \divisor (g^m) \end{equation*}
\begin{equation*} g(x+a)^m = g(x)^m \end{equation*}

For a homomorphism \(\lambda \colon A \to A^\vee\) we define

\begin{equation*} e_m^\lambda \colon A[m]\times A [m] \to \mu_m \end{equation*}
\begin{equation*} (a,a') \mapsto e_m(a, \lambda(a')) \end{equation*}
\begin{equation*} e_m \colon T_lA\times T_l A \to T_l \mu \end{equation*}
\begin{equation*} (a,a') \mapsto e_m(a, \lambda(a'))\text{.} \end{equation*}
Notation.

If \(\lambda = \lambda_{\sheaf L} e^{\sheaf L} = e^{\lambda_{\sheaf L}}\text{.}\)

  1. \(a = (a_n) \in T_lA\) \(b\in (b_n) \in T_l B^\vee\) fix a divisor \(D \) on \(B\) representing \(b_n\) and \(g\in k(B)\) s.t. \(\divisor (h) = (l^n_B)^* D\text{.}\) Then \(\alpha^* D\) represents \(\alpha^\vee(b_n)\) so:
    \begin{equation*} \divisor(g\circ \alpha) = \alpha^*\divisor (g) = \alpha^*(l^n_B)^* D = (l_A^n)^* \alpha^* D\text{.} \end{equation*}
    So
  2. \begin{equation*} e^{\alpha^{\vee}\lambda \alpha} (a,a') = e(a, \alpha^\vee\lambda \alpha(a')) = e(\alpha(a),\lambda (\alpha(a'))) = e^\lambda (\alpha(a), \alpha(a'))\text{.} \end{equation*}
  3. \begin{equation*} \lambda_{\alpha^* \sheaf L} = \alpha^\vee \lambda_{\sheaf L} \alpha \end{equation*}
  4. Follows from \(\lambda_{\sheaf L\otimes \sheaf L'} = \lambda_{\sheaf L} + \lambda_{\sheaf L'}\text{.}\)
Example 1.10.4. Computation over \(\CC\).

\(A/\CC\) be an abelian variety

\begin{equation*} 0\to \ZZ \to \sheaf O_A \xrightarrow{e^{2\pi i (\cdot)}} \sheaf O^\times \to 0 \end{equation*}

induces

\begin{equation*} H^1(A(\CC), \ZZ) \to H^1(A(\CC), \sheaf O) \to H^1(A(\CC), \sheaf O^\times) \simeq \Pic A \to H^2(A(\CC), \ZZ) \end{equation*}

and

\begin{equation*} H^1(A(\CC), \sheaf O)/ H^1(A(\CC), \ZZ) \simeq A^\vee(\CC) = \Pic^0(A) \end{equation*}

so we get an exact sequence

\begin{equation*} 0 \to \NS(A) \to H^2 (A(\CC),\ZZ) \to H^2(A(\CC),\sheaf O_A) \end{equation*}
\begin{equation*} \lambda \mapsto E_\lambda \end{equation*}

then we can regard \(E_\lambda\) as a skew-symmetric 2-form on \(H_1(A(\CC), \ZZ)\text{.}\) Mumford pg. 237 proves

\begin{equation*} \xymatrix{ H_1(A(\CC), \ZZ) \times H_1(A(\CC), \ZZ) \ar[r] \ar[d] & \ZZ\ni m \ar[d] \\ T_l \times T_l \ar[r] & T_l \mu \ni \zeta^m } \end{equation*}

commutes with - sign so \(e^\lambda (a,a') = \zeta^{-E(a,a')}\)

Subsection 1.10.3 Results about polarizations

\(k = \overline k\) \(p = \characteristic (k) \ge 0\text{.}\)

Milne 1986 16.4

Apply theorem 13.4 with \(\alpha = l^n\text{.}\)

Milne 1986 16.7. Use:

\begin{equation*} (1+ \lambda_{\sheaf L})^* \sheaf P \cong m^* \sheaf L \otimes p^* \sheaf L^{-1} \otimes q^* \sheaf L^{-1} \end{equation*}
Case.

Clear.

Case.

\(e^\lambda\) is skew-symmetric, define \(\sheaf L = (1 \times \lambda)^* \sheaf P\) then \(\forall a,a' \in T_l A\)

\begin{equation*} e(a,\lambda_{\sheaf L} (a') ) = e^{\sheaf L}(a,a') = e^{(1\times \lambda)^* \sheaf P} (a,a') = e^{\sheaf P}((a,\lambda (a)), (a',\lambda(a'))) = \frac{e(a,\lambda (a'))}{ e(a',\lambda(a))} \end{equation*}
\begin{equation*} = \frac{e^\lambda(a,a')}{ e^\lambda(a',a)} = (e^\lambda(a,a'))^2 = e(a,2\lambda (a')) \end{equation*}

so \(2\lambda = \lambda_{\sheaf L}\text{.}\) So by corollary 13.5 \(\lambda_{\sheaf L} = 2\lambda_{\sheaf L'}\) for some \(\sheaf L' \in \Pic A\) so \(\lambda = \lambda_{\sheaf L'}\text{.}\)

Definition 1.10.9.

For a polarization \(\lambda \colon A\to A^\vee\) define

\begin{equation*} e^{\lambda} \colon \ker(\lambda)\times \ker(\lambda) \to \mu_m \end{equation*}
\begin{equation*} (a,a')\mapsto e_m(a,\lambda(b)) \end{equation*}

where \(m \) kills \(\ker(\lambda)\) and \(b \in A\) s.t.\(mb = a'\text{.}\)

Check: this is well defined.

Note 1.10.10.

\(e^\lambda\) is skew-symmetric.

Note 1.10.12.

If \(\lambda = \alpha^* \lambda'\) then

\begin{equation*} \deg(\lambda) = \deg (\lambda') \deg(\alpha)^2\text{.} \end{equation*}

Fix \(l |\deg(\lambda)\) prime. Choose a subgroup \(N\subseteq \ker \lambda\) of order \(l\) let \(\alpha \colon A\to A/N = B\) \(N\) is cyclic and \(e^\lambda\) is skew-symmetric so \(e^{\lambda}\) is trivial on \(N\times N\) so \(B\) has a polarization of degree \(\deg(\lambda) / l^2\) by 13.8.

Fix \(\lambda \colon A\to A^\vee\) polarization, assume \(\ker (\lambda) \subseteq A\lb m \rb\) \((m, p) = 1\) there exists \(a,b,c,d \in \ZZ\) s.t. \(a^2 + b^2 + c^2 + d^2 = m^2 - 1 = -1 \pmod {m^2}\) then

\begin{equation*} \begin{pmatrix} a\amp -b \amp-c\amp -d \\ b\amp a \amp d \amp -c \\ c\amp -d \amp a \amp b \\ d \amp c \amp -b \amp a\end{pmatrix} \end{equation*}

works.

\(A/k\) an abelian variety of dimension \(g\text{,}\) so \((A\times A^\vee)^4\) is an abelian variety of dimension \(8g\) with a principal polarization so using theorem 11.2 there are finitely many (up to \(\simeq\)) of those. Also \((A\times A^\vee)^4\) has finitely many direct factors (theorem 15.3).