Section 1.10 Weil pairings (Maria)
ΒΆSubsection 1.10.1 Weil pairings on elliptic curves
Start with elliptic curves, later repeat for abelian varieties. E/k an elliptic curve, m\ge 2\text{,} if \characteristic(k) = p \gt 0 (m,p) = 1\text{.} The Weil e_m-pairing e_m \colon E\lb m\rb \times E\lb m \rb \to \mu_m is defined as follows: Fix T\in E\lb m \rb then f\in \overline k (E) s.t. \divisor(f) = m(T) - m(0)\text{.} Fix T' \in E with mT' = T and g\in \overline k(E) s.t. \divisor(g) = \lb m \rb^*(T) = \lb m \rb^*(0)= \sum_{R\in E\lb m \rb} (T+R) - (R)\text{.} Check \divisor (f\circ \lb m \rb) = \divisor(g^m)\text{,} henceSubsection 1.10.2 Weil pairings on abelian varieties
Story will be broadly similar to before but we must use the dual, which doesn't appear in the presentation for elliptic curves. Let A/k be an abelian variety k = \overline k\text{.} We construct a Weil e_m-pairingProposition 1.10.1.
The Weil e_m-pairing has the following properties
- e_m is bilinear\begin{equation*} e_m(a_1+a_2,a') = e_m(a_1,a')e_m(a_2, a') \end{equation*}\begin{equation*} e_m(a,a'_1+a'_2) = e_m(a,a'_1)e_m(a,a'_2) \end{equation*}
- e_m is non-degenerate: if e_m(a,a') = 1 \forall a\in A\lb m\rb then a' = 0 (and likewise for the reverse).
- e_m is Galois-invariant... but we assume \overline k =k so we ignore this.
- e_m is compatible\begin{equation*} e_{mm'} (a,a')^{m'} = e_m(m'a, m'a') \ \forall a \in A[mm'], a'\in A^\vee [mm'] \end{equation*}(mm',\characteristic k) = 1
Corollary 1.10.2.
There exists a bilinear non-degenerate (Galois invariant) pairing
Notation.
If \lambda = \lambda_{\sheaf L} e^{\sheaf L} = e^{\lambda_{\sheaf L}}\text{.}Proposition 1.10.3.
For a homomorphism \alpha \colon A \to B
- \begin{equation*} e(a,\alpha^\vee(b)) = e(\alpha (a), b) \forall a \in T_lA,\,b\in T_l B \end{equation*}
-
\begin{equation*} e^{\alpha^\vee \lambda \alpha}(a,a') = e ^\lambda (\alpha(a), \alpha(a')) \end{equation*}for a,a' \in T_l(A)\text{,} \lambda \in \Hom(B,B^\vee)\text{.}
-
\begin{equation*} e^{\alpha^* \sheaf L} (a,a') = e^{\sheaf L}(\alpha (a),\alpha(a')) \end{equation*}a,a'\in T_lA \sheaf L\in \Pic(B)\text{.}
-
\begin{equation*} \Pic A \to \Hom( \bigwedge^2 T_lA , T_l\mu) \end{equation*}\begin{equation*} \sheaf L \mapsto e^{\sheaf L} \end{equation*}is a homomorphism (in particular e^{\sheaf L} is skew-symmetric).
Proof.
- \(a = (a_n) \in T_lA\) \(b\in (b_n) \in T_l B^\vee\) fix a divisor \(D \) on \(B\) representing \(b_n\) and \(g\in k(B)\) s.t. \(\divisor (h) = (l^n_B)^* D\text{.}\) Then \(\alpha^* D\) represents \(\alpha^\vee(b_n)\) so:\begin{equation*} \divisor(g\circ \alpha) = \alpha^*\divisor (g) = \alpha^*(l^n_B)^* D = (l_A^n)^* \alpha^* D\text{.} \end{equation*}So
- \begin{equation*} e^{\alpha^{\vee}\lambda \alpha} (a,a') = e(a, \alpha^\vee\lambda \alpha(a')) = e(\alpha(a),\lambda (\alpha(a'))) = e^\lambda (\alpha(a), \alpha(a'))\text{.} \end{equation*}
- \begin{equation*} \lambda_{\alpha^* \sheaf L} = \alpha^\vee \lambda_{\sheaf L} \alpha \end{equation*}
- Follows from \(\lambda_{\sheaf L\otimes \sheaf L'} = \lambda_{\sheaf L} + \lambda_{\sheaf L'}\text{.}\)
Example 1.10.4. Computation over \CC.
A/\CC be an abelian variety
induces
and
so we get an exact sequence
then we can regard E_\lambda as a skew-symmetric 2-form on H_1(A(\CC), \ZZ)\text{.} Mumford pg. 237 proves
commutes with - sign so e^\lambda (a,a') = \zeta^{-E(a,a')}
Subsection 1.10.3 Results about polarizations
k = \overline k p = \characteristic (k) \ge 0\text{.}Theorem 1.10.5. 13.4.
Let \alpha\colon A\to B be an isogeny of degree prime to \characteristic k and \lambda \in \NS(A) then \lambda = \alpha^* \lambda ' for \lambda ' \in \NS(B) \iff \forall l |\deg(\alpha) l prime there exists a skew-symmetric form f\colon T_lB\times T_lB \to T_l\mu s.t. e^\lambda(a,a') = f(\alpha(a), \alpha(a')) for all a,a' \in T_l(A)\text{.}
Proof.
Milne 1986 16.4
Corollary 1.10.6. 13.5.
l \ne \characteristic (k) \lambda \in \NS(A) is divisible by l^n \iff e^\lambda is divisible by l^n in \Hom (\bigwedge^2 T_lA, T_l \mu)\text{.}
Proof.
Apply theorem 13.4 with \(\alpha = l^n\text{.}\)
Lemma 1.10.7. 13.7.
Let \sheaf P be the PoincarΓ© sheaf on A\times A^\vee then
for all a,a' \in T_l A\text{,} b,b' \in T_l A^\vee\text{.}
Proof.
Milne 1986 16.7. Use:
Proposition 1.10.8. 13.6.
Assume \characteristic k \ne l,2 then a homomorphism \lambda\colon A\to A^\vee is \lambda = \lambda_{\sheaf L} for some \sheaf L \in \Pic A iff e^\lambda is skew-symmetric.
Proof.
Case.
Clear.
Case.
\(e^\lambda\) is skew-symmetric, define \(\sheaf L = (1 \times \lambda)^* \sheaf P\) then \(\forall a,a' \in T_l A\)
so \(2\lambda = \lambda_{\sheaf L}\text{.}\) So by corollary 13.5 \(\lambda_{\sheaf L} = 2\lambda_{\sheaf L'}\) for some \(\sheaf L' \in \Pic A\) so \(\lambda = \lambda_{\sheaf L'}\text{.}\)
Definition 1.10.9.
For a polarization \lambda \colon A\to A^\vee define
where m kills \ker(\lambda) and b \in A s.t.mb = a'\text{.}
Note 1.10.10.
e^\lambda is skew-symmetric.
Proposition 1.10.11. 13.8.
\alpha\colon A \to B is an isogeny of degree prime to p\text{,} \lambda\colon A\to A^\vee polarization then \lambda = \alpha^* \lambda', \,\lambda' \colon B\to B^\vee polarization iff
Note 1.10.12.
If \lambda = \alpha^* \lambda' then
Corollary 1.10.13. 13.10.
A an abelian variety, \lambda \colon A \to A^\vee is a polarization with (\deg (\lambda), p) = 1 then A is isogenous to a principally polarized abelian variety.
Proof.
Fix \(l |\deg(\lambda)\) prime. Choose a subgroup \(N\subseteq \ker \lambda\) of order \(l\) let \(\alpha \colon A\to A/N = B\) \(N\) is cyclic and \(e^\lambda\) is skew-symmetric so \(e^{\lambda}\) is trivial on \(N\times N\) so \(B\) has a polarization of degree \(\deg(\lambda) / l^2\) by 13.8.
Corollary 1.10.14. 13.11.
Let \lambda be a polarization of A s.t. \ker (\lambda) \subseteq A\lb m \rb for some (m,p)=1\text{.} If \exists \alpha \colon A \to A s.t. \alpha(\ker (\lambda)) \subseteq \ker(\lambda) and \alpha^\vee \lambda \alpha = - \lambda on A\lb m^2\rb then A\times A^\vee is principally polarized.
Theorem 1.10.15. 13.12 (Zarhin's trick).
For any abelian variety A (A\times A^\vee)^4 is principally polarized.
Proof.
Fix \(\lambda \colon A\to A^\vee\) polarization, assume \(\ker (\lambda) \subseteq A\lb m \rb\) \((m, p) = 1\) there exists \(a,b,c,d \in \ZZ\) s.t. \(a^2 + b^2 + c^2 + d^2 = m^2 - 1 = -1 \pmod {m^2}\) then
works.
Corollary 1.10.16. 13.13.
Let k be a finite field, then for each g \in \ZZ there exist only finitely many isomorphism classes of abelian varieties of dimension g over k\text{.}
Proof.
\(A/k\) an abelian variety of dimension \(g\text{,}\) so \((A\times A^\vee)^4\) is an abelian variety of dimension \(8g\) with a principal polarization so using theorem 11.2 there are finitely many (up to \(\simeq\)) of those. Also \((A\times A^\vee)^4\) has finitely many direct factors (theorem 15.3).